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Abstract. In this work, we provide a variation of the four-circulant construction for self-
dual codes. By applying the constructions over the alphabets F2, F2 + uF2, F4 + uF4, we
were able to obtain extremal binary self-dual codes of lengths 40, 64 including new extremal
binary self-dual codes of length 68. More precisely, 43 new extremal binary self-dual codes
of length 68 with new parameters have been constructed.
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1. Introduction

Binary self-dual codes have generated a considerable amount of interest in the liter-
ature for decades for their connections to many other mathematical structures and
applications. They have an upper bound on their minimum distance, which is given
by Conway and Sloane in [4], and finalized by Rains in [19] as d ≤ 4b n

24c+ 6, when
n ≡ 22 (mod 24) and d ≤ 4b n

24c+4, otherwise, where n is the length of the self-dual
code. Self-dual codes meeting these bounds are called extremal.

There is an extensive literature on constructions for extremal binary self-dual
codes. One of the main directions of research in the literature has been to construct
extremal binary self-dual codes whose weight enumerators have new parameters that
were not known to exist before. This comes from the works by Conway and Sloane
in [4] and Dougherty et al. in [5], in which the possible weight enumerators of all
extremal self-dual codes of lengths up to 100 were classified.

While the tools in constructing extremal binary self-dual codes may differ from
taking a special matrix construction considering a certain automorphism or the
neighboring construction, in all of these cases the final step is to do a computer
search over a reduced set of possible inputs. Using the aforementioned tools reduces
the search field considerably so that the search is now feasible within a reasonable
time.
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For most known constructions of self-dual codes, one of the key concepts is “cir-
culant” matrices. It is well-known that circulant matrices are determined uniquely
by their first rows and that they commute in matrix multiplication. The double-
circulant, bordered double-circulant and four-circulant constructions are some of the
well-known construction methods in the literature that make use of circulant matri-
ces. Through these constructions the search field for a self-dual code of length 2n
usually reduces to a constant multiple of 2n, which makes it feasible to search for
self-dual codes of lengths up to 88 for example.

In this work, we will be considering a generalized version of the four-circulant
construction over the alphabets F2, F2 +uF2 and F4 +uF4 to construct extremal bi-
nary self-dual codes. Our construction, in general, is different than the four-circulant
construction and we will be giving the comparative results. Using this construction,
we are able to construct many extremal binary self-dual codes of lengths 40 and 64,
and in particular, we are able to construct 43 new extremal binary self-dual codes
of length 68 with new weight enumerators in W68,2. The exact parameters in the
weight enumerators are given in section 5.

The rest of the paper is organized as follows. In section 2, we give the prelim-
inaries on the alphabets to be used, special types of matrices that we use in our
constructions and the well known four-circulant construction. In section 3, we in-
troduce our variation of the four-circulant construction and give theoretical results
as to when they lead to self-dual codes as well as their connection to the ordinary
four-circulant construction. In section 4, we give the numerical results of extremal
binary self-dual codes of lengths 40 and 64 that we obtain by a direct application of
our constructions over different alphabets together with a comparison with the usual
four-circulant construction. In section 5, we apply the neighboring construction as
well as extensions to the codes obtained in section 4 to find new extremal binary
self-dual codes of length 68. We finish with concluding remarks and directions for
possible future research.

2. Preliminaries

Let R be a commutative Frobenius ring of characteristic 2. A code C of length n
over R is an R-submodule of Rn. Elements of the code C are called codewords of C.
Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Rn. The duality
is understood in terms of the Euclidean inner product; 〈x, y〉E =

∑
xiyi. The dual

C⊥ of the code C is defined as

C⊥ = {x ∈ Rn | 〈x, y〉E = 0 for all y ∈ C} .

We say that C is self-dual if C = C⊥.

Two self-dual binary codes of dimension k are said to be neighbors if their inter-
section has dimension k − 1.

Let F4 = F2 (ω) be the quadratic field extension of the binary field F2 = {0, 1},
where ω2 + ω + 1 = 0. The ring F4 + uF4 defined via u2 = 0 is a commu-
tative binary ring of size 16. We may easily observe that it is isomorphic to
F2 [ω, u] /

〈
u2, ω2 + ω + 1

〉
. The ring has a unique non-trivial ideal 〈u〉 = {0, u, uω,
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u+ uω}. Note that F4+uF4 can be viewed as an extension of F2+uF2 and so we can
describe any element of F4+uF4 in the form ωa+ ω̄b uniquely, where a, b ∈ F2+uF2.

(F4 + uF4)
n

ψF4+uF4−−−−−−−−→
(F2 + uF2)

2n

↓ ϕF4+uF4
↓ ϕF2+uF2

F2n
4 ψF4−−−−−−−−−→

F4n
2

Let us recall the following Gray maps from [8, 18] and [6];

ψF4
: aω + bω 7→ (a, b) , a, b ∈ Fn

2

ϕF2+uF2
: a+ bu 7→ (b, a+ b) , a, b ∈ Fn

2

ψF4+uF4
: aω + bω 7→ (a, b) , a, b ∈ (F2 + uF2)

n

ϕF4+uF4
: a+ bu 7→ (b, a+ b) , a, b ∈ Fn

4

Note that these Gray maps preserve orthogonality in the respective alphabets; for
the details we refer to [18]. The binary codes ϕF2+uF2

◦ ψF4+uF4
(C) and ψF4

◦
ϕF4+uF4

(C) are equivalent. The Lee weight of an element in F4 + uF4 is defined to
be the Hamming weight of its binary image under any of the previously mentioned
compositions of the maps. A self-dual code is said to be of Type II if the Lee weights
of all codewords are multiples of 4, otherwise it is said to be of Type I.

Proposition 1 (see [18]). Let C be a code over F4 + uF4. If C is self-orthogonal,
so are ψF4+uF4

(C) and ϕF4+uF4
(C). The code C is a Type I (resp. Type II) code

over F4 + uF4 if and only if ϕF4+uF4 (C) is a Type I (resp. Type II) F4-code, if and
only if ψF4+uF4 (C) is a Type I (resp. Type II) F2 + uF2-code. Furthermore, the
minimum Lee weight of C is the same as the minimum Lee weight of ψF4+uF4

(C)
and ϕF4+uF4

(C).

Corollary 1. Suppose that C is a self-dual code over F4 + uF4 of length n and the
minimum Lee distance d. Then ϕF2+uF2 ◦ψF4+uF4 (C) is a binary [4n, 2n, d] self-dual
code. Moreover, C and ϕF2+uF2 ◦ ψF4+uF4 (C) have the same weight enumerator. If
C is Type I (Type II), then so is ϕF2+uF2

◦ ψF4+uF4
(C).

In subsequent sections we will write tables in which vectors with elements from
the rings F2 + uF2 and F4 + uF4 will appear. In order to avoid writing long vectors
with elements that can be confused with other elements, we will describe the elements
of this ring in a shorthand way, which will make the tables more compact.

For the elements of F2 + uF2, we will use 0→ 0, 1→ 1, u→ u and 1 + u→ 3.
For the elements of F4+uF4, we use the ordered basis {uω, ω, u, 1} to express the

elements of F4 +uF4 as binary strings of length 4. Then we will use the hexadecimal
number system to describe each element:

0 ↔ 0000, 1 ↔ 0001, 2 ↔ 0010, 3 ↔ 0011, 4 ↔ 0100, 5 ↔ 0101, 6 ↔ 0110,
7 ↔ 0111, 8 ↔ 1000, 9 ↔ 1001, A ↔ 1010, B ↔ 1011, C ↔ 1100, D ↔ 1101, E
↔ 1110, F ↔ 1111.

For example, 1+uω corresponds to 1001, which is represented by the hexadecimal
9, while ω + uω corresponds to 1100, which is represented by C.

We are going to use the following extension method for computational results.



216 J.Gildea, A.Kaya and B.Yildiz

Theorem 1 (see [7]). Let R be a commutative ring of characteristic 2 with identity.
Let C be a self-dual code over R of length n and let G = (ri) be a k × n generator
matrix for C, where ri is the i-th row of G, 1 ≤ i ≤ k. Let c be a unit in R such that
c2 = 1 and let X be a vector in Rn with 〈X,X〉 = 1. Let yi = 〈ri, X〉 for 1 ≤ i ≤ k.
Then the following matrix 

1 0 X
y1 cy1 r1
...

...
...

yk cyk rk

 ,
generates a self-dual code D over R of length n+ 2.

2.1. Special matrices

Circulant matrices play an important role in many applications. In this section, we
briefly recall circulant matrices and its variations in the form of reverse-circulant
and λ-circulant matrices.

With R a commutative ring with identity, let σ be the permutation on Rn that
corresponds to the right shift, i.e.

σ(a1, a2, . . . , an) = (an, a1, . . . , an−1).

A circulant matrix is a square matrix where each row is a right-circular shift of the
previous row. In other words, if r is the first row, a typical circulant matrix is of
the form 

r
σ(r)
σ2(r)

...
σn−1(r)

 .

It is clear that, with T denoting the permutation matrix corresponding to the n-cycle
(123...n), a circulant matrix with the first row (a1, a2, . . . , an) can be expressed as a
polynomial in T as:

a1In + a2T + a3T
2 + · · ·+ anT

n−1,

with Tn = In. This shows that circulant matrices commute.
A reverse-circulant matrix is a square matrix where each row is a left-circular

shift of the previous row. It is clear to see that if r is the first row, a reverse-circulant
matrix is of the form 

r
σ−1(r)
σ−2(r)

...

σ−(n−1)(r)

 .
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An n× n square matrix A is called λ-circulant if every row is a λ-cyclic shift of
the previous one, in other words, A is in the following form;

a1 a2 a3 · · · an
λan a1 a2 · · · an−1
λan−1 λan a1 · · · an−2

...
...

...
. . .

...
λa2 λa3 λa4 · · · a1

 .

λ-circulant matrices are an immediate generalization of circulant matrices and
like circulant matrices, two λ-circulant matrices also commute. Recently, λ-circulant
matrices were used in [17] to construct formally self-dual codes.

λ-reverse-circulant matrices can also be defined in exactly the same way as an
extension of reverse circulant matrices.

The following lemma gives us an important result that will be used in the up-
coming sections.

Lemma 1 (see [16]). Let A and C be λ-circulant matrices. Then C ′ = CR is a
λ-reverse-circulant matrix and it is symmetric. Here R is a back-diagonal matrix.
Moreover, AC ′ − C ′AT = 0. Equivalently, ARCT − CRAT = 0.

A special case of Lemma 1 is as follows;

Lemma 2. Symmetric circulant matrices commute with reverse circulant matrices.

2.2. On the four-circulant construction

The four-circulant construction, which was inspired by orthogonal designs, was in-
troduced in [2]:

Theorem 2 (see [2]). Let A and B be n × n circulant matrices over Fp such that
AAT +BBT = −In. Then the matrix

G =

(
I2n

A B
−BT AT

)
generates a self-dual code over Fp.

Recently, the four-circulant construction was applied on F2 + uF2 in [12], which
resulted in a new binary self-dual code of length 64.

The following is a variation of the four-circulant construction, which was used in
[16] to obtain new extremal binary self-dual codes.

Theorem 3 (see [16]). Let λ be a unit of the commutative Frobenius ring R, A
a λ-circulant matrix and B a λ-reverse-circulant matrix with AAT + BBT = −In.
Then the matrix

G =

(
I2n

A B
−B A

)
generates a self-dual code C over R.
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3. A variation of the four-circulant construction

In this section, we propose a modification of the four-circulant construction. We
also propose two specific variations of the construction.

Theorem 4. Let R be a commutative Frobenius ring of characteristic 2, A and B
circulant matrices and C a reverse circulant matrix. Then the code generated by

G :=

(
I2n

A B + C
BT + C AT

)
is self-dual when AAT +BBT + C2 = In and AC = CA.

Proof. Let M :=

(
A B + C

BT + C AT

)
. We are to show that MMT = I2n under the

given conditions. Indeed

MMT =

(
AAT +BBT +BC + CBT + C2 AB +AC +BA+ CA
BTAT + CAT +ATBT +ATC BTB +BTC + CB + C2 +ATA

)
=

(
AAT +BBT + C2 AC + CA
CAT +ATC BTB + C2 +ATA

)
=

(
In 0n
0n In

)
.

The above equality holds because we have AB = BA and ATBT = BTAT since
circulant matrices commute and also because by Lemma 1 BC + CBT = 0 and
BTC + CB = 0.

Remark 1. Note that when C = 0 in Theorem 4 we get the ordinary four-circulant
construction. Hence, the variation is also a generalization of the four-circulant con-
struction when the characteristic is 2.

We obtain the following corollary when A is a symmetric circulant matrix:

Corollary 2. Let R be a commutative Frobenius ring of characteristic 2, A a sym-
metric circulant matrix, B a circulant matrix and C a reverse circulant matrix.
Then the code generated by

G :=

(
I2n

A B + C
BT + C A

)
is a self-dual code over R whenever A2 +BBT + C2 = In.

Proof. It follows by Theorem 4 and Lemma 2.

We may also propose another special case of Theorem 4.

Corollary 3. Let C be a self-dual four-circulant code of length 4n over R (of char-
acteristic 2) generated by

G :=

(
I2n

A B
BT AT

)
.
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Then for any reverse circulant matrix C, which commutes with A and satisfies C2 =
0, the matrix (

I2n
A B + C

BT + C AT

)
generates a self-dual code C′.

Corollary 3 allows us to reduce the size of the search field for that specific varia-
tion. We may consider a four-circulant code and search for reverse circulant matrices
C under the restrictions.

Example 1. Let n = 7 and C be the four-circulant code where A = I7 and B = 07,
i.e. rA = (1, 0, 0, 0, 0, 0, 0) and rB = (0, 0, 0, 0, 0, 0, 0). The code C is binary self-dual
with parameters [28, 14, 2]. Let C be the reverse circulant matrix with the first row
rC = (1110100) which satisfies C2 = 07, and obviously it commutes with A. Then
the code C′ obtained by Corollary 3 is an extremal binary self-dual [28, 14, 6] code
with an automorphism group of order 26 × 3× 7.

4. Computational results

In this section, we provide examples to demonstrate the effectiveness of the methods
introduced in Section 3. We also compare the methods with the well known four-
circulant construction for various lengths over the alphabets F2, F2 + uF2 and F4 +
uF4.

4.1. Applying constructions over F2 for length 40

We construct Type I self-dual codes of length 40 by the four-circulant construction
and also by the methods given in Section 3. The weight enumerator of a singly even
binary self-dual code of parameters [40, 20, 8] is in the following form:

W40 = 1 + (125 + 16β) y8 + (1664− 64β) y10 + · · · , 0 ≤ β ≤ 10.

The nonexistence of a code with β = 9 has been proven in [10]. The codes exist for
all possible weight enumerators. In Table 1, we list four-circulant self-dual binary
codes of length 40.

C40,i rA rB |Aut(C40,i)| β in W40

C40,1 (0100001110) (0100110011) 22 × 5 0
C40,2 (0000110011) (0010111001) 23 × 5 0
C40,3 (0101100111) (1111001011) 23 × 3× 5 0
C40,4 (1001000100) (0101101101) 214 × 3× 5 10
C40,5 (1000000010) (1101011101) 216 × 33 × 52 10

Table 1: [40, 20, 8] four-circulant codes

We apply Corollary 3 to C40,4 from Table 1. In other words, we fix the circulant
matrices A and B and search for reverse circulant matrices which satisfy the given
conditions. The results are given in Table 2. The results have shown the method to
be quite effective.
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E40,i rC |Aut(E40,i)| β in W40

E40,1 (1101011010) 23 0
E40,2 (1100011000) 22 2
E40,3 (0111001110) 23 2
E40,3 (0100001000) 28 2
E40,4 (0011100111) 213 2
E40,5 (0111101111) 211 4
E40,6 (1010010100) 28 6
E40,7 (1101011010) 28 × 3 6
E40,8 (1000110001) 215 10
E40,9 (1111011110) 216 10

Table 2: [40, 20, 8] codes by Corollary 3 for C40,4

4.2. Applying constructions over F2 for length 64

There are two possibilities for the weight enumerators of extremal Type I self-dual
codes of length 64 (hence of parameters [64, 32, 12]) ([4]):

W64,1 = 1 + (1312 + 16β) y12 + (22016− 64β) y14 + · · · , 14 ≤ β ≤ 284,

W64,2 = 1 + (1312 + 16β) y12 + (23040− 64β) y14 + · · · , 0 ≤ β ≤ 277.

With the most updated information, [1, 14], extremal singly even self-dual codes
with weight enumerator W64,1 are known for

β ∈
{

14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34
35, 36, 38, 39, 44, 46, 48, 50, 53, 59, 60, 64, 74

}

and extremal self-dual codes with weight enumerator W64,2 are known for

β ∈
{

0, 1, ..., 42, 44, 45, 48, 50, 51, 52, 56, 58, 64, 65,
72, 80, 88, 96, 104, 108, 112, 114, 118, 120, 184

}
\ {31, 39}.

Self-dual four-circulant [64, 32, 12]2 Type I codes exist for weight enumerators β =
0, 8, 16, 24, 32, 40, 48, 56, 64 and 72 in W64,2. We provide codes obtained from Corol-
lary 2 in Table 3. The results show that the limited version of the generalized
four-circulant construction gives some codes which do not have four-circulant repre-
sentation (The ones with β = 4, 10, 12, 13, 17, 18, 20, 28, 34.)
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Ci rA rB rC |Aut(Ci)| β

C1 (101001111) (0001111001100011) (1101001110011001) 23 4
C2 (001101011) (0101001000001001) (0101011110111101) 24 8
C3 (111101110) (0011110000111101) (0101011110111101) 25 8
C4 (111101011) (0000100001000001) (0100000011001101) 23 10
C5 (101101111) (1000101000101000) (0010111110100010) 24 12
C6 (100110100) (0001001001111111) (0101011110111101) 23 13
C7 (100011101) (1010110001101011) (1100111001100100) 24 16
C8 (110001001) (0010111110100010) (1100011011111000) 23 17
C9 (000011110) (0000011101110111) (0100000011001101) 23 18
C10 (101101100) (1111001000100111) (1100101101001011) 24 20
C11 (000011100) (0010001101001111) (0101011110111101) 23 24
C12 (010111001) (1010000110110000) (0100010001011111) 24 24
C13 (010010011) (0000000100000101) (0101011110111101) 24 28
C14 (111011011) (0100000101111111) (0001010001000001) 24 32
C15 (011111000) (1000101000100010) (0001001101000011) 23 34

Table 3: Type I extremal self-dual codes of length 64 by Corollary 2 (W64,2)

Remark 2. The first code with weight enumerator β = 34 in W64,2 has been recently
constructed in [1]. Here we give an alternative construction.

4.3. Applying constructions over F2 + uF2

In this section, we compare two methods: four-circulant construction and a variation
of the four-circulant construction over F2 + uF2 for length 32. A complete classifi-
cation of four-circulant codes of length 32 over F2 +uF2 is given by Karadeniz et al.
in [12]. Four-circulant type I codes of length 32 have binary images corresponding
to weight enumerators with β = 0, 16, 32, 48 and 80 in W64,2. In Table 4, we provide
codes obtained by the main construction. It is observed that the latter method is
more efficient as it produces many more codes of length 64 with parameters that
could not be obtained by the ordinary four-circulant construction.

Fi rA rB rC |Aut(Fi)| β
1 (0, u, 0, 0, 1, u, 3, 0) (u, u, u, 0, 0, 1, 1, 3) (0, u, 3, 0, 0, u, 3, 0) 24 0
2 (u, u, 0, u, 1, u, 1, u) (u, u, u, 0, 0, 1, 1, 3) (0, 0, 3, 0, 0, 0, 3, 0) 25 0
3 (u, u, u, u, 1, u, 3, u) (u, u, u, 0, 0, 1, 1, 3) (u, u, 1, u, u, u, 1, u) 26 0
4 (u, 0, u, 0, 0, 1, u, 3) (u, u, u, u, 0, 1, 1, 1) (1, u, 3, 0, 3, u, 1, 0) 23 4
5 (u, u, u, u, 1, 1, 3, 1) (u, u, 0, 1, 0, 0, 1, 3) (u, u, 0, u, u, u, 0, u) 24 4
6 (0, u, 0, u, 1, u, 3, u) (u, u, u, 0, 0, 1, 1, 3) (u, 0, 3, 0, u, 0, 3, 0) 25 4
7 (0, u, 0, u, 1, 1, 0, 1) (u, u, 0, u, 1, 1, 1, 3) (u, 0, u, 0, u, 3, u, 3) 23 8
8 (u, 0, 0, u, 1, u, 1, 0) (u, u, u, u, 0, 1, 1, 1) (u, 0, 1, 0, u, 0, 1, 0) 24 8
9 (u, u, u, u, 1, 1, u, 1) (u, u, u, u, u, 1, 0, 1) (u, 0, u, u, 1, 3, 1, 1) 25 8
10 (u, u, 0, 0, 1, 1, 0, 3) (u, u, 0, u, 1, 1, 1, 3) (u, u, 0, u, u, 1, 0, 1) 23 12
11 (u, u, u, u, 0, 1, 0, 3) (u, u, u, u, 0, 1, 1, 1) (1, u, 3, u, 1, u, 3, u) 24 12
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12 (0, u, 0, u, 0, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, 0, 3, 0, 1, 0, 3, 0) 25 12
13 (u, 0, 0, 0, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 3, u, 1, u, 3, u) 26 12
14 (u, 0, u, 0, 1, 1, u, 1) (u, u, u, u, u, 1, 0, 1) (0, 0, 0, u, 1, 3, 1, 1) 24 16
15 (u, u, u, u, 0, 1, 0, 3) (u, u, u, u, 0, 1, 1, 1) (3, 0, 3, 0, 3, 0, 3, 0) 25 16
16 (u, u, 0, u, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (3, 0, 3, 0, 3, 0, 3, 0) 26 16
17 (0, 0, u, 0, 0, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (3, 0, 3, 0, 3, 0, 3, 0) 27 16
18 (u, u, u, u, 1, 1, u, 1) (u, u, 0, 0, u, 1, u, 3) (u, u, u, 0, 3, 3, 3, 1) 23 20
19 (u, 0, 0, u, 1, u, 1, 0) (u, u, u, u, 0, 1, 1, 1) (0, 0, 1, 0, 0, 0, 1, 0) 24 20
20 (u, u, u, u, 1, 1, 0, 1) (u, u, 0, u, 1, 3, 3, 1) (u, u, u, u, u, 3, 0, 3) 23 24
21 (u, 0, 0, u, 0, 1, u, 1) (u, u, u, u, 0, 1, 1, 1) (3, u, 3, 0, 3, u, 3, 0) 24 24
22 (u, u, 0, u, 0, 1, 0, 1) (u, u, u, 0, 0, u, 0, 1) (1, 0, 1, 0, 1, 3, 1, 3) 25 24
23 (u, 0, 0, 0, u, 1, u, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 3, 0, 1, u, 3, 0) 24 28
24 (u, u, u, u, u, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (1, u, 1, 0, 1, u, 1, 0) 25 32
25 (u, u, 0, 0, 1, 0, 1, u) (u, u, u, u, 0, 1, 1, 1) (u, 0, 3, 0, u, 0, 3, 0) 24 36
26 (u, u, u, 0, 1, u, 3, 0) (u, u, u, 0, 0, 1, 1, 3) (u, u, 3, u, u, u, 3, u) 25 36
27 (0, u, u, 0, 0, 1, 0, 1) (u, u, u, 0, 0, 1, 1, 3) (1, 0, 3, 0, 1, 0, 3, 0) 24 44
28 (0, u, u, 0, 0, 1, 0, 1) (u, u, u, 0, 0, 1, 1, 3) (1, u, 1, u, 1, u, 1, u) 25 48
29 (u, 0, u, 0, u, 1, 0, 3) (u, u, u, 0, 0, 1, 1, 3) (3, u, 3, u, 3, u, 3, u) 27 80

Table 4: [64, 32, 12] codes via Theorem 4 over F2 + uF2 (W64,2)

4.4. Computational results over F4 + uF4

Four-circulant codes of length 16 over F4 + uF4 were studied in [15]. The binary
images of these codes are Type I extremal self-dual binary codes with weight enu-
merators β = 0, 4, 8, 12, 24, 28, 32, 36, 40, 48 and 52 in W64,2. We apply Corollary 2
and observe that it provides many new parameters that could not be constructed
from the four-circulant construction. The results are presented in Table 5. The Gray
images of the codes are extremal binary self-dual codes of length 64 by Corollary 1.

Ei rA rB rC |Aut(Ei)| β in W64,2

E1 (D,F,5,F) (E,C,0,1) (7,B,4,A) 23 1
E2 (5,B,D,B) (A,E,B,D) ( 7,F,1,8) 23 5
E3 (B,9,D,9) (2,E,9,7) ( D,7,1,2) 23 9
E4 (D,F,F,F) (E,E,9,8) (A,6,9,7) 23 13
E5 (9,7,7,7) (0,F,C,0) (4,1,F,A) 23 17
E6 (F,9,7,9) (2,4,3,F) (F,5,B,8) 23 21
E7 (D,0,F,0) (9,E,C,A) (D,B,4,2) 23 29
E8 (5,8,6,8) (F,5,E,8) (0,8,9,7) 25 40
E9 (B,4,4,4) (7,E,8,D) (0,6,4,2) 25 52

Table 5: Self-dual codes via Corollary 2 over F4+uF4 of length 16 whose binary images are self-dual
codes of length 64
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Remark 3. The codes with weight enumerators for 1, 5, 13, 17, 21, 29 and 52 were
first constructed in [11] as R3, lifts of the extended binary Hamming code. These
are reconstructed by a circulant construction in Table 5.

5. New extremal binary self-dual codes of length 68

By [3, 10], a possible weight enumerator of an extremal binary self-dual code of
length 68 (of parameters [68, 34, 12]) is in one of the following forms:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ) y14 + · · · ,

where 0 ≤ γ ≤ 9. Recently, Yankov et al. constructed the first examples of codes
with a weight enumerator for γ = 7 in W68,2. Together with these, including the
ones obtained in [13], the existence of codes in W68,2 is known for many values. In
order to save space we only give the lists for γ = 5 and γ = 6, which are updated in
this work;

γ = 5 with β ∈ {113,116,...,182,187,189,191,193} ;

γ = 6 with β ∈ {2m|m = 69, 77, 78, 79, 81, 88} .

We construct 36 new codes with parameter γ = 6 and 7 codes with γ = 5 in W68,2.
We first construct two new codes of length 68 by applying the extension method

described in Theorem 1 over F2 + uF2 to F2 from Table 4.

D68,i Fi c X γ β

D68,1 2 1 (31u011u30uu113u3333u11u010301101) 5 101
D68,2 2 1 + u (130031u300013101313u31uu301u3103) 5 105

Table 6: New codes of length 68 as extensions of codes in Table 4 by Theorem 1

Now, applying the neighboring construction to the codes obtained in Table 6, we
get the following new codes of length 68:

N68,i D68,i x γ β

N68,1 2 (1010111001011100010100000010000000) 5 109
N68,2 2 (0000110011011010111101110100011100) 5 111
N68,3 2 (0000111110011111111011010001100000) 5 112
N68,4 2 (1101110000001001011100101100010101) 5 114
N68,5 1 (1110110100000001001100000111001010) 5 115
N68,6 2 (1001010001010101110010111110111000) 6 133

Table 7: New codes of length 68 as neighbors of codes in Table 6

Example 2. Let C68 be the code obtained by extending ϕ (E6) over F2 + uF2, where
X = (3, 0, 1, 1, u, 0, u, 3, 0, 1, 1, u, 1, 0, 0, u, 3, 0, 0, u, u, u, 1, 3, 3, 0, 1, 3, 1, u, 0, 3), then
the binary image of C68 is an extremal self-dual [68, 34, 12] code with the weight
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enumerator for γ = 6 and β = 157 in W68,2. As listed above, only 6 codes with
γ = 6 were known before. So this is the first example of a self-dual code with the
corresponding weight enumerator.

Without loss of generality, we consider a standard form of the generator matrix

of ϕ (C68). Let x ∈ F68
2 − ϕ (C68). Then D =

〈
〈x〉⊥ ∩ ϕ (C68) , x

〉
is a neighbor of

ϕ (C68). The first 34 entries of x are set to 0, the rest of the vectors are listed in
Table 8. As neighbors of ϕ (C68), we obtain 34 new codes with weight enumerators
for γ = 6 in W68,2, which are listed in Table 8. All the codes have an automorphism
group of order 2.

C68,i X β

C68,1 (1111111100111100001100001000000111) 137
C68,2 (0101001001001111111011100010111011) 139
C68,3 (1000001100000110110110000111100010) 140
C68,4 (0010011101110110011001110110110110) 141
C68,5 (1111111111000011111101100010011001) 142
C68,6 (1001000001111111111010010000011110) 143
C68,7 (1100100010000111001100111111110001) 144
C68,8 (0000110001110110011011011010000110) 145
C68,9 (1000010100001010110101110111110101) 146
C68,10 (1100110100000010010000110010011110) 147
C68,11 (1110101000011110100101111111101011) 148
C68,12 (0110011001001101000111010101011000) 149
C68,13 (1111111100101101000000001011111000) 150
C68,14 (0000100001100010111010011111111000) 151
C68,15 (1110000010100000001110110110000101) 152
C68,16 (1010100100110011111101001101001001) 153
C68,17 (1111010010000100100000101000011101) 155
C68,18 (1000001011110111100101100000001000) 159
C68,19 (0001010001010101010010010001100010) 160
C68,20 (1100000100011110101111110001010101) 161
C68,21 (0101110011110010110000111111010011) 163
C68,22 (1000000111111000000010111100010001) 164
C68,23 (0100000001010000001001110110010110) 165
C68,24 (0111001010010100000010010010101000) 166
C68,25 (1111010011000111000101101001011100) 167
C68,26 (0010110010110100000010001111000000) 168
C68,27 (0000010011010110001010010000101001) 169
C68,28 (1110101000110000011111010101010101) 170
C68,29 (1110100001100111100100000010010010) 171
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C68,30 (1000001101101110010001101010111101) 172
C68,31 (1100100001110011101001010001100000) 173
C68,32 (0100011001000011000100010100101100) 174
C68,33 (0110000001110110000111101000101011) 177
C68,34 (1011111000100000001011010000101010) 184

Table 8: New extremal binary self-dual codes of length 68 with γ = 6 as neighbors of C68

6. Conclusion

In this paper, we propose a variation of the well known four-circulant construction for
constructing self-dual codes. We compare both methods to highlight the significance
of the generalized construction. Additionally, we construct new codes of length
68. For codes of length 68, we constructed the following codes with new weight
enumerators in W68,2:

γ = 5, β = {101, 105, 109, 111, 112, 114, 115}.
γ = 6, β = {133, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,

152, 153, 155, 157, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 170,

171, 172, 173, 174, 177, 184}.

The binary generator matrices of the new codes we have constructed are available
online at [9].

The results we have obtained have demonstrated the effectiveness of the new con-
struction and the difference from the ordinary four-circulant construction. A possible
direction for future research could be to apply these constructions for different rings
and lengths.
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