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Abstract. We consider a jump-diffusion process with Hawkes jumps, which has been
widely applied in insurance, finance, queueing theory, statistics, and many other fields.
This model can be compared with the Poissonian jump-diffusion model familiar to finan-
cial economists since Merton [24]. We study the limit theorems for a jump-diffusion process
with Hawkes jumps. In particular, we obtain the law of large numbers, central limit the-
orems, and the large deviations principle. In addition, we provide some examples with
i.i.d. random variable Yi that represent the jumps to illustrate the quantities of the limit
behaviors.

AMS subject classifications: 60G55, 60F05, 60F10

Key words: jump-diffusion, the Hawkes process, self-exciting point processes, the law of
large numbers, the central limit theorems, the large deviations principles

1. Introduction

Jump-diffusion models are particular cases of exponential Lévy models in which
the frequency of jumps is finite. They can be considered as prototypes for a large
class of more complex models such as the stochastic volatility plus jump model of
Bates [3]. Starting with Merton’s seminal paper [24] and up to the present date,
various aspects of jump-diffusion models have been studied in the academic finance
community. In the last decade, the research departments of major banks started to
accept jump-diffusions as a valuable tool in their day-to-day modeling. An interest
to jump models in finance is increasing because first, in a model with continuous
paths like a diffusion model, the price process behaves locally like Brownian motion
and the probability that the stock moves by a large amount over a short period
of time is very small, unless one fixes an unrealistically high value of volatility.
Therefore, in such models the prices of short term out of the money options should
be much lower than what one observes in real markets, and second, from the point
of view of hedging, continuous models of stock price behavior generally lead to a
complete market or to a market, which can be made complete by adding one or two
additional instruments, like in stochastic volatility models. Combining Brownian
motion with drift and a compound Poisson process, we obtain the simplest case of
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jump-diffusion: a process which sometimes jumps and has a continuous but random
evolution between the jump times:

Xt = αt+ βBt +

Nt∑
i=1

Yi. (1)

The best known model of this type in finance is the Merton model [24], where the
stock price is St = S0e

Xt with Xt as above and the jumps Yi having a Gaussian
distribution. The process in (1) is again a Lévy process and its characteristic function
can be computed by multiplying the characteristic function of Brownian motion and
that of the compound Poisson process:

E[eiuXt ] = exp

{
t
(
iµu− σ2u2

2
+ λ

∫
R
(eiux − 1)f(dx)

)}
.

In the recent paper [1], the authors proposed a model that is capable of re-
producing both time and space propagation in a crisis, and developed appropriate
estimation and testing methods for that purpose. For this, they needed to leave the
widely applied class of Lévy jumps, such as the compound Poisson process that is
the usual driving jump process employed in the literature. Lévy processes have inde-
pendent increments; as a result, they do not allow for any type of serial dependence,
whence propagation of jumps over time as well as propagation of jumps across mar-
kets are key components we wish to capture. So they employed a different model,
i.e., Hawkes process. In a Hawkes process, a jump in one market raises the prob-
ability of future jumps both in the same market and elsewhere, thereby generating
episodes.

A Hawkes process is a self-exciting simple point process with the clustering ef-
fect whose jump rate depends on its entire past history and was introduced by
Hawkes [13]. We start with a general description of the Hawkes process.

Let N be a simple point process on R and let F−∞
t := σ(N(C), C ∈ B(R), C ⊂

(−∞, t]) be an increasing family of σ−algebras for all t ∈ R and let F := (F−∞
t )t∈R

be a filtration. Any nonnegative F−∞
t -progressively measurable process λt with

E
[
N(a, b]|F−∞

a

]
= E

[∫ b

a

λsds|F−∞
a

]

a. s. for all intervals or for every interval (a, b], is called an F−∞
t -intensity of N. We

use the notation Nt := N(0, t] to denote the number of points in the interval (0, t].
A general Hawkes process is a simple point process N admitting an F−∞

t -intensity

λt := λ

(∫ t

−∞
h(t− s)N(ds)

)
,

where λ(·) : R+ → R+ is locally integrable and left continuous, h(·) : R+ → R+ and

we always assume that ∥h∥L1 =
∫∞
0

h(t)dt < ∞. Here
∫ t

−∞ h(t − s)N(ds) stands
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for
∫
(−∞,t)

h(t − s)N(ds). We always assume that N(−∞, 0] = 0, i.e. the Hawkes

process has empty history. In the literature [13], h(·) and λ(·) are usually referred
to as an exciting function and a rate function, respectively. The Hawkes process is
linear if λ(·) is linear and it is nonlinear otherwise. In general, the model described
above is non-Markovian since the future evolution of a self-exciting simple point
process is controlled by the timing of past events, but it is Markovian for a special
case which means that one special case of the Hawkes process is when the exciting
function h(·) is exponential. The Hawkes process has a wide range of applications in
neuroscience [6, 19], seismology [14, 25], DNA modeling [12, 26], finance [17, 18, 34],
and many other fields. It has both self-exciting and clustering properties, which
is very appealing to some financial applications. In particular, self-exciting and
clustering properties of the Hawkes process make it a viable candidate for modeling
correlated defaults and evaluating credit derivatives in finance, for example, see
Errais et al. [10] and Dassios and Zhao [8].

Hawkes [13] introduced the linear case, and the linear Hawkes process can be
studied via immigration-birth representation, see e.g. Hawkes and Oakes [15]. The
stability [7], the law of large numbers [7], the central limit theorem [2], large de-
viations [4], the Bartlett spectrum [13, 15], etc. have all been studied and are
understood very well. Almost all of the applications of the Hawkes process in the
literature consider exclusively the linear case. Because of the lack of immigration-
birth representation and computational tractability, the nonlinear Hawkes process
is much less studied. However, some efforts have already been made in this direc-
tion. A nonlinear case was first introduced by Brémaud and Massoulié [5]. Recently,
Zhu [37, 35, 32, 33, 34] investigated several results for both a linear and a nonlin-
ear model. The central limit theorem was investigated in Zhu [32] and the large
deviation principles have been obtained in Zhu [35]. Limit theorems and rough frac-
tional diffusions as scaling limits for nearly unstable Hawkes processes are obtained
in Jaisson and Rosenbaum [17, 18] and the Bartlett spectrum of randomized Hawkes
processes is obtained in Kelbert et al. [21]. Zhu [34] has also studied applications to
financial mathematics. Some variations and extensions of the Hawkes process have
been studied in Dassios and Zhao [8], Zhu [36], Karabash and Zhu [20], Mehrdad and
Zhu [23] and Ferro, Leiva and Møller [11]. In the recent paper [28], Seol considers the
arrival time τn, i.e., the inverse process of the Hawkes process, and studies the limit
theorems (the law of large numbers, the central limit theorem and large deviations)
for τn. Recently, Seol [27] studied the law of large numbers, central limit theorem
and invariance principles for discrete Hawkes processes starting from empty history.
A moderate deviation principle for marked Hawkes processes was investigated in
Seol [29], and limit theorems for the compensator of Hawkes processes were studied
by Seol [30].

In this paper, we consider the log-stock prices process Xt defined by

Xt = αt+ βWt +

Nt∑
i=1

Yi, (2)

where α is the instantaneous expected return on the stock, β is the instantaneous
volatility of the return, under the condition that the Hawkes event does not occur,
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Wt is standard Brownian motion, Yi are i.i.d. R−valued random variables,
∑Nt

i=1 Yi

is compound Hawkes process, where Nt is a linear Hawkes process with intensity

λt := ν +

∫ t−

0

h(t− s)dNs.

Wt, Nt and Yi are independent, while Wt and
∑Nt

i=1 Yi are independent. Then the
stock price process St is defined by

St = S0e
Xt .

The main goal of this article is to establish the several limit behaviors for the process
Xt.

The paper is structured as follows. Some auxiliary results to prove the main
results are stated in Section 2, and the main results are given in Section 3. The
proofs for the main theorems are contained in Section 4. In Section 5, we study
some examples according to the random variable Y1, that is, we give some examples
when Y1 follows a normal distribution or a double exponential distribution, and then
we can illustrate the quantities of the limit behaviors with respect to two random
distributions.

2. Preliminaries

In this section, we introduce some classical results to set up the main goal. We start
with some reviews for the results of Hawkes processes.

2.1. Limit theorems for Hawkes processes

The limit theorems for both linear and nonlinear models are well known and studied
by many authors.

Linear model: Since λ(·) is linear, say λ(z) = ν + z for some ν > 0, and
∥h∥L1 < 1, we can use a very nice immigration-birth representation and the limit
theorems are well understood and more explicitly represented. Daley and Vere-
Jones [7] proved the law of large numbers for a linear Hawkes process. The func-
tional central limit theorem for a linear multivariate Hawkes process under certain
assumptions has been obtained by Bacry et al [2]. Bordenave and Torrisi [4] proved
that if 0 < ∥h∥L1 < 1 and

∫∞
0

th(t)dt < ∞, then (Nt

t ∈ ·) satisfies the large devi-
ation principle. A moderate deviation principle for linear continuous time Hawkes
processes is obtained by Zhu [33], while the limit theorems for linear marked Hawkes
processes are obtained in Zhu [23].

Nonlinear model: Since λ(·) is nonlinear, the usual immigration-birth rep-
resentation no longer works and so a nonlinear model is much harder to study.
Brémaud and Massoulié [5] proved that there exists a unique stationary version of
nonlinear Hawkes processes under certain conditions and the convergence to equilib-
rium of a non-stationary version. The central limit theorem is obtained in Zhu [32],
and Zhu [37] proved a large deviation for a special case of a nonlinear case when
h(·) is exponential or sums of exponentials. Zhu [35] proved a process-level, i.e.,
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the level-3 large deviation principle for nonlinear Hawkes processes for general h(·),
and hence by the principle of contradiction, the level-1 large deviation principle for
(Nt

t ∈ ·).
Before we proceed, let us review some limit theorem results for the linear Hawkes

process in the literature. Daley and Vere-Jones [7] proved the law of large numbers
for a linear Hawkes process as follows:

Nt

t
→ ν

1− ∥h∥L1

as t → ∞ a.s.

The functional central limit theorem for a linear multivariate Hawkes process under
certain assumptions has been obtained by Bacry et al. [2] and they proved that

N·t − ·µt√
t

→ σB(·), as t → ∞,

where B(·) is standard Brownian motion and

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3

The convergence used in the above theorem is weak convergence on D[0, 1], the space
of a càdlàg function on [0, 1], equipped with the Skorokhod topology. Bordenave and
Torrisi [4] proved that if 0 < ∥h∥L1 < 1 and

∫∞
0

th(t)dt < ∞, then (Nt

t ∈ ·) satisfies
the large deviation principle with the good rate function I(·), which means that for
any closed set C ⊂ R,

lim sup
t→∞

1

t
logP(Nt/t ∈ C) ≤ − inf

x∈C
I(x),

and for any open set G ⊂ R,

lim inf
t→∞

1

t
logP(Nt/t ∈ G) ≥ − inf

x∈G
I(x),

where

I(x) =


xθx + ν − νx

ν+∥h∥L1x
, if x ∈ (0,∞)

ν, if x = 0
+∞, if x ∈ (−∞, 0),

where θ = θx is a unique solution in (−∞, ∥h∥L1 − 1− log ∥h∥L1), of

E(eθS) =
x

ν + x∥h∥L1

, x > 0,

where S in the above equation denotes the total number of descendants of an immi-
grant, including the immigrant himself.

Remark 1. The rate function described above I(x) can be represented in a more
explicit form. Note that (see [16] for details), for all θ ∈ (−∞, ∥h∥L1−1−log ∥h∥L1),
E(eθS) satisfies

E(eθS) = eθe∥h∥L1 (E(eθS)−1),
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which implies that θx = log
(

x
ν+x∥h∥L1

)
− ∥h∥L1

(
x

ν+x∥h∥L1
− 1
)
. Substituting into

the formula, we have

I(x) =


x log

(
x

ν+x∥h∥L1

)
− x+ ∥h∥L1x+ ν, if x ∈ (0,∞)

ν, if x = 0
+∞, if x ∈ (−∞, 0).

3. Statement of the main results

This section states the main results of this paper. It consists of three parts. The
first part is devoted to the law of large numbers, while the second one covers the
result for the central limit theorem. Large deviation principles will be obtained in
the end. We provide an auxiliary result playing the key role in the proof of the large
deviation principle.

We start with the assumptions which will be used throughout the paper as fol-
lows:

Assumption 1.

(a) V ar[Y1] < ∞,

(b) λ(z) = ν + z, for some ν > 0,

(c) ∥h∥L1 < 1, where ∥h∥L1 =
∫∞
0

h(t)dt < ∞.

The first assumption of Assumption 1 says that i.i.d. random variable Yi has
finite expectation and variance. The second assumption says that λ is a linear and
increasing function and so the Hawkes process has a very nice immigration birth
representation (see Hawkes and Oakes [15], 1974). The third assumption says that
in the immigration-birth representation, the total number of descendants of any
given immigrant is finite with probability 1 (see [2], [4], [7] for details).

Theorem 1 (Law of large number). Assume that assumption 1 is satisfied and let
Xt be the log-stock price process defined in (2); then we have

Xt

t
→ α+ µE[Y1]

in probability as t → ∞, where µ = ν
1−∥h∥L1

.

Theorem 2 (Central limit theorem). Assume that assumption 1 is satisfied and let
Xt be the log-stock price process defined in (2); then we have

Xt − (α+ µE[Y1])t√
t

→ N(0, µV ar[Y1] + (E[Y1])
2σ2)

in distribution as t → ∞, where

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3
.
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Theorem 3 (Large deviation principle). Assume that assumption 1 is satisfied and
let Xt be the log-stock price process defined in (2); then (Xt

t ) satisfies the LDP on
R with the rate function

Î(x) =

{
xθx−αθx− 1

2β
2θ2x+ν− νE[eθxY1 ](x−α−β2θx)

νE[Y1eθxY1 ]+∥h∥L1E[eθxY1 ](x−α−β2θx)
, if x ∈ [0,∞)

+∞, if x ∈ (−∞, 0),

where θ = θx is a unique solution in (−∞, ∥h∥L1 − 1− log ∥h∥L1), of

E
[
S exp((logE[eθY1 ])S)

]
=

x− α− β2θ

ν
, x > 0 (3)

or equivalently of

E
[
exp((logE[eθY1 ])S)

]
=

E[eθY1 ](x− α− β2θ)

νE[Y1eθY1 ] + ∥h∥L1E[eθY1 ](x− α− β2θ)
, x > 0.

To prove Theorem 3, we need to prove a key Lemma 1 as follows.

Lemma 1. For θ ≤ ∥h∥L1 − 1− log ∥h∥L1 , we have

E
[
exp(θXt)

]
= exp

[
αθt+

1

2
β2θ2t+ ν

∫ t

0

(Λ(s)− 1)ds

]
, (4)

where Λ(t) = E[eθY1 ] exp
(∫ t

0
h(s)(Λ(t− s)− 1)ds

)
for any 0 ≤ s ≤ t.

Proof. By the properties of stock price process with the Hawkes process, we have

E
[
exp(θXt)

]
= exp

(
αθt+

1

2
β2θ2t

)
E
[
exp((logE[eθY1 ])Nt)

]
. (5)

Let us consider the term E
[
exp((logE[eθY1 ])Nt)

]
.

A linear Hawkes process can be represented by using a nice immigration-birth
representation and the immigration-birth representation is used in the proof of a
theorem. There follows a general description of our nice tool. The immigrant arrives
according to a standard homogeneous Poisson process with constant intensity ν >
0, and then each immigrant generates children according to a Galton-Waston tree
(see [15] for details ). Let η be the number of children in the first generation coming
from the same immigrant; then η has a Poisson distribution with parameter ∥h∥L1 ,
i.e.

P (η = k) = e−∥h∥L1
∥h∥kL1

k!
. (6)

Let Λ1(t),Λ2(t),Λ3(t), · · · ,Λη(t) be the total number of descendants coming from
an immigrant’s first, second, third, · · · , η−th chid. Then we know that conditional
on the number of children of an immigrant, the time that a child was born has a
probability density function

h(·)
∥h∥L1

. (7)
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Using (6) and (7), we have the following:

E
[
exp((logE[eθY1 ])Nt)

]
=

∞∑
k=0

(νt)k

k!
e−νt 1

tk

∫
· · ·
∫
t1<t2<···<tk

Λ(t1) · · ·Λ(tk)dt1dt2 · · · dtk

= eν
∫ t
0
(Λ(s)−1)ds. (8)

It follows from (6) and conditional probabilities that

Λ(t) = E
[
exp
(
(logE[eθY1 ])S(t)

)]
=

∞∑
k=0

E
[
exp
(
(logE[eθY1 ])S(t)

)
|η = k

]
P
(
η = k

)
= E

[
eθY1

] ∞∑
k=0

k∏
i=1

E
[
exp
(
(logE[eθY1 ])Λi(t)

)]
P
(
η = k

)
= E

[
eθY1

] ∞∑
k=0

[
E
[
exp
(
(logE[eθY1 ])Λi(t)

)]]k
P
(
η = k

)
= E

[
eθY1

] ∞∑
k=0

(∫ t

0

h(s)

∥h∥L1

Λ(t− s)ds
)k

e−∥h∥L1
∥h∥kL1

k!

= E
[
eθY1

]
exp
(∫ t

0

h(s)(Λ(t− s)− 1)ds
)
. (9)

Thus, from (5) and (8), we have

E
[
exp(θXt)

]
= exp

[
αθt+

1

2
β2θ2t+ ν

∫ t

0

(Λ(s)− 1)ds

]
.

4. Proofs of the theorems

In this section, we give proofs of the main theorems.

4.1. Law of large numbers

First consider

Xt

t
= α+ β

Wt

t
+

1

t

Nt∑
i=1

Yi. (10)

Then the second term in (10) will be zero since the properties of standard Brownian
motion Wt are as follows:

β
Wt

t
→ 0
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in probability as t → 0. The third term in (10) follows Wald’s equation by assump-
tion 1 (a) and the fact that E[Nt] < ∞, and so we have

1

t

Nt∑
i=1

Yi → E[Nt]E[Y1] = µE[Y1]

in probability as t → 0.
Thus,

Xt

t
→ α+ µE[Y1]

in probability as t → ∞, where µ = ν
1−∥h∥L1

. The proof of Theorem 1 is completed.

4.2. Central limit theorem

Let us recall that, for a one-dimensional case, under the assumption∫ ∞

0

h(t)t1/2dt < ∞,

we have [2]

Nt − µt√
t

→ σN(0, 1), in distribution as t → ∞,

where µ = ν
1−∥h∥L1

and σ2 = ν
(1−∥h∥L1 )3

.

Note that

Xt − (α+ µE[Y1])t√
t

=
βWt +

∑Nt

i=1 Yi − µE[Y1]t√
t

=
βWt√

t
+

∑Nt

i=1 Yi − µE[Y1]t√
t

(11)

Then the first term in (11) has the following property:

βWt√
t

→ βZ (12)

in distribution as t → ∞, where Z ∼ N(0, 1).
The second term in (11) can be separated as follows:

∑Nt

i=1 Yi − µE[Y1]t√
t

=

∑Nt

i=1 Yi − E[Nt]E[Y1]√
t

+
E[Y1](E[Nt]− µt)√

t
, (13)
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and thus by following Theorem 2.3 in [11], the first term in (13) has∑Nt

i=1 Yi − E[Nt]E[Y1]√
t

→ N(0, µV ar[Y1] + (E[Y1])
2σ2) (14)

in distribution as t → ∞, where

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3
.

By assumption (1), the second term in (13) has

E[Y1](E[Nt]− µt)√
t

→ 0 (15)

in probability as t → ∞.
Hence, together with (12), (14) and (15) give us

Xt − (α+ µE[Y1])t√
t

→ N(0, µV ar[Y1] + (E[Y1])
2σ2)

in distribution as t → ∞, where

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3
.

4.3. Large deviations principle

We start with the basic definitions in large deviations theory (e.g., see Dembo and
Zeitouni [9] or Varadhan [31] for details). Recall that a sequence (ϕn)n∈N of proba-
bility measures on a topological space X satisfies the large deviations principle with
rate function I : X → R if I is non-negative, lower semi-continuous, and for any
measurable set B, we have

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
log ϕn(B) ≤ lim sup

n→∞

1

n
log ϕn(B) ≤ − inf

x∈B̄
I(x),

where B◦ is the interior of B and B̄ is its closure. A rate function I(x) is said to be
good if the level sets {x : I(x) ≤ β} are compact for any β.

Proof of Theorem 3. We note that Λ(s) in (9) is strictly increasing in s and if s
is sufficiently large, we have the minimal solution x̂ of the following equation:

x = E[eθY1 ]e∥h∥L1 (x−1) (16)

Thus, using (4) we have the following limit:

I(θ) := lim
t→∞

1

t
logE[eθXt ] = lim

t→∞

1

t

[
αθt+

1

2
β2θ2t+ ν

∫ t

0

(Λ(s)− 1)ds
]

= αθ +
1

2
β2θ2 + ν(x̂− 1)
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If there is no solution to the equation (16), then x̂ = +∞. Therefore, we conclude
that (Xt

t ) satisfies the LDP on R with speed t and a good rate function

Î(x) = sup
θ∈R

(θx− I(θ)) = sup
θ≤∥h∥L1−1−log ∥h∥L1

(θx− I(θ)).

Now Î(x) = ∞, and in this such case limθ→−∞(θx − I(θ)) = ∞. If x > 0, letting
θx ∈ (−∞, µ − 1 − logµ) denote a unique solution to equation (3) it easily follows
that

Î(x) = xθx − I(θx), (17)

where

I(θ) = αθ +
1

2
β2θ2 + ν(Γ(θ)− 1) and Γ(θ) = E[eθY1 ]e∥h∥L1 (Γ(θ)−1).

Hence, we know that to get optimal θx, we have

x = I ′(θx) = α+ β2θx + νΓ′(θx)

and thus Γ′(θx) =
x−α−β2θx

ν . If we differentiate Γ(θx) with respect to θx, we have

Γ′(θx) = E[Y1e
θxY1 ]e∥h∥L1 (Γ(θx)−1) + ∥h∥L1Γ′(θx)Γ(θx)

=
E[Y1e

θxY1 ]

E[eθxY1 ]
Γ(θx) + ∥h∥L1Γ′(θx)Γ(θx)

= Γ(θx)

[
E[Y1e

θxY1 ]

E[eθxY1 ]
+ ∥h∥L1Γ′(θx)

]
,

which yields

Γ(θx) =
E[eθxY1 ](x− α− β2θx)

νE[Y1eθxY1 ] + ∥h∥L1E[eθxY1 ](x− α− β2θx)
.

Thus, by (17), for x > 0 we have

Î(x) = xθx − αθx − 1

2
β2θ2x + ν − νE[eθxY1 ](x− α− β2θx)

νE[Y1eθxY1 ] + ∥h∥L1E[eθxY1 ](x− α− β2θx)
.

By the Gärtner-Ellis theorem (see [9] for details), we conclude that Xt

t satisfies the
LDP on R with a large deviation rate function

Î(x) =

{
xθx−αθx− 1

2β
2θ2x+ν− νE[eθxY1 ](x−α−β2θx)

νE[Y1eθxY1 ]+∥h∥L1E[eθxY1 ](x−α−β2θx)
, if x ∈ [0,∞)

+∞, if x ∈ (−∞, 0).

The proof of the large deviation principle is completed.
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5. Examples

In this section, we give two examples for random variable Y1 to show quantities of
several limit behaviors. In particular, we will assume that random variable Y1 will
be a normal distribution or a double exponential distribution.

5.1. Normal distribution

Let us assume that Y1 follows a normal distribution N(µ̂, σ̂2). That is,

E[Y1] = µ̂, V ar[Y1] = σ̂2, E[Y 2
1 ] = µ̂2 + σ̂2.

Moreover, the moment generating function for Y1 is

E[eθY1 ] = exp

(
θµ̂+

1

2
σ̂2θ2

)
.

Then we can find quantities of limit behaviors (LLN, CLT, LDP) in detail. The law
of large numbers for Y1 is

Xt

t
→ α+ µµ̂

in probability as t → ∞, where µ = ν
1−∥h∥L1

. The central limit theorem for Y1 is

Xt − (α+ µµ̂)t√
t

→ N(0, µσ̂2 + µ̂2σ2)

in distribution as t → ∞, where

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3
.

For the large deviation principle, we can say that (Xt

t ) satisfies the LDP on R with
the rate function

Î(x) =

{
xθx − αθx − 1

2β
2θ2x + ν − ν(x−α−β2θx)

ν(µ̂+σ̂2θx)+∥h∥L1 (x−α−β2θx)
, if x ∈ [0,∞)

+∞, if x ∈ (−∞, 0),

where θ = θx is a unique solution in (−∞, ∥h∥L1 − 1− log ∥h∥L1), of

E
[
S exp[(θµ̂+

1

2
σ̂2θ2)S]

]
=

x− α− β2θ

ν
, x > 0

or equivalently of

E
[
exp[(θµ̂+

1

2
σ̂2θ2)S]

]
=

(x− α− β2θ)

ν(µ̂+ σ̂2θ) + ∥h∥L1(x− α− β2θ)
, x > 0.
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5.2. Double exponential distributions

The double exponential jump model, initiated by Steven KOU (see [22]), is an ex-
ponential Levy model, which is a compromise between reality and tractability. It
gives an explanation of the two empirical phenomena which received much attention
in financial markets: the asymmetric leptokurtic feature and the volatility smile. It
enables us to obtain analytical solutions to the prices of many derivatives: Euro-
pean call and put options, interest rate derivatives, such as swaptions, caps, floors,
and bond options, as well as path-dependant options, such as perpetual American
options, barrier, and lookback options.

Let us assume that Y1 follows a double exponential distribution with f(x|µ̂, σ̂) =
1
2σ̂ e

−| x−µ̂
σ̂ |. That is,

E[Y1] = µ̂, V ar[Y1] = 2σ̂2, E[Y 2
1 ] = µ̂2 + 2σ̂2.

Moreover, the moment generating function for Y1 is

E[eθY1 ] =
eθµ̂

1− σ̂2θ2
.

Then we can find quantities of limit behaviors (LLN, CLT, LDP) in detail. The law
of large numbers for Y1 is

Xt

t
→ α+ µµ̂

in probability as t → ∞, where µ = ν
1−∥h∥L1

. The central limit theorem for Y1 is

Xt − (η + µµ̂)t√
t

→ N(0, 2µσ̂2 + 2µ̂2σ2)

in distribution as t → ∞, where

µ =
ν

1− ∥h∥L1

and σ2 =
ν

(1− ∥h∥L1)3
.

For the large deviation principle, we can say that (Xt

t ) satisfies the LDP on R with
the rate function

Î(x) =


xθx − αθx − 1

2β
2θ2x + ν

− ν(1−σ̂2θ2
x)(x−α−β2θx)

ν(µ̂+σ̂2θx)(µ̂−µ̂σ̂2θ2
x+2σ̂2θx)+∥h∥L1 (1−σ̂2θ2

x)(x−α−β2θx)
, if x ∈ [0,∞)

+∞, if x ∈ (−∞, 0),

where θ = θx is a unique solution in (−∞, ∥h∥L1 − 1− log ∥h∥L1), of

E
[
S exp[(θµ̂− log(1− σ̂2θ2))S]

]
=

x− α− β2θ

ν
, x > 0

or equivalently of

E
[
exp[(θµ̂− log(1− σ̂2θ2))S]

]
=

(1− σ̂2θ2)(x− α− σ2θ)

ν(µ̂+ σ̂2θ)(µ̂− µ̂σ̂2θ2 + 2σ̂2θ) + ∥h∥L1(1− σ̂2θ2)(x− α− β2θ)
, x > 0.
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[5] P.Brémaud, L.Massoulié, Stability of nonlinear Hawkes processes, Ann. Probab.
24(1996), 1563–1588.

[6] E. S.Chornoboy, L. P. Schramm, A. F.Karr, Maximum likelihood identification of
neural point process systems, Biol. Cybern. 59(1988), 642–665.

[7] D. J.Daley, D.Vere-Jones, An Introduction to the Theory of Point Processes, sec-
ond edition, Springer, Berlin, 2003.

[8] A.Dassios, H. Zhao, A Dynamic Contagion Process, Adv. in Appl. Probab.
43(2011), 814–846.

[9] A.Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed-
tion, Springer, New York, 1998.

[10] E.Errais, K.Giesecke, L.Goldberg, Affine Point Processes and Portfolio Credit
Risk, SIAM J. Financial Math. Vol. 1(2010), 642–665.

[11] R.Fierro, V. Leiva, J.Møller, The Hawkes process with different exciting func-
tions and its asymptotic behavior, J. Appl. Prob 52(2015), 37–54.

[12] G.Gusto, S. Schbath, F.A.D.O: A statistical method to detect favored or avoided
distances between occurrences of motifs using the Hawkes model, Stat. Appl. Genet.
Mol. Biol. 4(2005), Article 24.

[13] A.G.Hawkes, Spectra of some self-exciting and mutually exciting point process,
Biometrika 58(1971), 83–90.

[14] A.G.Hawkes, L.Adamopoulos, Cluster models for earthquakes-regional compar-
isons, Bull. Int. Statist. Inst. 45(1973), 454–461.

[15] A.G.Hawkes, D.Oakes, A cluster process representation of self-exciting process, J.
Appl. Prob. 11(1974), 493–503.

[16] P. Jagers, Branching processes with Biological Applications, John Wiley, London,
1975.

[17] T. Jaisson, M.Rosenbaum, Limit theorems for nearly unstable Hawkes processes,
Ann. Appl. Probab. 25(2015), 600–631.

[18] T. Jaisson, M.Rosenbaum, Rough fractional diffusions as scaling limits of nearly
unstable heavy tailed Hawkes processes, Ann. Appl. Probab. 26(2016), 2860–2882.

[19] D.H. Johnson, Point process models of single-neuron discharges, J. Comput. Neu-
rosci. 3(1996), 275–299.

[20] D.Karabash, L. Zhu, Limit theorems for marked Hawkes processes with application
to a risk model, Stoch. Models 31(2015), 433–451.

[21] M.Kelbert, N. Leonenko, V.Belitsky, On the Bartlett spectrum of randomized
Hawkes processes, Math. Commun. 18(2013), 393–407.



Limit theorems for a jump-diffusion model with Hawkes 67

[22] S.G.Kou, A Jump-Diffusion Model for Option Pricing, Manage. Sci. 48(2002), 1086–
1101.

[23] B.Mehrdad, L. Zhu, On the Hawkes Process with Different Exciting Functions,
preprint, arXiv:1403.0994.

[24] R.C.Merton, Option pricing when underlying stock returns are discontinuous, J.
Financial Econ. 3(1976), 125–144.

[25] Y.Ogata, Statistical models for earthquake occurences and residual analysis for point
processes, J. Amer. Statist. Assoc. 83(1988), 9–27.

[26] P.Reynaud-Bouret, S. Schbath, Adaptive estimation for Hawkes processes; appli-
cation to genorm analysis, Ann. Statist. 38(2010), 2781–2822.

[27] Y. Seol, Limit theorems of discrete Hawkes Processes, Statist. Probab. Lett. 99(2015),
223–229.

[28] Y. Seol, Limit theorem for inverse process Tn of linear Hawkes process, Acta Math.
Sin. (Engl. Ser.) 33(2017), 51–60.

[29] Y. Seol, Moderate deviations for Marked Hawkes Processes, Acta Math. Sin. (Engl.
Ser.) 33(2017), 1297–1304.

[30] Y. Seol, Limit theorems for the compensator of Hawkes Processes, Statist. Probab.
Lett. 127(2017), 165–172.

[31] S.R. S.Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984.
[32] L. Zhu, Central limit theorem for nonlinear Hawkes processes, J. Appl. Prob.

50(2013), 760–771.
[33] L. Zhu, Moderate deviations for Hawkes processes, Statist. Probab. Lett. 83(2013),

885–890.
[34] L. Zhu, Ruin probabilities for risk processes with non-stationary arrivals and subexpo-

nential claims, Insurance Math. Econom. 53(2013), 544–550.
[35] L. Zhu, Process-level large deviations for nonlinear Hawkes point processes, Ann. Inst.
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