A note on the curve complex of the 3 -holed projective plane*

B乇ażEj Szepietowski ${ }^{\dagger}$
Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

Received December 12, 2019; accepted September 1, 2020

Abstract

Let S be a projective plane with 3 holes. We prove that there is an exhaustion of the curve complex $\mathcal{C}(S)$ by a sequence of finite rigid sets. As a corollary, we obtain that the group of simplicial automorphisms of $\mathcal{C}(S)$ is isomorphic to the mapping class group $\operatorname{Mod}(S)$. We also prove that $\mathcal{C}(S)$ is quasi-isometric to a simplicial tree.

AMS subject classifications: 57M99, 20F38
Key words: complex of curves, nonorientable surface, projective plane, mapping class group, quasi-tree

1. Introduction

The complex of curves $\mathcal{C}(S)$ of a surface S, first introduced by Harvey [7], is the simplicial complex with k-simplices representing collections of homotopy classes of $k+1$ non-isotopic disjoint simple closed curves in S. In this paper, we let $S=N_{1,3}$ be a 3 -holed projective plane. Then $\mathcal{C}(S)$ is one-dimensional and its combinatorial structure was described by Scharlemann [22]. The first purpose of this note is to prove some rigidity results about $\mathcal{C}\left(N_{1,3}\right)$, which are known for most surfaces, but have not been proved in the literature in this particular case. The second purpose is to show that $\mathcal{C}\left(N_{1,3}\right)$ is quasi-isometric to a simplicial tree.

By the celebrated theorem of Ivanov [12], Korkmaz [14] and Luo [17], the group Aut $(\mathcal{C}(S)$) of simplicial automorphisms of $\mathcal{C}(S)$ for orientable surface S is, with a few well understood exceptions, isomorphic to the extended mapping class group $\operatorname{Mod}^{ \pm}(S)$. A stronger version of this result, due to Shackleton [24], says that every locally injective simplicial map from $\mathcal{C}(S)$ to itself is induced by some element of $\operatorname{Mod}^{ \pm}(S)$ (simplicial map is locally injective if its restriction to the star of every vertex is injective). Analogous results for nonorientable surfaces were proved by Atalan-Korkmaz [3] and Irmak [10], omitting the case of $N_{1,3}$.

In [1], Aramayona and Laininger introduced the notion of a rigid set. It is a subcomplex $X \subset \mathcal{C}(S)$, with the property that every locally injective simplicial map $X \rightarrow \mathcal{C}(S)$ is induced by some homeomorphism of S. In [1], they constructed a finite rigid set in $\mathcal{C}(S)$, for every orientable surface S, and in [2] they proved that there is an exhaustion of $\mathcal{C}(S)$ by a sequence of finite rigid sets.
*This work was supported by the National Science Centre, Poland, grant 2015/17/B/ST1/03235.
${ }^{\dagger}$ Corresponding author. Email address: blaszep@mat.ug.edu.pl (B. Szepietowski)

Let $S=N_{g, n}$ be a nonorientable surface of genus g with n holes. Ilbira and Korkmaz [9] constructed a finite rigid set in $\mathcal{C}(S)$ for $g+n \neq 4$. Irmak [11] proved that $\mathcal{C}(S)$ can be exhausted by a sequence of finite rigid sets for $g+n \geq 5$ or $(g, n)=(3,0)$. The methods used in $[9,11]$ fail for $g+n<5$ due to the exceptional combinatorial structure of $\mathcal{C}(S)$. While this structure is rather simple for $g+n<4$ (see [22]), it is quite complicated for $g+n=4$. In this paper, we show that the main results of Ilbira-Korkmaz [9] and Irmak [11] are true for $N_{1,3}$.
Theorem 1. There exists a sequence $\mathcal{X}_{1} \subset \mathcal{X}_{2} \subset \cdots \subset \mathcal{C}\left(N_{1,3}\right)$ such that:
(1) \mathcal{X}_{i} is a finite rigid set for all $i \geq 1$;
(2) \mathcal{X}_{i} has a trivial pointwise stabilizer in $\operatorname{Mod}\left(N_{1,3}\right)$ for all $i \geq 1$;
(3) $\bigcup_{i \geq 1} \mathcal{X}_{i}=\mathcal{C}\left(N_{1,3}\right)$.

Our proof is independent of [9, 11]. The following corollary is an extension of the main results of Atalan and Korkmaz [3] and Irmak [10]. It follows easily from Theorem 1 (see the proof of the analogous corollary in [2]).

Corollary 1. If $\phi: \mathcal{C}\left(N_{1,3}\right) \rightarrow \mathcal{C}\left(N_{1,3}\right)$ is a locally injective simplicial map, then there exists a unique $f \in \operatorname{Mod}\left(N_{1,3}\right)$ such that $\phi=f$.

In particular, the group of simplicial automorphisms of $\mathcal{C}\left(N_{1,3}\right)$ is isomorphic to $\operatorname{Mod}\left(N_{1,3}\right)$.

Masur and Minsky [19] proved that $\mathcal{C}(S)$ is δ-hyperbolic for orientable S. Their result was extended to nonorientable surfaces by Bestvina and Fujiwara [4] and Masur and Schleimer [20]. The coarse structure of $\mathcal{C}(S)$ is central in low-dimensional topology, providing a key to a better understanding of the mapping class group, the Teichmüller space, and geometry of 3 -manifolds. Our next result determines the coarse structure of $\mathcal{C}\left(N_{1,3}\right)$.

Theorem 2. The curve graph $\mathcal{C}\left(N_{1,3}\right)$ is quasi-isometric to a simplicial tree.
It follows that the Gromov boundary $\partial_{\infty} \mathcal{C}\left(N_{1,3}\right)$ of $\mathcal{C}\left(N_{1,3}\right)$ is totally disconnected. We expect that $\partial_{\infty} \mathcal{C}\left(N_{g, n}\right)$ is connected for large enough g and n, similarly to orientable surfaces [6, 16]. Recall that for orientable $S, \partial_{\infty} \mathcal{C}(S)$ is homeomorphic to the space of ending laminations of S [13].

2. Preliminaries

Let S be a surface of finite type. By a hole in a surface we mean a boundary component. A curve on S is an embedded simple closed curve. A curve is one-sided (resp. two-sided) if its regular neighbourhood is a Möbius band (resp. an annulus). If α is a curve on S, then $S \backslash \alpha$ is the subsurface obtained by removing from S an open regular neighbourhood of α. A curve α is essential if no boundary component of $S \backslash \alpha$ is a disc or an annulus or a Möbius band.

The curve complex $\mathcal{C}(S)$ is a simplicial complex whose k-simplices correspond to sets of $k+1$ isotopy classes of essential curves on S with pairwise disjoint representatives. To simplify the notation, we will confuse a curve with its isotopy class and

Figure 1: Vertices of $\mathcal{C}\left(N_{1,2}\right)$ (left) and $\mathcal{C}\left(N_{1,3}\right)$ (right)
the corresponding vertex of $\mathcal{C}(S)$. Simplices of dimension 1,2 and 3 will be called edges, triangles and tetrahedra, respectively. For $\alpha, \beta \in \mathcal{C}^{0}(S)$, by $i(\alpha, \beta)$ we denote their geometric intersection number.

The mapping class group $\operatorname{Mod}(S)$ of a nonorientable surface S (resp. the extendend mapping class group $\operatorname{Mod}^{ \pm}(S)$ of an orientable surface S) is the group of isotopy classes of all self-homeomorphisms of S. If S is orientable, then the mapping class group $\operatorname{Mod}(S)$ is defined to be the group of isotopy classes of orientation preserving homeomorphisms. Note that $\operatorname{Mod}(S)$ and $\operatorname{Mod}^{ \pm}(S)$ act on $\mathcal{C}(S)$ by simplicial automorphisms.

If S is a four-holed sphere (or a torus with at most one hole), then $\mathcal{C}(S)$ is a countable set of vertices. In order to obtain a connected complex, the definition of $\mathcal{C}(S)$ is modified by declaring $\alpha, \beta \in \mathcal{C}^{0}(S)$ to be adjacent in $\mathcal{C}(S)$ whenever $i(\alpha, \beta)=2$ (or $i(\alpha, \beta)=1$). Furthermore, triangles are added to make $\mathcal{C}(S)$ into a flag complex. The complex $\mathcal{C}(S)$ obtained in such way is isomorphic to the wellknown Farey complex [21, 23]. Two adjacent vertices of $\mathcal{C}(S)$ will be called Farey neighbours, and 2-simplices of $\mathcal{C}(S)$ will be called Farey triangles.

We represent the surface $N_{1, n}$ as a sphere with one crosscap and n holes. The following two lemmas are easy to prove, and otherwise, they can be found in [22].

Lemma 1. $\mathcal{C}\left(N_{1,2}\right)$ consists of two one-sided vertices α, α^{\prime} such that $i\left(\alpha, \alpha^{\prime}\right)=1$ (Figure 1).

Lemma 2. In $\mathcal{C}\left(N_{1,3}\right)$ every two-sided vertex β is connected by an edge with exactly two vertices α, α^{\prime}, which are one-sided and $i\left(\alpha, \alpha^{\prime}\right)=1$. Conversely, for every pair of one-sided vertices α, α^{\prime} such that $i\left(\alpha, \alpha^{\prime}\right)=1$, there exists exactly one two-sided vertex β connected by an edge with α and α^{\prime} (Figure 1).

3. Finite rigid sets

In this section, S denotes a three-holed projective plane. The complex $\mathcal{C}(S)$ was studied by Scharlemann [22]. It is a bipartite graph: its vertex set can be partitioned as $\mathcal{C}^{0}(S)=V_{1} \sqcup V_{2}$, where V_{1} and V_{2} denote the sets of one-sided and two-sided vertices, respectively, and every edge of $\mathcal{C}(S)$ connects a one-sided vertex with a two-sided one. Furthermore, by Lemma 2, every $\beta \in V_{2}$ is connected by an edge with exactly two $\alpha, \alpha^{\prime} \in V_{1}$ such that $i\left(\alpha, \alpha^{\prime}\right)=1$. We say that β is determined by α and α^{\prime}.

We define an auxiliary simplicial complex \mathcal{D} whose vertex set is V_{1}, and a set of vertices $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ is a simplex if $i\left(a_{i}, a_{j}\right)=1$ for $0 \leq i<j \leq k$. It follows from the above discussion that $\mathcal{C}(S)$ is isomorphic to the graph obtained by subdividing
every edge of \mathcal{D}^{1} - the 1 -skeleton of \mathcal{D}. Indeed, the subdivision of an edge of \mathcal{D}^{1} corresponds to adding the two-sided vertex determined by this edge.

Proposition 1. (a) The link of each vertex of \mathcal{D} is isomorphic to the Farey complex.
(b) $\operatorname{dim} \mathcal{D}=3$.
(c) Every triangle of \mathcal{D} is contained in exactly two different tetrahedra.

Proof. Fix a vertex $\alpha \in \mathcal{D}$ and consider the four-holed sphere $S \backslash \alpha$. Recall that $\mathcal{C}(S \backslash \alpha)$ is the Farey complex. We define a map $\theta_{\alpha}: \operatorname{Lk}(\alpha) \rightarrow \mathcal{C}(S \backslash \alpha)$, where $\operatorname{Lk}(\alpha)$ is the link of α in \mathcal{D}. For a vertex $\alpha^{\prime} \in \operatorname{Lk}(\alpha), \theta_{\alpha}\left(\alpha^{\prime}\right)$ is a two-sided curve determined by α and α^{\prime}. It follows from Lemma 2 that θ_{α} is a bijection on vertices, and we claim that it is a simplicial isomorphism. Indeed, note that for $\alpha^{\prime}, \alpha^{\prime \prime} \in \operatorname{Lk}(\alpha)$ we have $i\left(\alpha^{\prime}, \alpha^{\prime \prime}\right)=1 \Longleftrightarrow i\left(\theta_{\alpha}\left(\alpha^{\prime}\right), \theta_{\alpha}\left(\alpha^{\prime \prime}\right)\right)=2$. This proves (a). The other assertions are consequences of (a) and well-known properties of the Farey complex; namely $\operatorname{dim} \mathcal{C}(S \backslash \alpha)=2$ and every edge of $\mathcal{C}(S \backslash \alpha)$ is contained in exactly two different triangles.

Given a one-sided curve, α_{0} we can construct infinitely many tetrahedra of \mathcal{D} containing α_{0} as a vertex. Let $\left\{\beta_{i}\right\}_{1}^{3}$ be any Farey triangle of $\mathcal{C}\left(S \backslash \alpha_{0}\right)$ and, for $1 \leq i \leq 3$, let α_{i} be a one-sided curve such that β_{i} is determined by α_{i} and α_{0}. Then $\left\{\alpha_{i}\right\}_{0}^{3}$ is a tetrahedron of \mathcal{D}.

Lemma 3. Suppose that Σ is a 4 -holed sphere, and C is one of its boundary components. For any two Farey triangles $\left\{\beta_{0}, \beta_{1}, \beta_{2}\right\}$ and $\left\{\beta_{0}^{\prime}, \beta_{1}^{\prime}, \beta_{2}^{\prime}\right\}$ in $\mathcal{C}(\Sigma)$ there exists a unique $f \in \operatorname{Mod}^{ \pm}(\Sigma)$ such that $f(C)=C$ and $f\left(\beta_{i}\right)=\beta_{i}^{\prime}$ for $i=0,1,2$.

Proof. We denote by $\operatorname{Mod}(\Sigma, C)$ (resp. $\left.\operatorname{Mod}^{ \pm}(\Sigma, C)\right)$ the subgroup of $\operatorname{Mod}(\Sigma)$ (resp. $\left.\operatorname{Mod}^{ \pm}(\Sigma)\right)$ consisting of elements fixing C. By cutting Σ along Farey neighbours we obtain four annuli, each containing one boundary component of S. Therefore, there exists an orientation preserving $f^{\prime} \in \operatorname{Mod}(\Sigma, C)$ such that $f^{\prime}\left(\beta_{i}\right)=\beta_{i}^{\prime}$ for $i=1,2$. Furthermore, since $f^{\prime}(C)=C$, such f^{\prime} is easily shown to be unique by the Alexander method [5, Prop. 2.8]. The pointwise stabilizer of $\left\{\beta_{1}^{\prime}, \beta_{2}^{\prime}\right\}$ in $\operatorname{Mod}^{ \pm}(\Sigma, C)$ is a cyclic group of order 2 generated by an orientation reversing involution τ fixing every hole and such that β_{0}^{\prime} and $\tau\left(\beta_{0}^{\prime}\right)$ are the unique common Farey neighbours of both β_{1}^{\prime} and β_{2}^{\prime}. By composing f^{\prime} with τ if necessary we obtain the desired f.

Lemma 4. For any two tetrahedra $\left\{\alpha_{i}\right\}_{i=0}^{3}$ and $\left\{\alpha_{i}^{\prime}\right\}_{i=0}^{3}$ of \mathcal{D} there exists a unique $f \in \operatorname{Mod}(S)$ such that $f\left(\alpha_{i}\right)=\alpha_{i}^{\prime}$ for $0 \leq i \leq 3$.

Proof. For $1 \leq i \leq 3$, let β_{i} (respectively β_{i}^{\prime}) be a two-sided curve determined by α_{0} and α_{i} (respectively α_{0}^{\prime} and α_{i}^{\prime}). Note that $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ and $\left\{\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right\}$ are Farey triangles in $\mathcal{C}\left(S \backslash \alpha_{0}\right)$ and $\mathcal{C}\left(S \backslash \alpha_{0}^{\prime}\right)$, respectively. By Lemma 3 there exists a unique $f \in \operatorname{Mod}(S)$ such that $f\left(\alpha_{0}\right)=\alpha_{0}^{\prime}$ and $f\left(\beta_{i}\right)=\beta_{i}^{\prime}$ for $1 \leq i \leq 3$. Since α_{i}^{\prime} is the unique vertex of $\mathcal{C}(S)$ different from α_{0}^{\prime} and adjacent to β_{i}^{\prime}, we have $f\left(\alpha_{i}\right)=\alpha_{i}^{\prime}$ for $1 \leq i \leq 3$.

Figure 2: A tetrahedron of \mathcal{D} and the corresponding subgraph of $\mathcal{C}(S)$

We define a "dual" graph \mathcal{T} whose vertices are tetrahedra of \mathcal{D}. Two tetrahedra are connected by an edge in \mathcal{T} if their intersection is a triangle. Sharlemann proved in [22, Theorem 3.1] that \mathcal{D}^{1} is the 1-skeleton of the complex obtained from a tetrahedron by repeated stellar subdivision of the faces, but not the edges. This result can be rephrased in terms of the graph \mathcal{T} as follows.

Theorem 3 (Sharlemann). \mathcal{T} is a 4-regular tree.
Recall that a k-regular tree is the infinite tree whose every vertex has degree k.
Let T be a tetrahedron of \mathcal{D}. We denote by T^{*} the full subcomplex of $\mathcal{C}(S)$ spanned by the four vertices of T and the six two-sided vertices determined by the edges of T (Figure 2). The following proposition says that T^{*} is rigid. It is thus an extension of the main result of [9].

Proposition 2. Suppose that T is a tetrahedron \mathcal{D} and $\phi: T^{*} \rightarrow \mathcal{C}(S)$ is a locally injective simplicial map. Then there exists a unique $f \in \operatorname{Mod}(S)$ such that $\phi=f$ on T^{*}.

Proof. First note that ϕ is injective because it is locally injective and T^{*} has diameter 2. Let $T=\left\{\alpha_{i}\right\}_{i=0}^{3}$. We claim that $\left\{\phi\left(\alpha_{i}\right)\right\}_{i=0}^{3}$ is a tetrahedron of \mathcal{D}. Indeed, for $1 \leq i \leq 3, \phi\left(\alpha_{i}\right)$ is adjacent in $\mathcal{C}(S)$ to three different vertices, and hence it is one-sided as two-sided vertices of $\mathcal{C}(S)$ have degree 2 . For $i \neq j$, the distance in $\mathcal{C}(S)$ between $\phi\left(\alpha_{i}\right)$ and $\phi\left(\alpha_{j}\right)$ is 2 , and hence $\phi\left(\alpha_{i}\right)$ and $\phi\left(\alpha_{j}\right)$ are adjacent in \mathcal{D}.

By Lemma 4, there exists a unique $f \in \operatorname{Mod}(S)$ such that $f\left(\alpha_{i}\right)=\phi\left(\alpha_{i}\right)$ for $0 \leq i \leq 3$. Let β be a two-sided vertex of T^{*} determined by α_{i} and α_{j}. Then $\phi(\beta)$ is adjacent to $\phi\left(\alpha_{i}\right)$ and $\phi\left(\alpha_{j}\right)$, and since such a curve is unique, $\phi(\beta)=f(\beta)$.

We denote by \mathcal{T}^{0} the vertex set of \mathcal{T}, that is the set of tetrahedra of \mathcal{D}. Let $d_{\mathcal{T}}$ denote the path metric on \mathcal{T}. We fix a reference tetrahedron T_{0} and define

$$
\mathcal{T}_{n}^{0}=\left\{T \in \mathcal{T}^{0} \mid d_{\mathcal{T}}\left(T, T_{0}\right) \leq n\right\}
$$

In other words, \mathcal{T}_{n}^{0} is the set of tetrahedra within distance at most n from T_{0} in the path metric on \mathcal{T}.

Proof of Theorem 1. Let $\mathcal{X}_{1}=T_{0}^{*}$ and for $n \geq 1$:

$$
\mathcal{X}_{n+1}=\bigcup_{T \in \mathcal{T}_{n}^{0}} T^{*}
$$

We prove by induction that \mathcal{X}_{n} is rigid for all $n \geq 1$. By Proposition $2, \mathcal{X}_{1}$ is rigid. Assume that \mathcal{X}_{n} is rigid and let $\phi: \mathcal{X}_{n+1} \rightarrow \mathcal{C}(S)$ be a locally injective simplicial map. Since \mathcal{X}_{n} is rigid, there exists a unique $f \in \operatorname{Mod}(S)$ such that $f=\phi$ on \mathcal{X}_{n}. Let $\phi^{\prime}=f^{-1} \circ \phi$.

Let $T \in \mathcal{T}_{n+1} \backslash \mathcal{T}_{n}$. We need to show that ϕ^{\prime} fixes every vertex of T^{*}. It suffices to show that ϕ^{\prime} fixes every vertex of T because then it also has to fix the twosided vertices of T^{*} determined by edges of T. The tetrahedron T has a common face with some (unique) tetrahedron $T^{\prime} \in \mathcal{T}_{n}$. Let $T=\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $T^{\prime}=$ $\left\{\alpha_{0}^{\prime}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Let β (resp. β^{\prime}) be the two-sided vertex of T^{*} (resp. $\left.\left(T^{\prime}\right)^{*}\right)$ determined by α_{0} and α_{1} (resp. α_{0}^{\prime} and α_{1}). By local injectivity of $\phi^{\prime}, \phi^{\prime}(\beta) \neq$ $\phi^{\prime}\left(\beta^{\prime}\right)=\beta^{\prime}$, and hence also $\phi^{\prime}\left(\alpha_{0}\right) \neq \phi^{\prime}\left(\alpha_{0}^{\prime}\right)=\alpha_{0}^{\prime}$. By Proposition $2, \phi^{\prime}(T)$ is a tetrahedron different from T^{\prime} and having a common face with T^{\prime}. Since such a tetrahedron is unique by (c) of Proposition $1, \phi^{\prime}(T)=T$ and $\phi^{\prime}\left(\alpha_{0}\right)=\alpha_{0}$. We have shown that ϕ^{\prime} pointwise fixes T^{*}, and it follows that it pointwise fixes \mathcal{X}_{n+1}. Hence $\phi=f$ on \mathcal{X}_{n+1}.

Since \mathcal{X}_{n} contains T_{0}^{*} for all $n \geq 1$, it has a trivial pointwise stabilizer in $\operatorname{Mod}(S)$. Finally, it follows from the connectedness of \mathcal{T} that $\bigcup_{n \geq 1} \mathcal{X}_{n}=\mathcal{C}(S)$.

4. Coarse geometry

In this section, we consider $\mathcal{C}(S)$ and \mathcal{D}^{1} as metric graphs with all edges of length 1. We denote the metrics on these graphs by $d_{\mathcal{C}}$ and $d_{\mathcal{D}}$, respectively.

There is a natural piecewise-linear homeomorphism $\phi: \mathcal{C}(S) \rightarrow \mathcal{D}^{1}$ equal to the identity on one-sided vertices which forgets the two-sided vertices. That is, if β is the two-sided vertex of $\mathcal{C}(S)$ determined by α and α^{\prime}, then $\phi(\beta)$ is defined to be the midpoint of the edge of \mathcal{D} connecting α and α^{\prime}. We have

$$
d_{\mathcal{C}}(x, y)=2 d_{\mathcal{D}}(\phi(x), \phi(y))
$$

for all $x, y \in \mathcal{C}(S)$. In particular, ϕ is a quasi-isometry.
Since \mathcal{T} is a tree, every triangle of \mathcal{D} is separating, i.e. the space obtained by removing a triangle from \mathcal{D} has two connected components. If Δ is a triangle of \mathcal{D}, and x and y are points lying in different connected components of $\mathcal{D} \backslash \Delta$, then we say that Δ separates x from y.

Lemma 5. Let p be a vertex on a geodesic in \mathcal{D}^{1} from x to y, such that $d_{\mathcal{D}}(p, x) \geq 1$ and $d_{\mathcal{D}}(p, y) \geq 1$. There exists a triangle Δ of \mathcal{D} such that $p \in \Delta$ and Δ separates x from y.

Proof. Let $[x, y]$ be a geodesic in \mathcal{D}^{1} from x to y containing p, and let q be the vertex preceding p on $[x, y]$. Let $\left(T_{i}\right)_{0}^{n}$ be any sequence of tetrahedra forming a geodesic in \mathcal{T} such that $q \in T_{0}$ and $y \in T_{n}$. Note that $q \notin T_{n}$ since $d_{\mathcal{D}}(q, y)=1+d_{\mathcal{D}}(p, y) \geq 2$. Let T_{i} be the first tetrahedron in this sequence such that $q \notin T_{i}$. Then $\Delta=T_{i} \cap T_{i-1}$ is a triangle separating q from y. The segment $[q, y]$ must pass through a vertex of Δ, and since $q \in T_{i-1} \backslash T_{i}$, the distance from q to Δ is 1 , hence $p \in \Delta$. Finally, notice that Δ separates x from y, for otherwise $[x, y]$ could not contain q (there would be a shorter path from x to y avoiding q).

Proof of Theorem 2. Since $\mathcal{C}(S)$ is quasi-isometric to \mathcal{D}^{1}, it suffices to show that \mathcal{D}^{1} is quasi-isometric to a simplicial tree. By [18, Theorem 4.6], this is equivalent to \mathcal{D}^{1} satisfying the following bottleneck property: There is some $L>0$ so that for all $x, y \in \mathcal{D}^{1}$ there is a midpoint $m=m(x, y)$ with $d(x, m)=d(y, m)=\frac{1}{2} d(x, y)$ and the property that any path from x to y must pass within less than L of the point m.

Let $L>\frac{3}{2}$ and define $m=m(x, y)$ to be the midpoint of any geodesic from x to y. Clearly we can assume $d_{\mathcal{D}}(x, m) \geq L$. Let p be a vertex on a geodesic from x to y such that $d_{\mathcal{D}}(m, p) \leq \frac{1}{2}$. By Lemma 5 , there exists a triangle Δ separating x from y such that $p \in \Delta$. Any path from x to y must pass through Δ, and hence within at most $\frac{3}{2}$ of the point m.

Recall that a geodesic metric space (X, d) is δ-hyperbolic if, for any geodesic triangle $[x, y] \cup[x, z] \cup[y, z]$ and any $p \in[x, y]$ there exists some $q \in[x, z] \cup[y, z]$ with $d(p, q) \leq \delta$. A triangle satisfying the condition above is called δ-thin. The curve complex is known to be 17-hyperbolic for every surface for which it is connected [8, 15]. Inspired by Minsky's proof of the hyperbolicity of the Farey graph [21], we give a better bound for the hyperbolicity constant of $\mathcal{C}\left(N_{1,3}\right)$.

Proposition 3. The graph $\mathcal{C}\left(N_{1,3}\right)$ is 3-hyperbolic.
Proof. First we prove that \mathcal{D}^{1} is $\frac{3}{2}$-hyperbolic. Let $[x, y] \cup[x, z] \cup[y, z]$ be a geodesic triangle in \mathcal{D}^{1} and $p \in[x, y]$. Clearly we can assume $d_{\mathcal{D}}(x, p) \geq \frac{3}{2}$. Let p^{\prime} be a vertex on $[x, y]$ such that $d_{\mathcal{D}}\left(p, p^{\prime}\right) \leq \frac{1}{2}$. By Lemma 5 , there exists a triangle Δ separating x from y such that $p^{\prime} \in \Delta$. It follows that $[x, z] \cup[y, z]$ has a non-empty intersection with Δ, and for any point q in this intersection $d_{\mathcal{D}}(q, p) \leq \frac{3}{2}$.

To finish the proof we use the homeomorphism $\phi: \mathcal{C}(S) \rightarrow \mathcal{D}^{1}$. Observe that ϕ maps geodesics triangles to geodesic triangles and $d_{\mathcal{C}}(x, y)=2 d_{\mathcal{D}}(\phi(x), \phi(y))$ for all $x, y \in \mathcal{C}(S)$. Since geodesic triangles in \mathcal{D}^{1} are $\frac{3}{2}$-thin, geodesic triangles in $\mathcal{C}(S)$ are 3-thin.

References

[1] J. Aramayona, C. J. Leininger, Finite rigid sets in curve complexes, J. Topol. Anal. 5(2013), 183-203.
[2] J. Aramayona, C. J. Leininger, Exhausting curve complexes by finite rigid sets, Pacific J. Math. 282(2016), 257-283.
[3] F. Atalan, M. Korkmaz, Automorphisms of curve complexes on nonorientable surfaces, Groups Geom. Dyn. 8(2014), 39-68.
[4] M. Bestvina, K. Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. Mat. Ser. III 42(2007), 213-236.
[5] B. Farb, D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series 49, Princeton University Press, Princeton, 2012.
[6] D. Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13(2009), 1017-1041.
[7] W. J. Harvey, Boundary structure of the modular group, in: Riemann surfaces and related topics: Proc. 1978 Stony Brook Conf.,(I. Kra and B. Maskit, Eds.), Ann. Math. Stud. 97(1981), 245-251.
[8] S. Hensel, P. Przytycki, R. C. H. Webb, 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs, JEMS 17(2015), 755-762.
[9] S. Ilbira, M. Korkmaz, Finite rigid sets in curve complexes of non-orientable surfaces, Geom. Dedicata 206(2020), 83-103.
[10] E. Irmak, On simplicial maps of the complexes of curves of nonorientable surfaces, Algebr. Geom. Topol. 14(2014), 1153-1180.
[11] E. Irmak, Exhausting curve complexes by finite rigid sets on nonorientable surfaces, preprint 2019, arXiv:1906.09913.
[12] N. Ivanov, Automorphisms of complexes of curves and of Teichmuller spaces, Int. Math. Res. Notices 14(1997), 651-666.
[13] E. Klarreich, The boundary at infinity of the curve complex and the relative mapping class group, preprint. Available at http://www.msri.org/people/members/klarreic/curvecomplex.ps
[14] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95(1999), 85-111.
[15] E. Kuno, Uniform hyperbolicity for curve graphs of non-orientable surfaces, Hiroshima Math. J. 46(2016), 343-355.
[16] C. J. Leininger, S. Schleimer, Connectivity of the space of ending laminations, Duke Math. J. 150(2009), 533-575.
[17] F. Luo, Automorphisms of the complex of curves, Topology 39(2002), 283-298.
[18] J. Manning, Geometry of pseudocharacters, Geom. Topol. 9(2005) 1147-1185.
[19] H. A. Masur, Y. N. Minsky, Geometry of the complex of curves I: Hyprebolicty, Invent. Math. 138(1999) 103-149.
[20] H. A. Masur, S. Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26(2013), 1-62.
[21] Y. N. Minsky, A geometric approach to the complex of curves on a surface, in: Topology and Teichmüller Spaces, (S. Kojima, Y. Matsumoto, K. Saito and M. Seppälä, Eds.), World Sci. Publ., River Edge, NJ, 1996, 149-158.
[22] M. Scharlemann, The complex of curves of a nonorientable surface, J. London Math. Soc. 25(1982), 171-184.
[23] S. Schleimer, Notes on the complex of curves, Caltech, minicourse Jan. 2005 (revised 11/23/2006), http://homepages.warwick.ac.uk/masgar/Maths/notes.pdf
[24] K. Shackleton, Combinatorial rigidity in curve complexes and mapping class groups, Pacific J. Math. 230(2007), 217-232.

