A note on the curve complex of the 3-holed projective plane*

Błażej Szepietowski[†]

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

Received December 12, 2019; accepted September 1, 2020

Abstract. Let S be a projective plane with 3 holes. We prove that there is an exhaustion of the curve complex C(S) by a sequence of finite rigid sets. As a corollary, we obtain that the group of simplicial automorphisms of C(S) is isomorphic to the mapping class group Mod(S). We also prove that C(S) is quasi-isometric to a simplicial tree.

AMS subject classifications: 57M99, 20F38

Key words: complex of curves, nonorientable surface, projective plane, mapping class group, quasi-tree

1. Introduction

The complex of curves C(S) of a surface S, first introduced by Harvey [7], is the simplicial complex with k-simplices representing collections of homotopy classes of k+1 non-isotopic disjoint simple closed curves in S. In this paper, we let $S=N_{1,3}$ be a 3-holed projective plane. Then C(S) is one-dimensional and its combinatorial structure was described by Scharlemann [22]. The first purpose of this note is to prove some rigidity results about $C(N_{1,3})$, which are known for most surfaces, but have not been proved in the literature in this particular case. The second purpose is to show that $C(N_{1,3})$ is quasi-isometric to a simplicial tree.

By the celebrated theorem of Ivanov [12], Korkmaz [14] and Luo [17], the group $\operatorname{Aut}(\mathcal{C}(S))$ of simplicial automorphisms of $\mathcal{C}(S)$ for orientable surface S is, with a few well understood exceptions, isomorphic to the extended mapping class group $\operatorname{Mod}^{\pm}(S)$. A stronger version of this result, due to Shackleton [24], says that every locally injective simplicial map from $\mathcal{C}(S)$ to itself is induced by some element of $\operatorname{Mod}^{\pm}(S)$ (simplicial map is locally injective if its restriction to the star of every vertex is injective). Analogous results for nonorientable surfaces were proved by Atalan-Korkmaz [3] and Irmak [10], omitting the case of $N_{1,3}$.

In [1], Aramayona and Laininger introduced the notion of a *rigid set*. It is a subcomplex $X \subset \mathcal{C}(S)$, with the property that every locally injective simplicial map $X \to \mathcal{C}(S)$ is induced by some homeomorphism of S. In [1], they constructed a finite rigid set in $\mathcal{C}(S)$, for every orientable surface S, and in [2] they proved that there is an exhaustion of $\mathcal{C}(S)$ by a sequence of finite rigid sets.

^{*}This work was supported by the National Science Centre, Poland, grant 2015/17/B/ST1/03235.

[†]Corresponding author. Email address: blaszep@mat.ug.edu.pl (B. Szepietowski)

Let $S = N_{g,n}$ be a nonorientable surface of genus g with n holes. Ilbira and Korkmaz [9] constructed a finite rigid set in $\mathcal{C}(S)$ for $g + n \neq 4$. Irmak [11] proved that $\mathcal{C}(S)$ can be exhausted by a sequence of finite rigid sets for $g + n \geq 5$ or (g,n) = (3,0). The methods used in [9, 11] fail for g + n < 5 due to the exceptional combinatorial structure of $\mathcal{C}(S)$. While this structure is rather simple for g + n < 4 (see [22]), it is quite complicated for g + n = 4. In this paper, we show that the main results of Ilbira-Korkmaz [9] and Irmak [11] are true for $N_{1,3}$.

Theorem 1. There exists a sequence $\mathcal{X}_1 \subset \mathcal{X}_2 \subset \cdots \subset \mathcal{C}(N_{1,3})$ such that:

- (1) \mathcal{X}_i is a finite rigid set for all $i \geq 1$;
- (2) \mathcal{X}_i has a trivial pointwise stabilizer in $Mod(N_{1,3})$ for all $i \geq 1$;
- (3) $\bigcup_{i>1} \mathcal{X}_i = \mathcal{C}(N_{1,3}).$

Our proof is independent of [9, 11]. The following corollary is an extension of the main results of Atalan and Korkmaz [3] and Irmak [10]. It follows easily from Theorem 1 (see the proof of the analogous corollary in [2]).

Corollary 1. If $\phi: \mathcal{C}(N_{1,3}) \to \mathcal{C}(N_{1,3})$ is a locally injective simplicial map, then there exists a unique $f \in \operatorname{Mod}(N_{1,3})$ such that $\phi = f$.

In particular, the group of simplicial automorphisms of $C(N_{1,3})$ is isomorphic to $Mod(N_{1,3})$.

Masur and Minsky [19] proved that $\mathcal{C}(S)$ is δ -hyperbolic for orientable S. Their result was extended to nonorientable surfaces by Bestvina and Fujiwara [4] and Masur and Schleimer [20]. The coarse structure of $\mathcal{C}(S)$ is central in low-dimensional topology, providing a key to a better understanding of the mapping class group, the Teichmüller space, and geometry of 3-manifolds. Our next result determines the coarse structure of $\mathcal{C}(N_{1,3})$.

Theorem 2. The curve graph $C(N_{1,3})$ is quasi-isometric to a simplicial tree.

It follows that the Gromov boundary $\partial_{\infty} \mathcal{C}(N_{1,3})$ of $\mathcal{C}(N_{1,3})$ is totally disconnected. We expect that $\partial_{\infty} \mathcal{C}(N_{g,n})$ is connected for large enough g and n, similarly to orientable surfaces [6, 16]. Recall that for orientable S, $\partial_{\infty} \mathcal{C}(S)$ is homeomorphic to the space of ending laminations of S [13].

2. Preliminaries

Let S be a surface of finite type. By a *hole* in a surface we mean a boundary component. A *curve* on S is an embedded simple closed curve. A curve is one-sided (resp. two-sided) if its regular neighbourhood is a Möbius band (resp. an annulus). If α is a curve on S, then $S \setminus \alpha$ is the subsurface obtained by removing from S an open regular neighbourhood of α . A curve α is *essential* if no boundary component of $S \setminus \alpha$ is a disc or an annulus or a Möbius band.

The curve complex C(S) is a simplicial complex whose k-simplices correspond to sets of k+1 isotopy classes of essential curves on S with pairwise disjoint representatives. To simplify the notation, we will confuse a curve with its isotopy class and

Figure 1: Vertices of $C(N_{1,2})$ (left) and $C(N_{1,3})$ (right)

the corresponding vertex of $\mathcal{C}(S)$. Simplices of dimension 1, 2 and 3 will be called edges, triangles and tetrahedra, respectively. For $\alpha, \beta \in \mathcal{C}^0(S)$, by $i(\alpha, \beta)$ we denote their geometric intersection number.

The mapping class group $\operatorname{Mod}(S)$ of a nonorientable surface S (resp. the extendend mapping class group $\operatorname{Mod}^{\pm}(S)$ of an orientable surface S) is the group of isotopy classes of all self-homeomorphisms of S. If S is orientable, then the mapping class group $\operatorname{Mod}(S)$ is defined to be the group of isotopy classes of orientation preserving homeomorphisms. Note that $\operatorname{Mod}(S)$ and $\operatorname{Mod}^{\pm}(S)$ act on $\mathcal{C}(S)$ by simplicial automorphisms.

If S is a four-holed sphere (or a torus with at most one hole), then $\mathcal{C}(S)$ is a countable set of vertices. In order to obtain a connected complex, the definition of $\mathcal{C}(S)$ is modified by declaring $\alpha, \beta \in \mathcal{C}^0(S)$ to be adjacent in $\mathcal{C}(S)$ whenever $i(\alpha, \beta) = 2$ (or $i(\alpha, \beta) = 1$). Furthermore, triangles are added to make $\mathcal{C}(S)$ into a flag complex. The complex $\mathcal{C}(S)$ obtained in such way is isomorphic to the well-known Farey complex [21, 23]. Two adjacent vertices of $\mathcal{C}(S)$ will be called Farey neighbours, and 2-simplices of $\mathcal{C}(S)$ will be called Farey triangles.

We represent the surface $N_{1,n}$ as a sphere with one crosscap and n holes. The following two lemmas are easy to prove, and otherwise, they can be found in [22].

Lemma 1. $C(N_{1,2})$ consists of two one-sided vertices α, α' such that $i(\alpha, \alpha') = 1$ (Figure 1).

Lemma 2. In $C(N_{1,3})$ every two-sided vertex β is connected by an edge with exactly two vertices α, α' , which are one-sided and $i(\alpha, \alpha') = 1$. Conversely, for every pair of one-sided vertices α, α' such that $i(\alpha, \alpha') = 1$, there exists exactly one two-sided vertex β connected by an edge with α and α' (Figure 1).

3. Finite rigid sets

In this section, S denotes a three-holed projective plane. The complex $\mathcal{C}(S)$ was studied by Scharlemann [22]. It is a bipartite graph: its vertex set can be partitioned as $\mathcal{C}^0(S) = V_1 \sqcup V_2$, where V_1 and V_2 denote the sets of one-sided and two-sided vertices, respectively, and every edge of $\mathcal{C}(S)$ connects a one-sided vertex with a two-sided one. Furthermore, by Lemma 2, every $\beta \in V_2$ is connected by an edge with exactly two $\alpha, \alpha' \in V_1$ such that $i(\alpha, \alpha') = 1$. We say that β is determined by α and α' .

We define an auxiliary simplicial complex \mathcal{D} whose vertex set is V_1 , and a set of vertices $\{\alpha_0, \ldots, \alpha_k\}$ is a simplex if $i(a_i, a_j) = 1$ for $0 \le i < j \le k$. It follows from the above discussion that $\mathcal{C}(S)$ is isomorphic to the graph obtained by subdividing

every edge of \mathcal{D}^1 – the 1-skeleton of \mathcal{D} . Indeed, the subdivision of an edge of \mathcal{D}^1 corresponds to adding the two-sided vertex determined by this edge.

Proposition 1. (a) The link of each vertex of \mathcal{D} is isomorphic to the Farey complex.

- (b) dim $\mathcal{D} = 3$.
- (c) Every triangle of \mathcal{D} is contained in exactly two different tetrahedra.

Proof. Fix a vertex $\alpha \in \mathcal{D}$ and consider the four-holed sphere $S \setminus \alpha$. Recall that $\mathcal{C}(S \setminus \alpha)$ is the Farey complex. We define a map $\theta_{\alpha} \colon \mathrm{Lk}(\alpha) \to \mathcal{C}(S \setminus \alpha)$, where $\mathrm{Lk}(\alpha)$ is the link of α in \mathcal{D} . For a vertex $\alpha' \in \mathrm{Lk}(\alpha)$, $\theta_{\alpha}(\alpha')$ is a two-sided curve determined by α and α' . It follows from Lemma 2 that θ_{α} is a bijection on vertices, and we claim that it is a simplicial isomorphism. Indeed, note that for $\alpha', \alpha'' \in \mathrm{Lk}(\alpha)$ we have $i(\alpha', \alpha'') = 1 \iff i(\theta_{\alpha}(\alpha'), \theta_{\alpha}(\alpha'')) = 2$. This proves (a). The other assertions are consequences of (a) and well-known properties of the Farey complex; namely $\dim \mathcal{C}(S \setminus \alpha) = 2$ and every edge of $\mathcal{C}(S \setminus \alpha)$ is contained in exactly two different triangles.

Given a one-sided curve, α_0 we can construct infinitely many tetrahedra of \mathcal{D} containing α_0 as a vertex. Let $\{\beta_i\}_1^3$ be any Farey triangle of $\mathcal{C}(S \setminus \alpha_0)$ and, for $1 \leq i \leq 3$, let α_i be a one-sided curve such that β_i is determined by α_i and α_0 . Then $\{\alpha_i\}_0^3$ is a tetrahedron of \mathcal{D} .

Lemma 3. Suppose that Σ is a 4-holed sphere, and C is one of its boundary components. For any two Farey triangles $\{\beta_0, \beta_1, \beta_2\}$ and $\{\beta'_0, \beta'_1, \beta'_2\}$ in $C(\Sigma)$ there exists a unique $f \in \operatorname{Mod}^{\pm}(\Sigma)$ such that f(C) = C and $f(\beta_i) = \beta'_i$ for i = 0, 1, 2.

Proof. We denote by $\operatorname{Mod}(\Sigma, C)$ (resp. $\operatorname{Mod}^{\pm}(\Sigma, C)$) the subgroup of $\operatorname{Mod}(\Sigma)$ (resp. $\operatorname{Mod}^{\pm}(\Sigma)$) consisting of elements fixing C. By cutting Σ along Farey neighbours we obtain four annuli, each containing one boundary component of S. Therefore, there exists an orientation preserving $f' \in \operatorname{Mod}(\Sigma, C)$ such that $f'(\beta_i) = \beta_i'$ for i = 1, 2. Furthermore, since f'(C) = C, such f' is easily shown to be unique by the Alexander method [5, Prop. 2.8]. The pointwise stabilizer of $\{\beta_1', \beta_2'\}$ in $\operatorname{Mod}^{\pm}(\Sigma, C)$ is a cyclic group of order 2 generated by an orientation reversing involution τ fixing every hole and such that β_0' and $\tau(\beta_0')$ are the unique common Farey neighbours of both β_1' and β_2' . By composing f' with τ if necessary we obtain the desired f. \square

Lemma 4. For any two tetrahedra $\{\alpha_i\}_{i=0}^3$ and $\{\alpha'_i\}_{i=0}^3$ of \mathcal{D} there exists a unique $f \in \operatorname{Mod}(S)$ such that $f(\alpha_i) = \alpha'_i$ for $0 \le i \le 3$.

Proof. For $1 \leq i \leq 3$, let β_i (respectively β_i') be a two-sided curve determined by α_0 and α_i (respectively α_0' and α_i'). Note that $\{\beta_1, \beta_2, \beta_3\}$ and $\{\beta_1', \beta_2', \beta_3'\}$ are Farey triangles in $\mathcal{C}(S \setminus \alpha_0)$ and $\mathcal{C}(S \setminus \alpha_0')$, respectively. By Lemma 3 there exists a unique $f \in \operatorname{Mod}(S)$ such that $f(\alpha_0) = \alpha_0'$ and $f(\beta_i) = \beta_i'$ for $1 \leq i \leq 3$. Since α_i' is the unique vertex of $\mathcal{C}(S)$ different from α_0' and adjacent to β_i' , we have $f(\alpha_i) = \alpha_i'$ for $1 \leq i \leq 3$.

Figure 2: A tetrahedron of \mathcal{D} and the corresponding subgraph of $\mathcal{C}(S)$

We define a "dual" graph \mathcal{T} whose vertices are tetrahedra of \mathcal{D} . Two tetrahedra are connected by an edge in \mathcal{T} if their intersection is a triangle. Sharlemann proved in [22, Theorem 3.1] that \mathcal{D}^1 is the 1-skeleton of the complex obtained from a tetrahedron by repeated stellar subdivision of the faces, but not the edges. This result can be rephrased in terms of the graph \mathcal{T} as follows.

Theorem 3 (Sharlemann). \mathcal{T} is a 4-regular tree.

Recall that a k-regular tree is the infinite tree whose every vertex has degree k. Let T be a tetrahedron of \mathcal{D} . We denote by T^* the full subcomplex of $\mathcal{C}(S)$ spanned by the four vertices of T and the six two-sided vertices determined by the edges of T (Figure 2). The following proposition says that T^* is rigid. It is thus an extension of the main result of [9].

Proposition 2. Suppose that T is a tetrahedron \mathcal{D} and $\phi \colon T^* \to \mathcal{C}(S)$ is a locally injective simplicial map. Then there exists a unique $f \in \operatorname{Mod}(S)$ such that $\phi = f$ on T^* .

Proof. First note that ϕ is injective because it is locally injective and T^* has diameter 2. Let $T = \{\alpha_i\}_{i=0}^3$. We claim that $\{\phi(\alpha_i)\}_{i=0}^3$ is a tetrahedron of \mathcal{D} . Indeed, for $1 \leq i \leq 3$, $\phi(\alpha_i)$ is adjacent in $\mathcal{C}(S)$ to three different vertices, and hence it is one-sided as two-sided vertices of $\mathcal{C}(S)$ have degree 2. For $i \neq j$, the distance in $\mathcal{C}(S)$ between $\phi(\alpha_i)$ and $\phi(\alpha_i)$ is 2, and hence $\phi(\alpha_i)$ and $\phi(\alpha_i)$ are adjacent in \mathcal{D} .

By Lemma 4, there exists a unique $f \in \text{Mod}(S)$ such that $f(\alpha_i) = \phi(\alpha_i)$ for $0 \le i \le 3$. Let β be a two-sided vertex of T^* determined by α_i and α_j . Then $\phi(\beta)$ is adjacent to $\phi(\alpha_i)$ and $\phi(\alpha_j)$, and since such a curve is unique, $\phi(\beta) = f(\beta)$.

We denote by \mathcal{T}^0 the vertex set of \mathcal{T} , that is the set of tetrahedra of \mathcal{D} . Let $d_{\mathcal{T}}$ denote the path metric on \mathcal{T} . We fix a reference tetrahedron T_0 and define

$$\mathcal{T}_n^0 = \{ T \in \mathcal{T}^0 \mid d_{\mathcal{T}}(T, T_0) \le n \}.$$

In other words, \mathcal{T}_n^0 is the set of tetrahedra within distance at most n from T_0 in the path metric on \mathcal{T} .

Proof of Theorem 1. Let $\mathcal{X}_1 = T_0^*$ and for $n \geq 1$:

$$\mathcal{X}_{n+1} = \bigcup_{T \in \mathcal{T}_n^0} T^*.$$

We prove by induction that \mathcal{X}_n is rigid for all $n \geq 1$. By Proposition 2, \mathcal{X}_1 is rigid. Assume that \mathcal{X}_n is rigid and let $\phi \colon \mathcal{X}_{n+1} \to \mathcal{C}(S)$ be a locally injective simplicial map. Since \mathcal{X}_n is rigid, there exists a unique $f \in \operatorname{Mod}(S)$ such that $f = \phi$ on \mathcal{X}_n . Let $\phi' = f^{-1} \circ \phi$.

Let $T \in \mathcal{T}_{n+1} \backslash \mathcal{T}_n$. We need to show that ϕ' fixes every vertex of T^* . It suffices to show that ϕ' fixes every vertex of T because then it also has to fix the two-sided vertices of T^* determined by edges of T. The tetrahedron T has a common face with some (unique) tetrahedron $T' \in \mathcal{T}_n$. Let $T = \{\alpha_0, \alpha_1, \alpha_2, \alpha_3\}$ and $T' = \{\alpha'_0, \alpha_1, \alpha_2, \alpha_3\}$. Let β (resp. β') be the two-sided vertex of T^* (resp. $(T')^*$) determined by α_0 and α_1 (resp. α'_0 and α_1). By local injectivity of ϕ' , $\phi'(\beta) \neq \phi'(\beta') = \beta'$, and hence also $\phi'(\alpha_0) \neq \phi'(\alpha'_0) = \alpha'_0$. By Proposition 2, $\phi'(T)$ is a tetrahedron different from T' and having a common face with T'. Since such a tetrahedron is unique by (c) of Proposition 1, $\phi'(T) = T$ and $\phi'(\alpha_0) = \alpha_0$. We have shown that ϕ' pointwise fixes T^* , and it follows that it pointwise fixes \mathcal{X}_{n+1} . Hence $\phi = f$ on \mathcal{X}_{n+1} .

Since \mathcal{X}_n contains T_0^* for all $n \geq 1$, it has a trivial pointwise stabilizer in $\operatorname{Mod}(S)$. Finally, it follows from the connectedness of \mathcal{T} that $\bigcup_{n>1} \mathcal{X}_n = \mathcal{C}(S)$.

4. Coarse geometry

In this section, we consider C(S) and D^1 as metric graphs with all edges of length 1. We denote the metrics on these graphs by $d_{\mathcal{C}}$ and $d_{\mathcal{D}}$, respectively.

There is a natural piecewise-linear homeomorphism $\phi: \mathcal{C}(S) \to \mathcal{D}^1$ equal to the identity on one-sided vertices which forgets the two-sided vertices. That is, if β is the two-sided vertex of $\mathcal{C}(S)$ determined by α and α' , then $\phi(\beta)$ is defined to be the midpoint of the edge of \mathcal{D} connecting α and α' . We have

$$d_{\mathcal{C}}(x,y) = 2d_{\mathcal{D}}(\phi(x),\phi(y))$$

for all $x, y \in \mathcal{C}(S)$. In particular, ϕ is a quasi-isometry.

Since \mathcal{T} is a tree, every triangle of \mathcal{D} is separating, i.e. the space obtained by removing a triangle from \mathcal{D} has two connected components. If Δ is a triangle of \mathcal{D} , and x and y are points lying in different connected components of $\mathcal{D} \setminus \Delta$, then we say that Δ separates x from y.

Lemma 5. Let p be a vertex on a geodesic in \mathcal{D}^1 from x to y, such that $d_{\mathcal{D}}(p,x) \geq 1$ and $d_{\mathcal{D}}(p,y) \geq 1$. There exists a triangle Δ of \mathcal{D} such that $p \in \Delta$ and Δ separates x from y.

Proof. Let [x,y] be a geodesic in \mathcal{D}^1 from x to y containing p, and let q be the vertex preceding p on [x,y]. Let $(T_i)_0^n$ be any sequence of tetrahedra forming a geodesic in \mathcal{T} such that $q \in T_0$ and $y \in T_n$. Note that $q \notin T_n$ since $d_{\mathcal{D}}(q,y) = 1 + d_{\mathcal{D}}(p,y) \geq 2$. Let T_i be the first tetrahedron in this sequence such that $q \notin T_i$. Then $\Delta = T_i \cap T_{i-1}$ is a triangle separating q from y. The segment [q,y] must pass through a vertex of Δ , and since $q \in T_{i-1} \setminus T_i$, the distance from q to Δ is 1, hence $p \in \Delta$. Finally, notice that Δ separates x from y, for otherwise [x,y] could not contain q (there would be a shorter path from x to y avoiding q).

Proof of Theorem 2. Since C(S) is quasi-isometric to \mathcal{D}^1 , it suffices to show that \mathcal{D}^1 is quasi-isometric to a simplicial tree. By [18, Theorem 4.6], this is equivalent to \mathcal{D}^1 satisfying the following bottleneck property: There is some L > 0 so that for all $x, y \in \mathcal{D}^1$ there is a midpoint m = m(x, y) with $d(x, m) = d(y, m) = \frac{1}{2}d(x, y)$ and the property that any path from x to y must pass within less than L of the point m.

Let $L > \frac{3}{2}$ and define m = m(x,y) to be the midpoint of any geodesic from x to y. Clearly we can assume $d_{\mathcal{D}}(x,m) \geq L$. Let p be a vertex on a geodesic from x to y such that $d_{\mathcal{D}}(m,p) \leq \frac{1}{2}$. By Lemma 5, there exists a triangle Δ separating x from y such that $p \in \Delta$. Any path from x to y must pass through Δ , and hence within at most $\frac{3}{2}$ of the point m.

Recall that a geodesic metric space (X,d) is δ -hyperbolic if, for any geodesic triangle $[x,y] \cup [x,z] \cup [y,z]$ and any $p \in [x,y]$ there exists some $q \in [x,z] \cup [y,z]$ with $d(p,q) \leq \delta$. A triangle satisfying the condition above is called δ -thin. The curve complex is known to be 17-hyperbolic for every surface for which it is connected [8, 15]. Inspired by Minsky's proof of the hyperbolicity of the Farey graph [21], we give a better bound for the hyperbolicity constant of $\mathcal{C}(N_{1,3})$.

Proposition 3. The graph $C(N_{1,3})$ is 3-hyperbolic.

Proof. First we prove that \mathcal{D}^1 is $\frac{3}{2}$ -hyperbolic. Let $[x,y] \cup [x,z] \cup [y,z]$ be a geodesic triangle in \mathcal{D}^1 and $p \in [x,y]$. Clearly we can assume $d_{\mathcal{D}}(x,p) \geq \frac{3}{2}$. Let p' be a vertex on [x,y] such that $d_{\mathcal{D}}(p,p') \leq \frac{1}{2}$. By Lemma 5, there exists a triangle Δ separating x from y such that $p' \in \Delta$. It follows that $[x,z] \cup [y,z]$ has a non-empty intersection with Δ , and for any point q in this intersection $d_{\mathcal{D}}(q,p) \leq \frac{3}{2}$.

To finish the proof we use the homeomorphism $\phi \colon \mathcal{C}(S) \to \mathcal{D}^1$. Observe that ϕ maps geodesics triangles to geodesic triangles and $d_{\mathcal{C}}(x,y) = 2d_{\mathcal{D}}(\phi(x),\phi(y))$ for all $x,y \in \mathcal{C}(S)$. Since geodesic triangles in \mathcal{D}^1 are $\frac{3}{2}$ -thin, geodesic triangles in $\mathcal{C}(S)$ are 3-thin.

References

- J. Aramayona, C. J. Leininger, Finite rigid sets in curve complexes, J. Topol. Anal. 5(2013), 183–203.
- [2] J. ARAMAYONA, C. J. LEININGER, Exhausting curve complexes by finite rigid sets, Pacific J. Math. 282(2016), 257–283.
- [3] F. ATALAN, M. KORKMAZ, Automorphisms of curve complexes on nonorientable surfaces, Groups Geom. Dyn. 8(2014), 39–68.
- [4] M. Bestvina, K. Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. Mat. Ser. III 42(2007), 213–236.
- [5] B. FARB, D. MARGALIT, A Primer on Mapping Class Groups, Princeton Mathematical Series 49, Princeton University Press, Princeton, 2012.
- [6] D. Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13(2009), 1017–1041.
- [7] W. J. Harvey, Boundary structure of the modular group, in: Riemann surfaces and related topics: Proc. 1978 Stony Brook Conf., (I. Kra and B. Maskit, Eds.), Ann. Math. Stud. 97(1981), 245–251.
- [8] S. Hensel, P. Przytycki, R. C. H. Webb, 1-slim triangles and uniform hyperbolicity for arc graphs and curve graphs, JEMS 17(2015), 755-762.

- [9] S. Ilbira, M. Korkmaz, Finite rigid sets in curve complexes of non-orientable surfaces, Geom. Dedicata 206(2020), 83–103.
- [10] E. Irmak, On simplicial maps of the complexes of curves of nonorientable surfaces, Algebr. Geom. Topol. 14(2014), 1153–1180.
- [11] E. Irmak, Exhausting curve complexes by finite rigid sets on nonorientable surfaces, preprint 2019, arXiv:1906.09913.
- [12] N. IVANOV, Automorphisms of complexes of curves and of Teichmuller spaces, Int. Math. Res. Notices 14(1997), 651–666.
- Klarreich, [13] E. Theboundary atinfinity ofthecurvecomplexandtherelativemappingAvailable classgroup,preprint. http://www.msri.org/people/members/klarreic/curvecomplex.ps
- [14] M. KORKMAZ, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95(1999), 85–111.
- [15] E. Kuno, Uniform hyperbolicity for curve graphs of non-orientable surfaces, Hiroshima Math. J. 46(2016), 343–355.
- [16] C. J. LEININGER, S. SCHLEIMER, Connectivity of the space of ending laminations, Duke Math. J. 150(2009), 533-575.
- [17] F. Luo, Automorphisms of the complex of curves, Topology 39(2002), 283–298.
- [18] J. Manning, Geometry of pseudocharacters, Geom. Topol. 9(2005) 1147–1185.
- [19] H. A. MASUR, Y. N. MINSKY, Geometry of the complex of curves I: Hyprebolicty, Invent. Math. 138(1999) 103–149.
- [20] H. A. MASUR, S. SCHLEIMER, The geometry of the disk complex, J. Amer. Math. Soc. 26(2013), 1–62.
- [21] Y. N. MINSKY, A geometric approach to the complex of curves on a surface, in: Topology and Teichmüller Spaces, (S. Kojima, Y. Matsumoto, K. Saito and M. Seppälä, Eds.), World Sci. Publ., River Edge, NJ, 1996, 149–158.
- [22] M. SCHARLEMANN, The complex of curves of a nonorientable surface, J. London Math. Soc. 25(1982), 171–184.
- [23] S. Schleimer, Notes on the complex of curves, Caltech, minicourse Jan. 2005 (revised 11/23/2006), http://homepages.warwick.ac.uk/masgar/Maths/notes.pdf
- [24] K. Shackleton, Combinatorial rigidity in curve complexes and mapping class groups, Pacific J. Math. 230(2007), 217–232.