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Abstract. Given an abelian variety A defined over a finite field k, we say that A is cyclic
if its group A(k) of rational points is cyclic. In this paper, we give a bijection between
cyclic abelian varieties of an ordinary isogeny class A with Weil polynomial fA and some
classes of matrices with integer coefficients and having fA as a characteristic polynomial.
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1. Introduction

The group A(k) of rational points of an abelian variety A defined over a finite field
k = Fq is a finite abelian group, and it has theoretical and practical interests. More
precisely, the group structure of A(k) and some statistics are research topics in the
literature.

The structure of all possible groups for elliptic curves defined over finite fields was
independently discovered in [12], [10],[15] and [18]. For higher dimensions, in [11]
Rybakov gives a very explicit description of all possible groups of rational points of
an abelian variety in a given isogeny class with commutative endomorphism algebra.
His result is formulated in terms of the characteristic polynomial of the isogeny class.

Cyclic subgroups of the group A(k) of rational points of an abelian variety A
defined over a finite field k are suitable for multiple applications, in particular for
cryptography, where the Discrete Logarithm Problem is exploited. We say that an
abelian variety A is cyclic if its group A(k) of rational points is cyclic. Vlăduţ
studied the cyclicity of elliptic curves in [16] and [17]. The higher dimensional case
was studied by the author in [4] and [5], when varieties are grouped in their isogeny
classes.

Deligne’s functor ([2]) describes an equivalence of categories between ordinary
abelian varieties and modules over Z with certain properties. A classical result of
Latimer and MacDuffee gives a bijection between certain classes of matrices with
integer coefficients and certain classes of fractional ideals (see [7]). Combining these
two results with a criterion for cyclic varieties based on their endomorphisms rings,
we obtain our main result.
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Recently, a lot of effort has been done on the computational aspects of abelian va-
rieties (see for example [8] or the LMFDB project [3]). Besides theoretical interests,
our work could contribute to the computation of the group structure of varieties.

2. Preliminaries and statement of the result

Abelian varieties over finite fields

For the general theory of abelian varieties, see for example [9], and for precise results
over finite fields, see [19].

Let q = pr be a power of a prime, and let k = Fq be a finite field with q
elements. Let A be an abelian variety of dimension g over k. For an extension field
K of k, we denote by EndK(A) the ring of K-endomorphism of A and by End0

K(A)
its endomorphism algebra EndK(A) ⊗ Q. Abelian varieties belonging to the same
isogeny class have isomorphic endomorphism algebras. For an integer n, denote by
A[n] the group of n-torsion points of A(k). It is known that

A[n] ∼= (Z/nZ)2g, p - n; and,

A[p] ∼= (Z/pZ)i, 0 ≤ i ≤ g.

For a fixed prime ` (6= p), A[`n] form an inverse limit system under A[`n+1]
`→ A[`n],

and we can define the Tate module T`(A) by lim←−A[`n](k). This is a free Z`-module

of rank 2g and the absolute Galois group G of k over k operates thereon by Z`-linear
maps.

The Frobenius endomorphism F of A acts on T`(A) by a semisimple linear oper-
ator, and its characteristic polynomial fA(t) is called the Weil polynomial of A (also
called the characteristic polynomial of A). The Weil polynomial is independent of
the choice of the prime `. A monic polynomial with integer coefficients and all its
roots having absolute value

√
q is called a q-Weil polynomial. Note that a q-Weil

polynomial of degree 2g has qg as a constant term. Weil proved that the char-
acteristic polynomial of A is a q-Weil polynomial. Nevertheless, not every q-Weil
polynomial is the characteristic polynomial of an abelian variety.

In [13], Tate proved that two abelian varieties A and B are isogenous if and
only if fA = fB . Thus, it makes sense to consider the Weil polynomial fA of an
isogeny class A as being the Weil polynomial of some (and thus any) abelian variety
of A. Moreover, the Honda-Tate theory gives a bijection between irreducible q-Weil
polynomials and simple isogeny classes. If A is simple, fA(t) = hA(t)e for some
irreducible q-Weil polynomial hA and the center of End0

k(A) is isomorphic to the
number field Q(F ) ∼= Q[t]/(hA(t)). The cardinality of the group A(k) of rational
points of A equals fA(1), and thus, it is an invariant of the isogeny class.

An abelian variety A is ordinary if one of the following equivalent conditions is
satisfied:

1. A has pg points of order dividing p and defined over k;

2. The neutral component of the group scheme Ap, the kernel of multiplication
by p, is of multiplicative type;
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3. At least half of the roots of fA are p-adic unities.

It follows from 3 that being ordinary is a property of the isogeny class. The char-
acteristic polynomial of an ordinary simple abelian variety is irreducible ([6, Th.
3.3]).

Matrices

Let us define some more notations. We denote by Mn(Z) the set of square matrices
of dimension n×n with integer entries. We define the conjugacy classes of matrices
Cl(Mn(Z)) as the quotient Mn(Z)/ ∼ given by the equivalence relation M ∼ N if
and only if M = UNU−1 for some U ∈ GLn(Z), where GLn(Z) denotes the subset
of Mn(Z) of invertible matrices.

For any polynomial f , we denote by Mn,f (Z) the subset of matrices of Mn(Z)
having f as a characteristic polynomial. Since the characteristic polynomial is an
invariant of the conjugacy class, then Cl(Mn,f (Z)) is well defined.

Let M ∈ Mn(Z). Let gcd(M) be the greatest common divisor of all entries of
M . The cofactor Cof(M) of M is the matrix whose ij-entry is (−1)i+j times the
determinant of the matrix that results from the elimination of the i-th row and
the j-th column of M . We recall that if M is invertible (over Q), then M−1 =
Cof(M)t/ det(M), where Cof(M)t is the transpose of Cof(M) and det(M) is the
determinant of M . Define the following map

τ : Mn(Z)→ Z
M 7→ gcd(Cof(M)).

Let M,N ∈ Mn(Z). We have that Cof(MN) = Cof(M) Cof(N) (see for exam-
ple [1, p. 46, eq. 1.3]). Since gcd(M) divides every entry of MN , we have
that gcd(M)| gcd(MN). In particular, gcd(MU) = gcd(UM) = gcd(M) for any
U ∈ GLn(Z). Note that Cof(U) ∈ GLn(Z) if U ∈ GLn(Z). Thus, the map τ induces
a map

Cl(Mn(Z))→ Z,
which we also denote by τ . We denote by I the identity matrix. By abuse of language,
we write M instead of [M ] for the class in Cl(Mn(Z)) of a matrix M ∈ Mn(Z).

Statement of the result

We consider an isogeny class A of g-dimensional ordinary simple abelian varieties
defined over a finite field. We denote by c(A) the subset of cyclic varieties in the
isogeny class A. Our main result states:

Theorem 1. Let A be a g-dimensional isogeny class of ordinary simple abelian
varieties defined over Fq . Let f = fA be the Weil polynomial of A. Then there exist
bijections between A (up to Fq -isomorphism) and

{M ∈ Cl(M2g,f (Z)) : qg−1|τ(M)},

and between c(A) (up to Fq -isomorphism) and

{M ∈ Cl(M2g,f (Z)) : qg−1|τ(M) and (τ(I−M), f̂(1), f ′(1)) = 1}.
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Here (z1, z2, z3) denotes the greatest common divisor of the integers zi, ẑ denotes
the quotient z/ rad(z) of an integer z to its radical and f ′ denotes the first derivative
of the polynomial f .

3. The proof

The proof uses a version of Deligne’s functor and a classical result of Latimer and
MacDuffee.

Fractional ideals

Given a number field K, an order in K is a subring of K which is finitely generated
as a Z-module and such that its fields of fractions equal K. The ring of integers OK
of K is the maximal order of K. Given an algebraic integer θ, the Z-module Z[θ]
is an order in Q(θ). Given an order O in a number field K, a fractional O-ideal is
a nonzero finitely generated sub-O-module of K. Every fractional O-ideal can be
written as αa, where a is an (integral) ideal of O and α ∈ K∗. Given two fractional
O-ideals a and b, the product ab, the sum a+b, the intersection a∩b, and the ideal
quotient

(a : b) := {α ∈ K : αb ⊂ a}

are fractionalO-ideals. Note that if we have ordersO′ ⊂ O ⊂ O′′ and a is a fractional
O-ideal, then a is a fractional O′-ideal; it is a fractional O′′-ideal if aO′′ ⊂ a, i.e. if
it has a module structure over O′′. We have that (a : a) is a ring, and it is called
the multiplicator ring of a. It is an order in K, and it is the biggest order O such
that a is a fractional O-ideal.

We say that two fractional O-ideals a and b are equivalent if a = (αO)b for some
α ∈ K∗. The set of equivalence classes is the ideal class monoid ICM(O). It has a
monoid structure coming from the multiplication of ideals, which is well defined on
the equivalence classes. Note that (a : a) = (b : b) provided that a is equivalent to b.

Deligne category

By a result of Deligne [2], there exists an equivalence between the category of
ordinary abelian varieties over Fq and modules over Z with additional structure.
Deligne’s equivalence is explicit in a convenient way using the language of fractional
ideals:

Theorem 2 (Deligne). Let A be an ordinary simple isogeny class of abelian varieties
defined over Fq , which is defined by the q-Weil polynomial fA. Let α be a root of fA
corresponding to the Frobenius. Then

1. we have a bijection between A (up to Fq -isomorphism) and ICM(Z[α, q/α]);

2. let IA be the corresponding fractional ideal of an abelian variety A ∈ A; then
EndFq

(A) corresponds to the multiplicator ring (IA : IA).

Proof. See [8, corollaries 4.4 and 4.6] for this version of Deligne’s equivalence.
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Under this bijection, our next goal is to establish a connection between varieties
and certain classes of matrices.

Latimer and MacDuffee

The next step is to relate fractional ideals and matrices. This is given by a classical
result of Latimer and MacDuffee:

Theorem 3 (Latimer and MacDuffee, see [7]). Let f(t) ∈ Z[t] be monic irreducible
of degree n, and let α be a root of f(t). Then we have a bijection

ICM(Z[α])←→ Cl(Mn,f (Z)). (1)

This bijection is given by the following rule. Let a be a fractional Z[α]-ideal
in Q(α). Note that multiplication by α is a Z-linear map mα : a → a. Then we
pick a basis of a as a Z-module, and finally we take the matrix that represents the
multiplication by α. Changing the basis of the fractional ideal changes this matrix
to another in the same conjugacy class. This gives a well-defined function from
ICM(Z[α]) to Cl(Mn,f (Z)), which is then independent of the choice of the basis.
Theorem 3 states that this function is a bijection. For more details, we refer the
reader to the original paper [7], a version given by Taussky in [14], or Conrad notes
available online‡.

We now extend the previous result to the cases interesting to us. In this context,
we consider only q-Weil polynomials.

Proposition 1. Let f(t) ∈ Z[t] be an irreducible q-Weil polynomial of degree n = 2g,
and let α be a root of f(t). Then we have bijections (given by restrictions of bijection
of Theorem 3)

ICM(Z[α, q/α])←→ {M ∈ Cl(Mn,f (Z)) : qg−1|τ(M)}, (2)

ICM(Z[α, q/α, σ`])←→ {M ∈ Cl(Mn,f (Z)) : qg−1|τ(M) and `|τ(I−M)}, (3)

for every prime `|(f̂(1), f ′(1)), and where σ` := f(1)
`(1−α) .

Remark 1. By convention, ICM(O) is empty if O is not an order. For example,
this is the case when O = Z[α, q/α, σ`] and σ` is not an algebraic integer.

Proof. Since f is a q-Weil polynomial, Z[α, q/α] is an order in Q(α) and det(M) =
f(0) = qg for any matrix M ∈ Mn,f (Z). We consider bijection (1) of Theorem 3.
Let a be a fractional Z[α]-ideal. If M ∈ Mn,f (Z) represents multiplication by α on
the fractional ideal a for some choice of Z-basis, then qM−1 ∈ Mn(Q) represents
multiplication by qα−1 on Q(α) for the same basis, as a Q-linear map. Here, the
inverse matrix M−1 exists since its determinant is different from zero. The fractional
Z[α]-ideal a has a module structure over the order Z[α, q/α] if and only if multipli-
cation by qα−1 is well defined in a as a Z-linear map, that is, qM−1 ∈ Mn(Z). Then
bijection (2) follows from

qM−1 = q
Cof(M)t

det(M)
=

Cof(M)t

qg−1
,

‡https://kconrad.math.uconn.edu/blurbs/
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and the definition of τ .

The Z-module Z[α, q/α, σ`] is an order if and only if σ` is an algebraic integer.
We now compute the characteristic polynomial of σ`. Let us denote by pθ the
characteristic polynomial of any algebraic number θ in Q(α). Observe that θ, 1 −
θ, θ−1 and cθ (c ∈ Q∗) have the same degree. Let pα(t) =

∑n
i=0 ait

i ∈ Z[t] and
pβ(t) =

∑n
i=0 bit

i ∈ Z[t] be the characteristic polynomials of α and β := 1 − α,

respectively. Then
∑n
i=0

bn−i

b0
ti ∈ Q[t] is the characteristic polynomial pβ−1 of β−1

since it is monic and equals zero when evaluated at β−1. By similar arguments, we
have that pcβ−1(t) =

∑n
i=0 c

n−i bn−i

b0
ti. If we take c := b0

` , we have

pcβ−1(t) =

n∑
i=0

bn−i−10

`n−i
bn−it

i = tn +
1

`
b1t

n−1 +
b0
`2
b2t

n−2 + · · ·+ bn−20

`n−1
bn−1t+

bn−10

`n
.

By comparing the following identity (the coefficients of βi have to be the same)

0 = pβ(β) =

n∑
i=0

biβ
i =

n∑
i=0

ai(1− β)i,

we get b0 =
∑n
i=0 ai = f(1) and b1 = −

∑n
i=0 iai = −f ′(1). Finally, the char-

acteristic polynomial of σ` has all its non-leading coefficients of the form f(1)i−1

`i

times an integer, except for the coefficient of degree n− 1, which equals − f
′(1)
` , and

that the constant term equals f(1)n−1

`n . Thus, Z[α, q/α, σ`] is an order if and only if

`|(f̂(1), f ′(1)).

Let a be a fractional Z[α, q/α]-ideal. As in the previous case, if M ∈ Mn,f (Z)
represents multiplication by α on the fractional ideal a for some choice of Z-basis,
then (f(1)/`)(I−M)−1 ∈ Mn(Q) represents multiplication by (f(1)/`)(1− α)−1 on
Q(α) for the same basis, as a Q-linear map. Note that det(I−M) = f(1) 6= 0.
Provided that Z[α, q/α, σ`] is an order, the fractional ideal a has a module structure
over the order Z[α, q/α, σ`] if and only if multiplication by σ` is well defined in a as
a Z-linear map, that is,

f(1)

`
(1−M)−1 =

f(1)

`

Cof(I−M)t

det(I−M)
=

Cof(I−M)t

`
∈ Mn(Z).

Then bijection (3) follows from the definition of τ .

Proof of Theorem 1

The first bijection follows immediately from bijection (2) of Proposition 1 and the
first bijection of Theorem 2 (Deligne’s equivalence).

Now, for A ∈ A, denote by IA its associated fractional ideal (from Theorem 2),
and by MA the class of matrices associated to IA (from Theorem 3). From Lemma
2.1 of [4], the variety A is cyclic if and only if, for each prime `|f(1), there is no
endomorphism ϕ ∈ EndFq

(A) such that ϕ◦[`]◦(1−F ) = [f(1)], where [z] ∈ EndFq
(A)
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denotes multiplication by an integer z and ◦ the composition of morphisms. From
part 2 of Theorem 2, the latter is equivalent to

σ` :=
f(1)

`(1− α)
/∈ (IA : IA),

for each prime `|f(1), and where the Frobenius F is represented by a fixed root α
of f . We recall (see the proof of Proposition 1) that for each prime `|f(1) such

that ` - (f̂(1), f ′(1)), we have automatically that Z[α, q/α, σ`] 6⊂ (IA : IA) since
Z[α, q/α, σ`] is not an order. Thus, A is cyclic if and only if

Z[α, q/α, σ`] 6⊂ (IA : IA),

for each prime `|(f̂(1), f ′(1)). Finally, from bijection (3) of Proposition 1, the latter
is equivalent to

qg−1|τ(MA) and (τ(I−MA), f̂(1), f ′(1)) = 1.

The result follows.
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