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Abstract. We prove that for any polynomial P of degree d in C[x1, . . . , xn] there exists a
vector (u1, . . . , un) ∈ Zn such that P (u1, . . . , un) ̸= 0 and

∑n
i=1 |ui| ≤ min{d, ⌊(d+n)/2⌋}.

We also show that this bound is best possible. Similarly, for any P ∈ C[x1, . . . , xn] of
degree d and any real number p ≥ log 3/ log 2 there is a vector (u1, . . . , un) ∈ Zn such that
P (u1, . . . , un) ̸= 0 and

∑n
i=1 |ui|p ≤ max{1 + ⌊d/2⌋p, ⌊(d + 1)/2⌋p}. The latter bound is

also best possible for every n ≥ 2.
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1. Introduction

Let d and n be positive integers, and let P ∈ C[x1, . . . , xn] be a polynomial in n
variables of degree d. Then, by [6, Lemma 2.4], there is a vector (v1, . . . , vn) ∈ Zn

such that P (v1, . . . , vn) ̸= 0 and

max
1≤i≤n

|vi| ≤ ⌊(d+ 1)/2⌋. (1)

The proof of [6, Lemma 2.4] is straightforward by induction on n. Inequality (1) is
then used in getting an upper bound for the number of fields of given degree and
bounded discriminant in [6] and [12].

In fact, the following more general statement is also true (see [1]):

Theorem 1. Let d and n be positive integers, and let V1, . . . , Vn be any sets con-
taining at least d + 1 complex numbers each. Then, for any P ∈ C[x1, . . . , xn] of
degree d there is a vector (v1, . . . , vn) ∈ V1 × · · · × Vn such that P (v1, . . . , vn) ̸= 0.

Theorem 1 implies upper bound (1) by choosing V1 = · · · = Vd = Sd, where

Sd = {−⌊(d+ 1)/2⌋,−⌊(d+ 1)/2⌋+ 1, . . . , ⌊(d+ 1)/2⌋} ⊂ Z, (2)

since |Vi| = |Sd| = 2⌊(d + 1)/2⌋ + 1 ≥ d + 1 for i = 1, . . . , n. Theorem 1, whose
short proof is included here for the sake of completeness, is a version of the so-
called combinatorial Nullstellensatz which has many applications. See, for instance,
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[2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15] for stronger versions of Theorem 1 and for its
applications to graph theory, sumsets, finite fields, etc.

We emphasize that bound (1) does not depend on n. In the next section, we will
give an example showing that bound (1) is sharp.

In this note, we first look at the same problem for the quantity
∑n

i=1 |ui| instead
of max1≤i≤n |ui| and prove the following:

Theorem 2. Let d and n be positive integers. Then, for any polynomial P ∈
C[x1, . . . , xn] of degree d there is a vector (u1, . . . , un) ∈ Zn such that P (u1, . . . , un) ̸=
0 and

n∑
i=1

|ui| ≤ ⌊(d+ n)/2⌋ (3)

if d ≥ n or
n∑

i=1

|ui| ≤ d (4)

if d < n.

In Section 2, we will give two examples illustrating that for any positive integers
d, n bounds (3) and (4) are sharp.

Inequalities (1), (3) and (4) give optimal bounds for the norms L∞ and L1 of
a vector in Zn at which a complex polynomial of degree d in n variables does not
vanish. In the next theorem, we consider the same problem for the norm Lp:

Theorem 3. Let d and n be positive integers, and let p be a real number satisfying

p ≥ log 3

log 2
= 1.584962 . . . . (5)

Then, for any polynomial P ∈ C[x1, . . . , xn] of degree d there is a vector (u1, . . . , un)
∈ Zn such that P (u1, . . . , un) ̸= 0 and

n∑
i=1

|ui|p ≤ max{1 + ⌊d/2⌋p, ⌊(d+ 1)/2⌋p}. (6)

Note that the right-hand side of (6) equals 1+(d/2)p for d even, and ((d+1)/2)p

for d odd, by the inequality

ap + bp ≤ (a+ b)p, (7)

where a, b ≥ 0 and p ≥ 1. (Select a = (d − 1)/2, b = 1 in (7) and d odd on the
right-hand side of (6).) Unlike (3), bound (6) is independent of n.

In Section 2, we will give some examples showing that upper bound (6) for the
Lp-norm is sharp for any pair (d, n) ∈ N2 (except for the pair (d, n) = (2k, 1), where
k ∈ N, when the bound |u1|p ≤ (d/2)p is tight by (3)), and that lower bound (5) on
p cannot be relaxed.

Finally, in Section 3, we will prove theorems 1, 2 and 3.
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2. Examples showing that bounds are sharp

We first show bound (1) is sharp for every pair (d, n) ∈ N2. To see this, for a positive
integer d we define

ψd(x) =
∏
α∈Sd

(x− α), (8)

where
Sd = {−k + 1,−k + 2, . . . , k − 2, k − 1} (9)

if d = 2k − 1 with k ∈ N, and

Sd = {−k + 1, . . . , k − 1, k} (10)

if d = 2k with k ∈ N. Then, by (8), (9) and (10), we have

ψ1(x) = x, ψ2(x) = x(x− 1), ψ3(x) = x(x− 1)(x+ 1),

etc. Note that deg fd = d for each d ∈ N and

min
α∈Z\Sd

|α| = ⌊(d+ 1)/2⌋. (11)

With this notation, the polynomial

P (x1, . . . , xn) = ψd(x1) + · · ·+ ψd(xn) ∈ Z[x1, . . . , xn] (12)

of degree d satisfies P (v1, . . . , vn) = 0 if v1, . . . , vn ∈ Sd. Consequently, P (v1, . . . , vn)
̸= 0 for some (v1, . . . , vn) ∈ Zn only if at least one vi, i = 1, . . . , n, does not belong
to the set Sd. This yields

max
1≤i≤n

|vi| ≥ ⌊(d+ 1)/2⌋

by (11). Thus, bound (1) is tight.
To show that bound (3) is best possible for d ≥ n we consider the polynomial

P (x1, . . . , xn) = x1 · · ·xn−1ψd−n+1(xn) ∈ Z[x1, . . . , xn]

of degree d. Notice that P (u1, . . . , un) = 0 for (u1, . . . , un) ∈ Zn if ui = 0 for at
least one i = 1, . . . , n − 1 or if un ∈ Sd−n+1. It follows that P (u1, . . . , un) ̸= 0 for
(u1, . . . , un) ∈ Zn only if |ui| ≥ 1 for i = 1, . . . , n− 1 and also |un| ≥ ⌊(d−n+2)/2⌋
by (11). Then,

n∑
i=1

|ui| ≥ n− 1 + ⌊(d− n+ 2)/2⌋ = n+ ⌊(d− n)/2⌋ = ⌊(d+ n)/2⌋,

which shows that bound (3) is sharp.
Similarly, in the case d < n, we can select, for instance,

P (x1, . . . , xn) = x1 . . . xd−1(xd + · · ·+ xn) ∈ Z[x1, . . . , xn].

Then, P (u1, . . . , un) ̸= 0 for some (u1, . . . , un) ∈ Zn only if ui ̸= 0 for each i =
1, . . . , d − 1 and ui ̸= 0 for at least one i in the range d ≤ i ≤ n. Thus, at least d
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integers ui (1 ≤ i ≤ n) are nonzero, and so
∑n

i=1 |ui| ≥ d. This example shows that
bound (4) is sharp for any pair of positive integers satisfying d < n.

Next, to show that bound (6) is sharp we first observe that for the polynomial
P defined in (12) and any vector (u1, . . . , un) ∈ Zn satisfying P (u1, . . . , un) ̸= 0 we
must have

n∑
i=1

|ui|p ≥ max
1≤j≤n

|uj |p ≥ ⌊(d+ 1)/2⌋p.

Likewise, for the polynomial

P (x1, . . . , xn) = (x1 + · · ·+ xn−1)ψd−1(xn) ∈ Z[x1, . . . , xn],

where d, n ≥ 2, and for (u1, . . . , un) ∈ Zn such that P (u1, . . . , un) ̸= 0 at least one
ui, where i = 1, . . . , n− 1, must be nonzero, and |un| ≥ ⌊d/2⌋ by (11). This implies

n∑
i=1

|ui|p ≥ 1 + ⌊d/2⌋p,

and hence bound (6) is tight for every pair (d, n) ∈ N2, where n ≥ 2. For n = 1,
bound |u1|p ≤ ⌊(d+ 1)/2⌋p is tight for d odd by (3), whereas the right-hand side of
(6) is 1 + (d/2)p for d even.

Finally, to show that condition (5) cannot be relaxed we consider

P (x1, . . . , xn) = x1x2x3(x4 + · · ·+ xn) ∈ Z[x1, . . . , xn],

where n ≥ 4. This polynomial P is of degree d = 4. For the smallest Lp-norm of the
integer vector (u1, . . . , un) ∈ Zn satisfying P (u1, . . . , un) ̸= 0 we have

∑n
i=1 |ui|p = 4,

since u1, u2, u3 ̸= 0 and ui ̸= 0 for at least one i ∈ {4, . . . , n}. Therefore, by (6)
with d = 4, it follows that 4 ≤ 1 + 2p. This is equivalent to p ≥ log 3/ log 2, and so
condition (5) cannot be relaxed.

3. Proofs

We begin with two simple lemmas.

Lemma 1. Let P ∈ C[x1, . . . , xn] be a polynomial of degree d and let S be the set
of all α ∈ C for which P (x1, . . . , xn−1, α) is zero identically. Then, s = |S| ≤ d and

P (x1, . . . , xn) = Q(x1, . . . , xn)
∏
α∈S

(xn − α) (13)

for some Q ∈ C[x1, . . . , xn] of degree d− s.

Here, for s = 0, which happens if S is empty, we have P = Q and the last product
in (13) is omitted. Also, in principle, Q can be divisible by xn − α for some α ∈ S.

Proof. Observe that for any α ∈ C the polynomial P (x1, . . . , xn−1, α) is either not
zero identically or, if it is zero identically, P can be written in the form

P (x1, . . . , xn) = (xn − α)Q(x1, . . . , xn) (14)
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for some Q ∈ C[x1, . . . , xn] of degree d − 1. Indeed, if P (x1, . . . , xn−1, α) is zero
identically, then

P (x1, . . . , xn−1, xn) = P (x1, . . . , xn−1, xn)− P (x1, . . . , xn−1, α)

is divisible by xn − α, which implies (14). Now, (14) implies (13) by the definition
of S, and the inequality |S| ≤ d holds by degree consideration.

Lemma 2. Let a, b ≥ 1 be real numbers. Then, for any real number p ≥ 1 we have

⌊a⌋p + ⌊b⌋p ≤ 1 + ⌊a+ b− 1⌋p. (15)

Furthermore, for any real a, b ≥ 1 and

p ≥ log 3

log 2

we have
ap + bp + 1 ≤ (a+ b)p. (16)

Proof. Set u = ⌊a⌋ and v = ⌊b⌋. Then, the left-hand side of (15) is up+vp, whereas
its right-hand side is greater than or equal to 1 + (u + v − 1)p. The inequality
up + vp ≤ 1 + (u + v − 1)p is the equality for p = 1. Assume that p > 1. Fix
t = u + v ≥ 2. Without loss of generality, we can assume that 1 ≤ u ≤ t/2. Then,
the function

g(u) = (t− 1)p + 1− up − (t− u)p

is increasing in u in the interval u ∈ [1, t/2] (which can be a singleton), so g(u) ≥
g(1) = 0 for each u ∈ [1, t/2]. This proves (15).

For the proof of (16) we fix t = a + b ≥ 2. Without loss of generality, we can
assume that 1 ≤ a ≤ t/2. For any p > 1 the function

h(a) = tp − 1− ap − (t− a)p

is increasing in a in the interval a ∈ [1, t/2], so

h(a) ≥ h(1) = tp − (t− 1)p − 2

for a ∈ [1, t/2] (the interval can be a singleton). Thus, in order to complete the
proof of (16) is remains to verify the inequality

tp − (t− 1)p − 2 ≥ 0

for t ≥ 2 and p ≥ log 3/ log 2.
It is clear that for each fixed p > 1 the function tp − (t − 1)p − 2 is increasing

in t ∈ [2,∞), since its derivative in t is positive. Consequently, for t ≥ 2 and
p ≥ log 3/ log 2 we obtain

tp − (t− 1)p − 2 ≥ 2p − (2− 1)p − 2 = 2p − 3 ≥ 0,

which is the desired conclusion.



232 A.Dubickas

Proof of Theorem 1. The result is clear for n = 1. Let P (x1, . . . , xn) be a polyno-
mial of degree d in n ≥ 2 variables. Suppose the assertion of the theorem is true for
polynomials in at most n − 1 variables. Write P as in (13). By |Vn| ≥ d + 1,
there exists vn ∈ Vn such that P (x1, . . . , xn−1, vn) is not zero identically. As
P (x1, . . . , xn−1, vn) is a polynomial of degree at most d in at most n − 1 variables,
by the induction hypothesis, for each i = 1, . . . , n − 1 there are vi ∈ Vi such that
P (v1, . . . , vn−1, vn) ̸= 0. (If P (x1, . . . , xn−1, vn) does not depend on the variable xi,
we can assign an arbitrary value of Vi to the corresponding vi.)

Proof of Theorem 2. We will prove the inequality

n∑
i=1

|ui| ≤ min{d, ⌊(d+ n)/2⌋}, (17)

which is a combination of (3) and (4), by induction on n. The result is clear for
n = 1, since the set Sd defined in (2) has 2⌊(d+1)/2⌋+1 ≥ d+1 elements, and so the
polynomial P (x1) of degree d does not vanish for some x1 = u1 ∈ Sd. Furthermore,
by the choice of Sd, we have

|u1| ≤ ⌊(d+ 1)/2⌋ = min{d, ⌊(d+ 1)/2⌋}.

Let P (x1, . . . , xn) be a polynomial of degree d in n ≥ 2 variables. Let S be the set
as in Lemma 1, i. e. the set of α ∈ C for which P (x1, . . . , xn−1, α) is zero identically
when α ∈ S. Finally, let β be the integer with the smallest absolute value that is
not in S. (If there are two such integers, then β is any of those two.) Then, it is
clear that

|β| ≤ ⌊(s+ 1)/2⌋, (18)

where s is an integer in the range 0 ≤ s ≤ |S|. Note that (18) holds with β = 0 if
0 /∈ S.

By the choice of β, the polynomial P (x1, . . . , xn−1, β) is not zero identically.
Thus, inserting xn = β into (13) we see that Q(x1, . . . , xn−1, β) is a nonzero poly-
nomial of degree d0 ≤ d − |S| ≤ d − s in n0 ≤ n − 1 variables. By the induction
hypothesis, we can choose (u1, . . . , un−1) ∈ Zn−1 (where ui = 0 if Q(x1, . . . , xn−1, β)
does not depend on the variable xi) so that Q(u1, . . . , un−1, β) ̸= 0 and

n−1∑
i=1

|ui| ≤ min{d0, ⌊(d0 + n0)/2⌋} ≤ min{d− s, ⌊(d− s+ n− 1)/2⌋}. (19)

(Here, it is possible that d0 = d−s = 0, but (17) also holds for d = 0 if a zero degree
polynomial is a nonzero constant.)

Note that P (u1, . . . , un, β) ̸= 0 by (13) and (u1, . . . , un−1, β) ∈ Zn by the choice
of β. Now, combining (19) with (18) we deduce that

n−1∑
i=1

|ui|+ β ≤ min{d− s, ⌊(d− s+ n− 1)/2⌋}+ ⌊(s+ 1)/2⌋

≤ min{d, ⌊(d+ n)/2⌋},
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because d− s+ ⌊(s+ 1)/2⌋ ≤ d for each s ≥ 0 and

⌊(d− s+ n− 1)/2⌋+ ⌊(s+ 1)/2⌋ ≤ ⌊(d+ n)/2⌋.

This completes the proof of (17) for the vector

(u1, . . . , un−1, un) = (u1, . . . , un−1, β) ∈ Zn,

since P (u1, . . . , un) ̸= 0.

Proof of Theorem 3. Observe that the result holds for n = 1 by (1). Let P (x1, . . . ,
xn) be a polynomial of degree d in n ≥ 2 variables. If P is not divisible by xn, we
can select un = 0. Then, P (x1, . . . , xn−1, 0) is a polynomial of degree d in at most
n − 1 variable, which is not zero identically. Then, the required inequality follows
by induction on n.

Now, again let S be the set as in Lemma 1, i. e. the set of α ∈ C for which
P (x1, . . . , xn−1, α) is zero identically when α ∈ S, and let β be the integer with the
smallest absolute value that is not in S. Then, as β ̸= 0 by 0 ∈ S, we must have

1 ≤ |β| ≤ ⌊(s+ 1)/2⌋,

where 1 ≤ s ≤ |S|. Moreover, in view of n ≥ 2, we must have |S| < d, so that
1 ≤ s ≤ d− 1.

By the choice of β, the polynomial P (x1, . . . , xn−1, β) is not zero identically.
Thus, inserting xn = β into (13) we find that Q(x1, . . . , xn−1, β) is a nonzero poly-
nomial of degree d0 ≤ d − |S| ≤ d − s in n0 ≤ n − 1 variables. By the induction
hypothesis, we can choose (u1, . . . , un−1) ∈ Zn−1 (where ui = 0 if Q(x1, . . . , xn−1, β)
does not depend on the variable xi) so that Q(u1, . . . , un−1, β) ̸= 0 and

n−1∑
i=1

|ui|p ≤ max{1 + ⌊(d− s)/2⌋p, ⌊(d− s+ 1)/2⌋p}.

So, in order to complete the proof of (6) it remains to verify that for each integer s
in the range 1 ≤ s ≤ d− 1 the sum

⌊(s+ 1)/2⌋p +max{1 + ⌊(d− s)/2⌋p, ⌊(d− s+ 1)/2⌋p}

does not exceed
max{1 + ⌊d/2⌋p, ⌊(d+ 1)/2⌋p}.

Firstly, we note that by (15) with a = (s+ 1)/2 and b = (d− s+ 1)/2, we have

⌊(s+ 1)/2⌋p + ⌊(d− s+ 1)/2⌋p ≤ 1 + ⌊d/2⌋p.

What is left is to show that

⌊(s+ 1)/2⌋p + ⌊(d− s)/2⌋p + 1 ≤ max{1 + ⌊d/2⌋p, ⌊(d+ 1)/2⌋p}. (20)

Suppose first that d is even. Then, the left-hand side of inequality (20) is either(s+ 1

2

)p

+
(d− s− 1

2

)p

+ 1
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(if s is odd), or (s
2

)p

+
(d− s

2

)p

+ 1

(if s is even), whereas the right-hand side of (20) is 1 + (d/2)n. Hence, inequality
(20) holds by (7) with a = (s+1)/2, b = (d−s−1)/2 or with a = s/2, b = (d−s)/2.

We reduce to proving (20) for d odd. Then, the right-hand side of (20) is equal
to ((d + 1)/2)p. Recall that 1 ≤ s ≤ d − 1. Now, in the case when d − s ≥ 2, we
obtain

⌊(s+ 1)/2⌋p + ⌊(d− s)/2⌋p + 1 ≤
(s+ 1

2

)p

+
(d− s

2

)p

+ 1 ≤
(d+ 1

2

)p

by (16) with a = (s+1)/2 and b = (d− s)/2. (We remark that this is the only place
where we use condition (5) on p.)

Likewise, in the case when d− s = 1, we derive that

⌊(s+ 1)/2⌋p + ⌊(d− s)/2⌋p + 1 =
(s
2

)p

+ 1 =
(d− 1

2

)p

+ 1 ≤
(d+ 1

2

)p

by (7) with a = (d− 1)/2, b = 1. This completes the proof of (20) and finishes the
proof of Theorem 3.
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