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Abstract. We define a notion of smooth cohomology for C∗-algebras which admit a faith-
ful trace. We show that if A ⊆ B(H) is a C∗-algebra with a faithful normal trace τ on the
ultra-weak closure Ā of A, and X is a normal dual operatorial Ā-bimodule, then the first
smooth cohomology H1

s(A, X) of A is equal to H1(A, Xτ ), where Xτ is a closed submodule
of X consisting of smooth elements.
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1. Introduction

Hochschild cohomology is an important invariant for Banach and operator algebras.
A study of cohomology in the algebraic setting was initiated by Hochschild (1945-
47) [14, 15, 16]. After Kaplansky (1953), we know that various questions about
the properties of derivations on C∗-algebras and von Neumann algebras could be
translated into certain cohomology groups equal to each other (or to zero). George
Elliott used this along with K-theory groups in the classification of separable AF
C∗-algebras [11]. Also, Alain Connes and Uffe Haagerup characterized injectivity
and hyperfiniteness of von Neumann algebras by the vanishing of its cohomology
group over all dual normal modules [7, 8, 9, 13]. Another example is the proof of
equivalence of amenability and nuclearity for C∗-algebras by Alain Connes (1978)
(amenable ⇒ nuclear) and Uffe Haagerup (1983) (nuclear ⇒ amenable).

The study of Hochschild cohomology theory for von Neumann algebras was ini-
tiated in the early 1970s in the pioneering work of Johnson, Kadison, and Ringrose
[19, 20, 17]. Since then, the theory has seen significant progress and, while nowhere
near completion, it is reasonable to say that it has reached maturity. In the case of a
von Neumann algebraM, sinceM is the dual ofM∗, the wealth of topological and
measure theoretical properties of M has led, from the beginning, to the additional
assumption that cocycles and coboundaries are normal (i.e. separately ultraweakly
continuous in each variable). This, in turn, required that cohomology has coeffi-
cients in a dual M-module X. The cohomology groups under these circumstances
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are denoted by Hnw(M, X), and it was proved that Hnw(M, X) = Hn(M, X), for all
von Neumann algebrasM and all dualM-modules X [17]. The most relevant cases
turned out to be X =M and X = B(H), where in the latter case, M is faithfully
represented on H, and so B(H) is canonically an M-bimodule and the cohomology
groups Hn(M, B(H)) are defined. The Johnson-Kadison-Ringrose conjecture (see
[19, 20, 17]), stating that Hn(M,M) = 0 for n > 0, has been verified for large
classes of von Neumann algebras. We mention here the types I [19], II∞ and III
[4], as well as several classes of type II1 factors, such as those with property Γ [5]
and those with Cartan subalgebras [22, 5, 26]. With the exception of the Cartan
case, Hn(M, B(H)) = 0 is also known for the same classes in the corresponding
papers just cited. Historically, the vanishing of the first cohomology for X = M
was the first to be settled [18, 24], and now it has fairly short proofs. By contrast,
for X = B(H), this is still open and, as proved by Kirchberg [21], it is equivalent to
Kadison’s similarity problem, asking if every bounded representation of a C∗-algebra
is similar to a ∗-representation.

Following R. V. Kadison [18], S. Sakai (1966) showed that every derivation δ :
M→M on a von Neumann algebraM is inner, which is equivalent to the vanishing
of the first continuous cohomology group H1(M,M) [24]. B. E. Johnson, R.V.
Kadison and J. R. Ringrose (1972) showed that if M is hyperfinite and X is an
arbitrary dual normal M-bimodule, then Hn(M, X) = 0 for all n > 0 [17]. Later,
E. Christensen, E. G. Effros and A. M. Sinclair (1987) used the notion of complete
bounded maps and applied operator space techniques to cohomology of operator
algebras. This method worked perfectly for von Neumann algebras of types I, II∞
and III. Type I can be handled by hyperfiniteness results, while types II∞ and III are
stable under tensoring with B(H), which is enough to obtain complete boundedness
of cocycles. However, not all type II1 factors have this property. Some partial results
for II1 algebras were obtained by F. Pop and R. R. Smith (1994) [22]. For example,
ifM is a separably acting type II1 von Neumann algebra with a Cartan subalgebra,
then Hn(M,M) = 0 for all n > 0. The case of a II1 factor was studied by S. Popa
and S. Vaes (2014) (for the continuous L2-cohomology) [23], and A. Galatan and
Popa (2017) (for factors with some additional conditions) [12].

In the latter paper, the authors related the so-called smooth cohomology of a
von Neumann algebra with coefficients in a Banach module X and the ordinary
cohomology with coefficients in the smooth part of X (which is a closed submodule
of X), and showed that for factors, each derivation with values in the smooth part is
inner. The main objective of this paper is to handle the same correspondence for C∗-
algebras. Following [12], we define a notion of smooth cohomology for a C∗-algebraA
with a faithful trace. The main result of the paper asserts that smooth cohomology
of A with coefficients in X and Hochschild cohomology of A with coefficients in
the smooth part of X are the same. In order to do this, we show that the smooth
weak continuous cocycles on A can be extended to its ultra-weak closure Ā, without
changing the cohomology groups. The precise statement is as follows:

Theorem 1. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on the
ultra-weak closure Ā of A, and let X be a normal dual Ā-bimodule. Then, for every
n ∈ N we have

Hnsw(A, X) = Hnsw(Ā, X).
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The key point here is that every smooth map on A can be extended to Ā. This
will be checked in Lemma 2. Then, using Proposition 1 and Lemma 3, we show that
smooth normal cohomology of A coincides with smooth cohomology of A:

Theorem 2. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on Ā and
let X be a normal dual Ā-bimodule. Then, for every n ∈ N we have

Hnsw(A, X) = Hns (A, X).

This is done by the averaging techniques described in [12, Section 3]. This
technique, effectively used here, amounts to an integration over the compact unitary
group of a finite dimensional C∗-algebra. Taking suitable weak limits of an increasing
sequence of finite dimensional algebras, the averaging in all levels leads to certain
averages over infinite dimensional algebras. This method is described in an abstract
setting by Johnson, Kadison and Ringrose in [17].

Combining Theorem 1 with Theorem 2, we deduce the following equality (Corol-
lary 1):

Hns (A, X) = Hnsw(Ā, X).

In the case when X is a normal dual operatorial Ā-bimodule (in the sense of
[12]), we get the main result of the paper:

Theorem 3. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace τ on Ā
and the ultra-weak closure of A, and let X be a normal dual operatorial Ā-bimodule.
Then, H1

s(A, X) = H1(A, Xτ ).

An example of a normal dual operatorial Ā-bimodule is B(H), the space of all
bounded linear operators on a Hilbert space H on which A is represented. The
smooth part of this module is a hereditary C∗-subalgebra of B(H) that contains
the space of compact operators K(H) and a large variety of non-compact smooth
elements in general [12].

2. Preliminaries

Throughout the paper, A1 denotes the closed unit ball of a C∗-algebra A. Also, the
weak, strong and ultra-weak operator topology on B(H) are denoted by WOT, SOT
and UWOT, respectively. .

Let A be a unital C∗-algebra. A positive linear functional τ on A is called tracial
(or a finite trace) if τ(ab) = τ(ba) for all a, b ∈ A. A trace on A is called faithful
if a = 0, whenever τ(a∗a) = 0 for every a ∈ A. Each faithful trace on A induces a
norm ‖.‖τ on A defined by ‖a‖2τ = τ(a∗a), (a ∈ A).

Let A be a C∗-algebra with a faithful trace τ , and let B be a Banach space.
An linear map T : A → B is called smooth if it is continuous relative to the ‖.‖τ -
topology on A1 and the norm topology on B. A multi-linear map is smooth if it is
smooth, separately in each argument.

Let X be a Banach A-bimodule. An element x ∈ X is called smooth if the
module maps A → X; a 7→ a · x and a 7→ x · a are smooth. We denoted by Xτ the
closed submodule of all smooth elements in X. If B is a C∗-subalgebra of A, then
we have XAτ ⊆ XBτ [12].
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The Banach A-bimodule X is said to be dual if it is the dual of a Banach space
and for each a ∈ A, the maps X → X;x 7→ a·x and x 7→ x·a are weak* continuous. If
in addition, A admits a weak* topology (for example, whenever A is a von Neumann
algebra), and for every x ∈ X the maps A → X; a 7→ a · x and a 7→ x · a are weak*
continuous, then X is said to be normal.

We put BL0(A, X) = X, and for each n ∈ N, we denote by BLn(A, X) the space
of all bounded n-linear maps from An into X. The subscripts ”s” and ”sw” mean
that the maps are smooth and separately UWOT-continuous, respectively. Let B
be a subalgebra of A. An element T of BLn(A, X) is called B-modular if for each
a1, . . . , an ∈ A and b ∈ B we have

b · T (a1, . . . , an) = T (ba1, . . . , an),

T (a1, . . . , ajb, aj+1, . . . , an) = T (a1, . . . , aj , baj+1, . . . , an),

T (a1, . . . , anb) = T (ba1, . . . , an)b.

The space of all B-modular maps is denoted by BLn(A, X : B).
For each n > 0, the coboundary operators

δn : BLn(A, X)→ BLn+1(A, X)

are defined by

(δnT )(a1, . . . , an+1) := a1 · T (a2, . . . , an+1)

+

n∑
k=1

(−1)kT (a1, . . . , akak+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an) · an+1, (a1, . . . , an+1 ∈ A),

and δ0 : X → BL(A, X) is defined by δ0(x)(a) = a · x− x · a. We have the cochain
complex

{0} → X
δ0−→ BL(A, X)

δ1−→ · · · δn−1

−−−→ BLn(A, X)
δn−→ BLn+1(A, X)

δn+1

−−−→ · · ·

called the Hochschild cochain complex.
Letting Zn(A, X) = ker δn and Bn(A, X) = ran δn, we have the quotient linear

space

Hn(A, X) := Zn(A, X)/Bn(A, X), H0(A, X) = {x ∈ X : a · x = x · a(a ∈ A)}

called the n-th Hochschild cohomology of A with coefficients in X.
Following [12] and [25], we may use the subscripts ”s” and ”sw” in BLns (A, X)

and BLnsw(A, X)). For example, Z1
s (A, X) is the space of smooth derivations on

A to X and B1s(A, X) is the space of inner derivations that is implemented by a
smooth element of X.

3. Smooth cohomology

In this section, we explore the relation between H1
s(A, X) and H1(A, Xτ ). Let

A ⊆ B(H) be a C∗-algebra with a faithful normal trace on A′′. By [2, Theorem
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1.2.4], on a bounded ball of A, the WOT, SOT and UWOT agree. Also, the ‖.‖τ -
topology agrees with SOT (and also with UWOT) on any bounded subset of A by
[3, III. 2.2.17]. In particular, a bounded net (ai) ⊆ A converges to zero strongly if
and only if ‖ai‖τ → 0. We use these facts several times. The results of this section
adapt ideas and techniques from [12].

Lemma 1. Let A and B be two C∗-subalgebras of B(H) and let τ be a faithful normal
trace on the von Neumann algebra generated by A and B. Let ϕ : A × B → C
be a bounded bilinear smooth form, which is separately UWOT-continuous. Then
ϕ extends uniquely to a separately UWOT-continuous, smooth bilinear form ϕ̄ :
Ā × B → C, where Ā is the UWOT-closure of A.

Proof. For a fixed b ∈ B, the bounded linear functional ϕb(a) := ϕ(a, b) is smooth
and UWOT-continuous, so it extends to a UWOT-continuous linear functional ϕ̃b :
Ā → C. The Kaplansky density theorem implies that ‖ϕ̃b‖ = ‖ϕb‖. Hence, the
map ϕ̃ : B → (Ā)∗; b 7→ ϕ̃b is linear and bounded with ‖ϕ̃‖ ≤ ‖ϕ‖. Since ϕ is
UWOT-continuous in the second argument, ϕ̃ is continuous in UWOT on B and in
σ((Ā)∗,A) on (Ā)∗. By [27, Theorem 5.4] or [1, Corollary II.9], ϕ̃(B1) is relatively
σ((Ā)∗, Ā)-compact in (Ā)∗, hence σ((Ā)∗, Ā) coincides with the coarser topology
σ((Ā)∗,A). Combining this with the continuity of ϕ̃ yields that ϕ̃ is continuous on B1
in UWOT into (Ā)∗ in σ((Ā)∗, Ā). Thus, for each fixed a ∈ Ā, the linear functional
b 7→ ϕ̃b(a) is UWOT-continuous on B1 and hence on B. Now the bounded bilinear
form ϕ̄ : Ā × B → C defined by ϕ̄(a, b) = ϕ̃b(a) is separately UWOT-continuous. It
remains to show that ϕ̄ is smooth. The ‖.‖τ -continuity of ϕ̄ on B1 follows from the
continuity of ϕ. For the first argument of ϕ̄, it is enough to show that ϕ̃b : Ā → C
is smooth. Since ϕ̃b is UWOT-continuous on (Ā)1, it is also ‖.‖τ -continuous.

Lemma 2. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on A′′ and let
X be a dual module with predual X∗. If ϕ : A×A×· · ·×A → X is a bounded n-linear
smooth map which is separately UWOT-weak*-continuous, then it extends uniquely
(without changing a norm) to a separately UWOT-continuous, smooth n-linear map
ϕ̄ : Ā × Ā × · · · × Ā → X.

Proof. We give the proof in two cases:
Case 1. Let X = C. We will construct a finite sequence ϕ = ϕ0, ϕ1, . . . , ϕn of

bounded n-linear functionals with the following properties:

(i) ϕk : Ā × Ā × · · · × Ā︸ ︷︷ ︸
k−times

×A× · · · × A → C,

(ii) ϕk extends ϕk−1 without changing a norm,

(iii) ϕk is separately UWOT-continuous,

(iv) ϕk is a smooth map.

This proves the existence of ϕ̄ = ϕn. The uniqueness of ϕ̄ follows from the fact that
ϕ is separately UWOT-continuous and A is UWOT-dense in Ā.
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For 1 ≤ k ≤ n, suppose that ϕ0, ϕ1, . . . , ϕk−1 have been constructed. For j 6= k,
let aj ∈ A be fixed. The linear functional

fk : A → C; a 7→ ϕk−1(a1, . . . , ak−1, a, ak+1, . . . , an)

is UWOT-continuous (and so ‖.‖τ -continuous on A1) and

‖fk‖ ≤ max{‖ϕk−1‖, ‖a1‖, . . . , ‖ak−1‖, ‖ak+1‖, . . . , ‖an‖}.

By the Kaplansky density theorem, fk extends without changing a norm to a UWOT-
continuous, smooth functional f̄k on Ā.

Now we define ϕk(a1, . . . , ak, . . . , an) = f̄k(ak). Clearly, ϕk is a bounded n-linear
form on Ā × Ā × · · · × Ā︸ ︷︷ ︸

k−times

×A× · · · ×A that extends ϕk−1 without changing a norm

and it is UWOT-continuous and smooth in its first kth argument. We will show
that ϕk is UWOT-continuous and smooth in its other arguments for ak ∈ Ā \ A.
Let 1 ≤ j ≤ n with j 6= k and fix ai for all i 6= j, k with ai ∈ Ā for i < k or ai ∈ A
for i > k. Let B = Ā if j < k and B = A if j > k. Let ψ : A × B → C be the
bounded bilinear form defined by ψ(ak, aj) = ϕk−1(a1, . . . , an) = ϕk(a1, . . . , an). By
assuming ϕk−1, ψ is a separately UWOT-continuous, smooth form so, by Lemma
1 it extends uniquely to a bounded bilinear smooth form ψ̄ : Ā × B → C, which is
separately UWOT-continuous. Since both ψ̄(ak, aj) and ϕk(a1, . . . , an) are UWOT-
continuous in the variable ak ∈ Ā and they agree on A, it follows that ψ̄(ak, aj) =
ϕk(a1, . . . , an) on Ā × B. This shows that for each ak ∈ Ā, the map ϕk is UWOT-
continuous and smooth in aj ∈ B, because ψ̄ has these properties.

Case 2. Let X be arbitrary. For each ξ ∈ X∗, the bounded n-linear form

ρξ : A×A× · · · × A → C; (a1, . . . , an) 7→ 〈ϕ(a1, . . . , an), ξ〉

is smooth and separately UWOT-continuous. Thus, by case 1, it extends uniquely
(without changing a norm) to a separately UWOT-continuous, smooth n-linear form
ρ̄ξ on Ā× Ā× · · · × Ā. Hence, for every a1, . . . , an ∈ Ā, the map ξ 7→ ρ̄ξ(a1, . . . , an)
is a bounded linear functional on X∗ and so it belongs to X = (X∗)

∗. This defines
a map ϕ̄ satisfying ‖ϕ̄‖ = ‖ϕ‖.
The smoothness and UWOT-continuity of ϕ̄ follow from the smoothness and UWOT-
continuity of ρ̄ξ.

Proof of Theorem 1. It is immediate by Lemma 2, because the restriction map
Hnsw(Ā, X)→ Hnsw(A, X) is an isomorphism.

Remark 1. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on the
UWOT-closure Ā of A, and let X be a normal dual Ā-bimodule. If π is the universal
representation of A, then it is well known [10] that there is a projection p in the
center of the UWOT-closure π(A) of π(A) and an isomorphism θ : pπ(A)→ Ā such
that

θ(pπ(a)) = a and θ(pb) = π−1(b) (a ∈ A, b ∈ π(A)). (1)
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By [3, III. 2.2.12], θ is a homeomorphism in UWOT. Therefore, X may be regarded
as a normal dual π(A)-bimodule with the following actions inherited from the actions
of Ā on X,

b · x := θ(pb) · x and x · b := x · θ(pb) (x ∈ X, b ∈ π(A)). (2)

In this case, every faithful normal trace τ on Ā induces a faithful normal trace τ ′

on π(A) defined by τ ′(π(a)) = τθ(pπ(a)), a ∈ A, such that for each net (ai) ⊆ A1,
‖ai‖τ → 0 if and only if ‖π(ai)‖τ ′ → 0.

Proposition 1. With the assumptions of Remark 1, there are bounded linear maps

Tn : BLns (A, X)→ BLnsw(π(A), X),

Sn : BLnsw(π(A), X)→ BLnsw(Ā, X),

Wn : BLnsw(π(A), X)→ BLns (A, X),

such that

(i) δnswTn = Tn+1δ
n
s and δnswSn = Sn+1δ

n
sw such that the following internal dia-

grams are commutative:

BLns (A, X) BLn+1
s (A, X)

BLnsw(π(A), X) BLn+1
sw (π(A), X)

BLnsw(Ā, X) BLn+1
sw (Ā, X).

δns

Tn

δnsw

Tn+1

Sn

δnsw

Sn+1

(ii) If B is a C∗-subalgebra of A, then Tn maps B-modular maps to π(B)-modular
maps and Sn and Wn map π(B)-modular maps to maps.

(iii) The map SnTn is a projection from BLns (A, X) onto BLnsw(A, X).

(iv) If C is the C∗-algebra generated by 1 and p, the minimal projection in π(B)
with π(B) · p = Ā discussed in Remark 1, and if ψ ∈ BLnsw(π(A), X : C), then

Wnψ = Snψ ∈ BLnsw(Ā, X).

(v) WnTn is the identity map on BLns (A, X).

Proof. For the projection p as in Remark 1, we have p · x = x · p = x, for every
x ∈ X. Also, for each b1, . . . , bn ∈ π(A) and ϕ ∈ BLns (A, X) the equality

ϕ1(b1, . . . , bn) = ϕ(θ(b1), . . . , θ(bn)) (3)
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defines an element ϕ1 ∈ BLns (π(A), X). The map ϕ1 is smooth because on bounded
sets UWOT agrees with ‖.‖τ -topology and θ is a UWOT-continuous homeomor-
phism. Since π is the universal representation of A, by [27, Theorem 2.4], each
continuous linear functional on π(A) is UWOT-continuous. Hence, ϕ1 is separately
UWOT-weak*-continuous, that is, ϕ1 ∈ BLnsw(π(A), X). Therefore by Lemma 2,
ϕ1 extends uniquely to some ϕ̃1 ∈ BLnsw(π(A), X) without changing a norm. By
Remark 1, the map ϕ̃1 is smooth. Now we define

Tn : BLns (A, X)→ BLnsw(π(A), X)

by Tnϕ = ϕ̃1. It is easy to see that Tn is an isometry. If ϕ ∈ BLns (A, X) and
b1, . . . , bn+1 ∈ π(A), then the definition of Tn combined with the equations (2) and
(3) yields

δnswTnϕ(b1, . . . , bn+1) =θ(pb1) · ϕ(θ(pb2), . . . , θ(pbn+1))

+

n∑
j=1

(−1)jϕ(. . . , θ(pbj)θ(pbj+1), . . .)

+ (−1)n+1ϕ(θ(pb1), . . . , θ(pbn)) · θ(pbn+1)

=θ(pb1) · ϕ(θ(pb2), . . . , θ(pbn+1))

+

n∑
j=1

(−1)jϕ(. . . , θ(pbjbj+1), . . .)

+ (−1)n+1ϕ(θ(pb1), . . . , θ(pbn)) · θ(pbn+1)

=Tn+1δ
n
s ϕ(b1, . . . , bn+1).

We use the fact that p is a central projection. Both maps δnswTnϕ and Tn+1δ
n
s ϕ are

separately UWOT-weak*-continuous, hence

δnswTnϕ(b1, . . . , bn+1) = Tn+1δ
n
s ϕ(b1, . . . , bn+1),

for every b1, . . . , bn+1 ∈ π(A). Thus δnswTn = Tn+1δ
n
s .

If B is a C∗-subalgebra of A and ϕ ∈ BLns (A, X : B), then it follows from the
equalities p · x = x · p = x. For all x ∈ X, that Tnϕ ∈ BLnsw(π(A), X : π(B)): for
instance, if a1, . . . , an ∈ A with bj = π(aj) and b ∈ B, then

Tnϕ(b1, . . . , bjπ(b), bj+1, . . . , bn) =ϕ(θ(pb1), . . . , θ(pbjπ(b)), . . . , θ(pbn))

=ϕ(θ(pb1), . . . , ajb, aj+1, . . . , θ(pbn))

=ϕ(θ(pb1), . . . , aj , baj+1, . . . , θ(pbn))

=ϕ(θ(pb1), . . . , θ(pbj), θ(pπ(b)bj+1), . . . , θ(pbn))

=Tnϕ(b1, . . . , bj , π(b)bj+1, . . . , bn).

By the UWOT-weak*-continuity of the maps involved, the above calculation holds
for each bj ∈ π(A). The calculation of other cases is similar.

Next we define the map Sn. For every ψ ∈ BLnsw(π(A), X), define

Sn(ψ)(a1, . . . , an) = ψ(θ−1(a1), . . . , θ−1(an)) (ai ∈ Ā).
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Since ψ and θ−1 are UWOT-continuous, Snψ is normal and Remark 1 implies that it
is a smooth map. Hence, Sn maps BLnsw(π(A), X) into BLnsw(Ā, X) and ‖Sn‖ ≤ 1.
By (1), θ(pθ−1(a)) = a, θ−1(a) · x = θ(pθ−1(a)) · x = a · x and x · θ−1(a) = x · a for
all a ∈ A and x ∈ X. Hence,

Sn+1δ
n
swψ(a1, . . . , an+1) =δnswψ(θ−1(a1), . . . , θ−1(an+1))

=a1 · ψ(θ−1(a2), . . . , θ−1(an+1))

+

n∑
j=1

(−1)jψ(θ−1(a1), . . . , θ−1(ajaj+1), . . . , θ−1(an+1))

+ (−1)n+1ψ(θ−1(a1), . . . , θ−1(an)) · an+1

=δnswSnψ(a1, . . . , an+1),

for every a1, . . . , an+1 ∈ A. By the normality of the maps involved, the equality
holds on Ā, that is, δnswSn = Sn+1δ

n
sw. Clearly, Snψ is a Ā-module map, whenever

ψ is a π(B)-module map.
The map Wn : BLnsw(π(A), X) → BLns (A, X), defined by Wnψ(a1, . . . , an) =

ψ(π(a1), . . . , π(an)) is a continuous linear map with ‖Wn‖ ≤ 1. Note that by Remark
1, the smoothness of ψ ∈ BLnsw(π(A), X) implies the smoothness of Wnψ.

If ϕ ∈ BLns (A, X), then by (1) and (3),

WnTnϕ(a1, . . . , an) = Tnϕ(π(a1), . . . , π(an))

= ϕ(θ(pπ(a1)), . . . , θ(pπ(an)))

= ϕ(a1, . . . , an),

which proves (v).
To prove (iv), let ψ ∈ BLnsw(π(A), X : C). Since p2 = p in the center of π(A)

and ψ is a C-module map, we have

Wnψ(a1, . . . , an) = ψ(π(a1), . . . , π(an))

= ψ(π(a1), . . . , π(an)) · p (since p · x = x · p = x)

= ψ(π(a1)p, . . . , π(an)p)

= ψ(θ−1(a1), . . . , θ−1(an)) (by (1), θ−1(ai) = π(ai)p)

= Snψ(a1, . . . , an),

as required. This finishes the proof.

Lemma 3. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on Ā,
and let X be a normal dual Ā-bimodule. Then there is a bounded linear map Jn :
BLns (A, X)→ BLn−1s (A, X) with the following properties;

(i) ‖Jn‖ ≤ ((n+ 2)n − 1)/(n+ 1),

(ii) if ϕ ∈ BLns (A, X) with δns ϕ = 0, then ϕ− δn−1s Jnϕ ∈ BLnsw(A, X),

(iii) if B is a C∗-subalgebra of A, then Jn maps BLns (A, X : B) into
BLn−1s (A, X : B).
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Proof. Let π be the universal representation of A and p the central projection
in π(A) as in Remark 1. The unitary subgroup consisting of the two elements
{1, 2p − 1} generates a two-dimensional C∗-subalgebra C in the center of π(A).
By the averaging techniques similar to [25, Lemma 3.2.4(a)], there is a continuous
linear map Kn : BLnsw(π(A), X)→ BLn−1sw (π(A), X) such that (I − δn−1sw Kn)ψ is a
C-module map, for each ψ ∈ BLnsw(π(A), X) with δnswψ = 0.

Let Tn,Wn be as in Proposition 1. Define

Jn : BLns (A, X)→ BLn−1s (A, X)

by Jn = Wn−1KnTn, then the following diagram is commutative:

BLns (A, X) BLnsw(π(A), X)

BLn−1s (A, X) BLn−1sw (π(A), X).

Tn

Jn

Wn−1

Kn

By [25, Lemma 3.2.4], ‖Jn‖ ≤ ((n+ 2)n−1)/(n+ 1), and by Proposition 1, Jn takes
B-module maps to B-module maps, and this proves (i) and (iii). Since WnTn is the
identity on BLns (A, X), the equation δn−1s Wn−1 = Wnδ

n−1
sw implies that

ϕ− δn−1s Jnϕ = ϕ− δn−1s Wn−1KnTnϕ = Wn(Tnϕ− δn−1sw KnTnϕ).

Now Proposition 1(i) implies that δnswTnϕ = Tn+1δ
n
s ϕ = 0. Hence, Tnϕ−δn−1sw KnTnϕ

is a C-module map. Proposition 1(iv) asserts that Wn takes C-module smooth maps
to smooth normal maps, so ϕ− δn−1s Jnϕ is a smooth normal map. This completes
the proof.

Proof of Theorem 2. Consider the natural embedding

Qn : BLnsw(A, X)→ BLns (A, X).

If ϕ ∈ BLnsw(A, X) with ϕ = δn−1s ψ for some ψ ∈ BLn−1s (A, X), then by Propo-
sition 1(i) and (iii), ϕ = SnTnδ

n−1
s ψ = δn−1sw Sn−1Tn−1ψ. Therefore, Qn induces

an injective map Q̃n : Hnsw(A, X) → Hns (A, X), which is surjective by Lemma 3.
Hence, Hnsw(A, X) = Hns (A, X).

Theorems 1 and 2 yield the following result.

Corollary 1. Let A ⊆ B(H) be a C∗-algebra with a faithful normal trace on Ā,
and let X be a normal dual Ā-bimodule. Then, for every n ∈ N we have

Hns (A, X) = Hnsw(Ā, X).

In [12], A. Galatan and S. Popa showed that for a von Neumann algebraM with
a faithful normal trace τ and a normal dual operatorial M-bimodule X we have

H1
s(M, X) = H1(M, Xτ ). (4)
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A BanachM-bimodule X is called operatorial if for every projection p ∈M and
x ∈ X,

‖p · x · p+ (1− p) · x · (1− p)‖ = max{‖p · x · p‖, ‖(1− p) · x · (1− p)‖}.

By [12, Proposition 2.2], every smooth derivation of a von Neumann algebra
M to a dual M-bimodule is normal, that is, UWOT-weak*-continuous. Therefore,
H1
s(M, X) = H1

sw(M, X). Hence, combining [12, Theorem 3.5] with (4) yields

H1
sw(M, X) = H1

w(M, Xτ ). (5)

We use this fact to prove the main result of this paper.

Proof of Theorem 3.

H1
s(A, X) = H1

sw(Ā, X) (by Corollary 1 )

= H1
w(Ā, Xτ ) (by (5))

= H1(A, Xτ ) (by [25, Theorem 3.3.1] ).

We do not know if the Banach A-bimodule B(A, X) of bounded A-bimodule
maps from A to an operatorial Banach A-bimodule X is again operatorial. If this
is the case, by a standard reduction of order argument for cohomologies, one could
conclude that Hns (A, X) = Hn(A, Xτ ), for each n ≥ 1.
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