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Abstract. We show that every continuously differentiable function in several variables
with a global Lipschitz derivative on a compact convex set with interior points has a
separation property. It separates two classes of quadratic functions given in terms of either
the function’s convexifiers or its concavifiers. The separation is used to obtain new global
characterizations of the derivative and zero derivative points.
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1. Introduction

This paper is based on a decomposition theorem which says that every continuously
differentiable function in several variables with a global Lipschitz derivative on a
compact convex set can be represented on this set as the difference of a convex func-
tion and a convex quadratic function [8]. The decomposition is used in various areas
of mathematics where it is sometimes referred to as the “method of convexification”.
The basic idea of the method is to apply properties of convex functions to the leading
convex function in the decomposition. This often yields new results for generally
non-convex functions. For example, the well-known inequalities of Jensen and Kara-
mata for convex functions were thus extended to non-convex functions, e.g., [4, 6].
A noise-determined equation in quantum mechanics can be established by means of
Jensen’s inequality and further improved by the method of convexification, as it is
noted in [3]. We used the method of convexification to characterize zero-derivative
points and the gradient in [7, 8]. Here we use the method to establish a separation
property of continuously differentiable functions.

In Section 2, we show that every continuously differentiable function with a global
Lipschitz derivative on a compact convex set with interior points separates classes
of quadratic functions given in terms of free convexifiers and free concavifiers. The
separation property is used in Section 3 to introduce new global characterizations of
the gradient and zero derivative points and in Section 4 to determine regions with
prescribed tolerances around a fixed point.
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The term “convexification procedures” is used in a different context in numerical op-
timization where nonconvex programs with twice differentiable functions are trans-
formed into ones which can be solved with the aid of primal-dual methods [1, 2].

2. The function separation theorem

We use the notions of “global Lipschitz property” of the gradient and the “uniform
bound property” of functions. Following [7, 8, 9], the gradient of a continuously
differentiable function f is said to have the global Lipschitz property on a set K if

||∇T f(x)−∇T f(y)|| ≤ L||x− y||

for some constant L and every x and y in K. Here ||u|| denotes the Euclidean norm
of an n-tuple u and uT denotes its transpose. We note that L can only increase if
the set K is enlarged by inclusion. The second notion is less familiar.

Definition 1 (Uniform bound property of functions). Consider a compact convex
set K in Rn and its point x∗. A function φ(x) in n variables is said to have the
uniform bound property on K\{x∗} if φ is defined on K\{x∗} and if there exists a
constant c such that |φ(x)| ≤ c for every x in K\{x∗}.

It is well known that a continuously differentiable function f with the global
Lipschitz property of its gradient on a compact convex set K can be made convex
by adding to it a suitable quadratic term. In particular, if f(x) is a convex function
then C(x, α) = f(x) + 1

2α||x||
2 is convex for any “convexifier” α ≥ 0. However, in

some cases C(x, α) can be convex also for α < 0. In order to include this possibility,
we extend the definition of convexifiers from [8] to “sign unrestricted” numbers which
we call “free” convexifiers.

Definition 2 (Free convexifiers and concavifiers). Consider a continuously differ-
entiable function f in n variables defined on an open set of Rn containing a com-
pact convex set K. A number α such that C(x, α) = f(x) + 1

2α||x||
2 is a con-

vex function on K is called a free convexifier of f on K. A number β such that
C̃(x, β) = f(x) + 1

2β||x||
2 is a concave function on K is called a free concavifier of

f on K.

Example 1. Consider f(x) = x4 on I = [1/
√
6, 1]. Function C(x, α) = x4+ 1

2αx
2 is

convex for α = −2 and C̃(x, β) = f(x)+ 1
2β||x||

2 is concave for β = −12. Therefore
α = −2 and β = −12 are a free convexifier and a free concavifier, respectively, of
f(x) on I.

Given a compact convex setK and its interior point x∗, let us use free convexifiers
and concavifiers to show that f separates particular classes of quadratic functions.
First we consider the tangent hyperplane T (x∗, x) = f(x∗)+∇f(x∗) · (x−x∗) at x∗

and then we construct the “deviation function” D(x∗, x) = f(x) − T (x∗, x). This
function has a global separation property.

Theorem 1. Let us consider a continuously differentiable function f in n variables
defined on an open set of Rn containing a compact convex set K. It is assumed that
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the gradient of f has the global Lipschitz property on K. If α and β are, respectively,
a free convexifier and a free concavifier of f on K, then at every interior point x∗

of K we have

−1

2
α||x− x∗||2 ≤ D(x∗, x) ≤ −1

2
β||x− x∗||2, (1)

for every x in K.

Proof. With a free convexifier α we know that f(x) = C(x, α) − 1
2α||x||

2 where
C(x, α) = f(x)+ 1

2α||x||
2 is a convex function on K. Therefore for an arbitrary x in

K, C(λx+ (1− λ)x∗, α) ≤ λC(x, α) + (1− λ)C(x∗, α), for every 0 ≤ λ ≤ 1. Hence,
as in [7]

f(λx+ (1− λ)x∗) ≤ 1

2
α||λx+ (1− λ)x∗||2 + λf(x)− 1

2
αλ||x||2

+(1− λ)f(x∗) +
1

2
α(1− λ)||x∗||2.

Using properties of the norm, and after division by λ > 0, this yields

f(x∗ + λ(x− x∗))− f(x∗)

λ
≤ f(x)− f(x∗) +

1

2
α(1− λ)||x− x∗||2.

On the left hand side we have a quotient of functions in the single variable λ of the
type 0/0. Using L’Hopital’s rule, in the limit λ → 0 this becomes

∇f(x∗) · (x− x∗) ≤ f(x)− f(x∗) +
1

2
α||x− x∗||2,

which is the left-hand side inequality in (1). But also C̃(x, β) = f(x) + 1
2β||x||

2 is a

concave function for an arbitrary free concavifier β. Using concavity of C̃(·, β), then
switching to f(x), rearrangement and using L’Hopital’s rule we have

∇f(x∗) · (x− x∗) ≥ f(x)− f(x∗) +
1

2
β||x− x∗||2,

the right-hand side inequality in (1).

The inequalities in Theorem 1 can be rearranged yielding the main result of the
paper.

Theorem 2 (The function separation theorem). Consider a continuously differen-
tiable function f in n variables defined on an open set of Rn containing a compact
convex set K. It is assumed that the gradient of f has the global Lipschitz property
on K. Let x∗ be an interior point of K and let α and β, respectively, be a free
convexifier and a free concavifier of f on K. Then

−1

2
α||x−x∗||2+f(x∗)+∇f(x∗)·(x−x∗)≤f(x)≤f(x∗)+∇f(x∗)·(x−x∗)−1

2
β||x−x∗||2,

for every x ∈ K.
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Observations
If x∗ in Theorem 2 is a zero-derivative point of f then for every x ∈ K

−1

2
α||x− x∗||2 + f(x∗) ≤ f(x) ≤ −1

2
β||x− x∗||2 + f(x∗).

The theorem is a statement about the two variables x ∈ Rn and x∗ ∈ Rn. Its
depiction may be given in R2n+1 and, for a fixed x∗ in Rn+1.

Example 2. Consider f(x) = sinx. We can specify a free convexifier α = 1 and a
free concavifier β = −1 of f on every compact interval around x∗ = 0. Theorem 2
says that

x− 1

2
x2 ≤ sinx ≤ x+

1

2
x2,

for every x. The separation property of f(x) at this fixed x∗ is depicted in Figure 1.
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Figure 1: Function separation theorem

The separation property, at the fixed extreme point x∗ = π
2 , is depicted in

Figure 2.
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Figure 2: Function separation theorem at zero-derivative point
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3. Global characterizations of the gradient

Using Theorem 2 one can globally characterize the gradient.

Theorem 3 (Global characterization of the gradient). Consider a continuously
differentiable function f in n variables defined on an open set of Rn containing a
compact convex set K with a nonempty interior. It is assumed that the gradient of
f has the global Lipschitz property on K. Let x∗ be an interior point of K and let
α and β, respectively, be a free convexifier and a free concavifier of f on K. Denote
by G = G(x∗) an arbitrary row n-tuple. Then G = ∇f(x∗) if, and only if

−1

2
α||x− x∗||2 ≤ f(x)− f(x∗)−G · (x− x∗) ≤ −1

2
β||x− x∗||2, (2)

for every x in K.

Proof. In view of Theorem 2 we only have to show that the n-tuple G = (Gi) in (2)
is the gradient. The idea is to separate G from x− x∗ in G · (x− x∗). This can be
done if we specify x to be x = x∗ + h, where h = (hi) is a column n-tuple with zero
components everywhere except in the i-th place where we set hi ̸= 0. Since x ̸= x∗,
we can divide the inequalities in (2) by ||x− x∗|| = |hi| to obtain

−1

2
α|hi| ≤

f(x∗ + h)− f(x∗)−Gihi

hi
≤ −1

2
β|hi|.

After sending hi → 0, the above yields Gi = ∂f(x∗)/∂xi. Repeating this process
for every i = 1, . . . , n yields G = ∇f(x∗).

After specifying G = 0, Theorem 3 gives sharper characterizations of zero-
derivative points than those given in [7, 8]. The above results can be simplified.
We note that the convexifier α and the concavifier β in Theorem 3 are some fixed
numbers. Regardless of their signs and magnitudes there exists a number Λ ≥ 0
such that Λ ≥ 1

2α and Λ ≥ − 1
2β. For this Λ, using the absolute value function,

the inequalities in (2) yield |f(x)− f(x∗)−G · (x− x∗)| ≤ Λ||x− x∗||2. Theorem 3
thus recovers the following characterizations of the gradient from [9] where they were
proved differently.

Theorem 4 ([9], Simplified characterizations of the gradient). Consider a con-
tinuously differentiable function f(x) in n variables defined on an open set of Rn

containing a compact convex set K. It is assumed that the gradient of f has the
global Lipschitz property on K. At an arbitrary interior point x∗ of K, consider an
arbitrary row n-tuple G = G(x∗). Then the following four statements are equivalent,
i.e., any of them implies the other three:

(i) G = ∇f(x∗);

(ii) There is a constant Λ ≥ 0 such that |f(x)− f(x∗)−G · (x−x∗)| ≤ Λ||x−x∗||2
for every x in K;

(iii) 1
Λ |f(x) − f(x∗) − G · (x − x∗)| ≤ ||x − x∗||2 for every Λ > 0 sufficiently large
and for every x in K;



62 S. Zlobec

(iv) The ratio function φ(x) =
|f(x)− f(x∗)−G · (x− x∗)|

||x− x∗||2
is uniformly bounded

on K\{x∗}.

One can specify Λ = 1
2L in (ii) and (iii). This Λ is an upper bound of the ratio

function φ(x) in (iv).
The above theorem provides multiple equivalent answers to the following basic

question: Given a continuously differentiable function f , a row n-tuple G, and an in-
terior point x∗ in a compact convex set, what are necessary and sufficient conditions
that G be the gradient of f at x∗? Properties (ii), (iii) and (iv) are called, respec-
tively, the “quadratic envelope”, “normalized quadratic envelope”, and “uniform
bound” property of the gradient. Let us depict the latter.

Example 3. Consider the product function f(x) = x1x2 around some given interior
point x∗ = (x∗

1, x
∗
2) in K = {−1 ≤ x1, x2 ≤ 1}. We wish to know whether the row

G = (x∗
2, x

∗
1) (note the reverse order of the components!) is the gradient of f at x∗.

This is true if and only if

|(x1 − x∗
1)(x2 − x∗

2)|
(x1 − x∗

1)
2 + (x2 − x∗

2)
2
,

representing φ(x) in (iv), is uniformly bounded on K\{x∗}. The latter is verified
after denoting u1 = x1 − x∗

1 and u2 = x2 − x∗
2 and noting that (|u1| − |u2|)2 ≥ 0.

The graph of the ratio function φ(x) around x∗ = 0 is depicted by Figure 3. It is
uniformly bounded on K\{x∗} and we conclude that G = ∇f(x∗) = (0, 0).

Figure 3: Uniform bound property of the gradient

We have verified the gradient without calculating partial derivatives!

4. Estimating bounds of functions

One of the applications of the Function separation theorem and Theorem 4(ii) is
to determine regions around x∗ where f(x) approximates f(x∗) within a prescribed
tolerance.
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Theorem 5. Consider a continuously differentiable function f(x) in n variables
defined on an open set of Rn containing a compact convex set K. It is assumed that
the gradient of f has the global Lipschitz property on K with a Lipschitz constant
L ̸= 0. Let x∗ be an arbitrary interior point of K and specify some ϵ ≥ 0. Then for
every x satisfying

||x− x∗|| ≤
(
2ϵ

L

) 1
2

we have

|f(x)− f(x∗)−∇f(x∗) · (x− x∗)| ≤ ϵ. (3)

Example 4. Consider f(x) = sinx around x∗ = 0. Take ϵ = 0.01. Let us find an
interval around x∗ where |sinx−x| ≤ 0.01 using Theorem 5. One can specify L = 1.
We know, after substituting f(x∗) = 0 and ∇f(x∗) = 1 in (3), that sinx− x ≤ 0.01

whenever 0 < x ≤ (0.02)
1
2 . A bigger choice of L decreases the estimate for a region

around x∗ where f(x) approximates f(x∗) within the same tolerance ϵ. Thus for the

choice L = 3, the bound (3) says that sinx − x ≤ 0.01 whenever 0 < x ≤ (0.06)
1
2 .

For another example see, e.g., [5, Example 2.105].

Similarly one can determine regions where the “average value” of the function
falls within a prescribed ϵ from the value of f at x∗. For functions of the single
variable the average value of f on an interval I = [x∗, x] from x∗ to x, where x > x∗

is defined as

A(x, x∗) =

∫ x

x∗
f(t)dt

x− x∗ .

Assuming that f(t) has the Lipschitz property on I with a Lipschitz constant L∗ we
can apply Theorem 4(ii) to the function

y(x) =

∫ x

x∗
f(t)dt.

Since y′(x) = f(x), y(x∗) = 0 and we can set Λ = 1/L∗. After division by |x−x∗| ̸= 0,
Theorem 4(ii) yields the following result.

Corollary 1. Consider a continuous function of the single variable f(x) on a com-
pact interval I with an interior point x∗. Assume that f satisfies the global Lipschitz
property on I with a constant L∗. Then

|A(x, x∗)− f(x∗)| ≤ 1

2
L∗|x− x∗|,

for every x ̸= x∗ in I.

Example 5. For f(x) = sinx, from x∗ = 0 to any x > 0, we have A(x, x∗) = (1−
cosx)/x. Let us specify L∗ = 1 and take ϵ = 0.01. Now we conclude that the average
value of sinx on the interval 0 < x ≤ 0.02 is bounded by 0.01.
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5. Conclusion

We have shown that every continuously differentiable function with a global Lipschitz
derivative on a compact convex set with interior points globally separates two classes
of quadratic functions stated in terms of the function’s either free convexifiers or its
free concavifiers. The separation yields global characterizations of the derivative
and zero-derivative points in the interior of the set. We have also estimated regions
around a fixed point where values of the function fall within a specified tolerance.
This may be useful in the study of average values of functions over an interval.
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