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Abstract. In the present paper, we use a hybrid method to solve linear or non-linear
systems of ordinary differential equations (ODEs). By using this method, these systems
are reduced to a linear or non-linear system of algebraic equations. In error discussion of
the suggested method, an upper bound of the error is obtained. Also, to survey the accu-
racy and the efficiency of the present method, some examples are solved and comparisons
between the obtained results with those of several other methods are carried out.
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1. Introduction

Studies on differential equations and their systems have always been considered due
to their widespread applications in physical systems, engineering sciences, medicine,
economy, biology, population systems, etc. [1, 7]. For instance, the predator and
prey problem in biological systems [6, 11, 18], the mathematical models for describ-
ing CD4+ T cells and HIV interactions in medicine [9, 12, 17, 30, 31, 33, 34, 45],
and stiff problems in biochemistry and life sciences [13], are expressed as linear or
non-linear systems of ODEs. Many researchers have applied various methods for
solving systems of ODEs. The Adomian decomposition method (ADM) [4, 37], the
variational iteration method (VIM) [5, 10, 27], the homotopy perturbation method
(HPM) [3, 26], the differential transform method [41, 43], and a collocation method
[36, 46, 47] have been proposed for solving linear and non-linear systems of ODEs.

In recent years, using hybrid functions has been considered for solving various
mathematical models [2, 15, 22–25, 28, 29, 42]. One of these functions is obtained by
the combination of block-pulse functions (BPFs) and Legendre polynomials. Based
on a hybrid of BPFs and Legendre polynomials, Hsiao [16] solved the Fredholm
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and Volterra integral equations; Singh et al. [40] introduced a numerical method
for numerical evaluation of the Hankel transform; a Maleknejad and Hashemizadeh
[20] presented an approach to solve Hammerstein integral equations of mixed type;
Maleknejad and Ebrahimzadeh [19] proposed a method for solving optimal control
of Volterra integral systems. Also, by using these hybrid functions Sahu and Saha
Ray [39] solved a system of non-linear Fredholm-Hammerstein; Rafiei et al. [35]
found the optimal solution of linear time delay systems; Maleknejad and Saeedipoor
[21] solved Fredholm integral equation of the first kind; Hesameddini and Riahi [14]
obtained a numerical solution of partial differential equations with non-local integral
conditions, and finally Saha Ray and Singh [38] found the numerical solutions of
stochastic Volterra-Fredholm integral equations. Here, considering the general form
of the system of ODEs as 

du1
dt

= f1(t, u1, u2, . . . , un),

du2
dt

= f2(t, u1, u2, . . . , un),

...

dun
dt

= fn(t, u1, u2, . . . , un),

(1)

with the initial conditions u1(0) = λ1, u2(0) = λ2, . . . , un(0) = λn, we apply the
hybrid BPFs and Legendre polynomials method (HBPLM) to solve this system. By
using this method, systems of ODEs are reduced to a linear or non-linear system
of algebraic equations, which can be solved by the proper methods. In addition,
since every ordinary differential equation can be converted into a system of differ-
ential equations of the first order, the HBPLM can be implemented to solve most
differential equations of higher orders.

We arranged the remainder of the paper as follows: In Section 2, we review
required definitions and some properties of hybrid BPFs and Legendre polynomials.
In Section 3, we apply the HBPLM for linear and non-linear systems of ODEs.
Error analysis of the presented method is studied in Section 4. Finally, in Section 5,
to verify the effectiveness of the proposed method, a mathematical model for HIV
interactions with CD4+ T cells, the predator and prey problem, some examples of
stiff systems, and two other examples will be solved and the obtained absolute errors
are compared with those of several other methods.

2. Preliminaries

In this section, required definitions and some properties of hybrid BPFs and Legendre
polynomials and operational matrices are reviewed.

2.1. Hybrid BPFs and Legendre polynomials

Considering the interval [0, Tf ) and by hybridization of BPFs and the well-known
Legendre polynomials denoted by Lq(t), on this interval, hybrid functions `ij , i =
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1, 2, . . . , N and j = 0, 1, . . . ,M − 1 are defined as [16]

`ij(t) =

Lj(
2N

Tf
t− 2i+ 1), t ∈ Ii,

0, o. w,

where N and M indicate the order of BPFs and the order of Legendre polynomials,
respectively, and Ii = [ i−1N Tf ,

i
N Tf ). Without loss of generality, we let Tf = 1.

Any function f ∈ L2[0, 1) can be expanded by the basis functions {`ij} as

f(t) =

∞∑
i=1

∞∑
j=0

αij`ij(t), (2)

where αij are hybrid coefficients. By truncating the infinite series in equation (2) at
some values of N and M , it can be written as

f(t) ' fNM (t) =

N∑
i=1

M−1∑
j=0

αij`ij(t) = ATL(t), (3)

where A and L(t) are defined as follows:

A = [α10, α11, . . . , α1(M−1), α20, α21, . . . , α2(M−1), . . . , αN0, αN1, . . . , αN(M−1)]
T ,

and

L(t) = [`10(t), . . . , `1(M−1)(t), `20(t), . . . , `2(M−1)(t), . . . , `N0(t), . . . , `N(M−1)(t)]
T .

2.2. Operational matrices

Suppose that P denotes the operational matrix of the integration of the vector L(t)
defined above; then ∫ t

0

L(η) dη ' PL(t),

where P is an NM ×NM matrix defined as [16]:

P =


D S S . . . S
0 D S . . . S
0 0 D . . . S
...

...
...

. . .
...

0 0 0 . . . D

 ,

where the zero matrix 0, S and D are M ×M matrices and

S =
Tf
N


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ,
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D =
Tf
2N



1 1 0 0 0 . . . 0 0 0 0 0
− 1

3 0 1
3 0 0 . . . 0 0 0 0 0

0 − 1
5 0 1

5 0 . . . 0 0 0 0 0
0 0 − 1

7 0 1
7 . . . 0 0 0 0 0

0 0 0 − 1
9 0 . . . 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 . . . 0 1

2M−9 0 0 0

0 0 0 0 0 . . . −1
2M−7 0 1

2M−7 0 0

0 0 0 0 0 . . . 0 −1
2M−5 0 1

2M−5 0

0 0 0 0 0 . . . 0 0 −1
2M−3 0 1

2M−3
0 0 0 0 0 . . . 0 0 0 −1

2M−1 0



.

To evaluate the product of L(t) and LT (t), let

L(t)LT (t)A = ÃL(t),

where Ã is an NM ×NM matrix defined in [16].

3. The HBPLM for linear and non-linear systems of ODEs

In this section, the HBPLM will be implemented to approximate the solutions of
linear and non-linear systems of ODEs.

3.1. Implementation for linear systems of ODEs

We consider linear form of system (1) as

du1
dt

= g1(t) +

n∑
k=1

h1,k(t)uk(t),

du2
dt

= g2(t) +

n∑
k=1

h2,k(t)uk(t),

...

dun
dt

= gn(t) +

n∑
k=1

hn,k(t)uk(t),

(4)

where gk, hr,k for k, r = 1, 2, . . . , n, are the known functions. From equation (3),
uk(t) can be written as

uk(t) ' AT
kL(t), k = 1, 2, . . . , n, (5)

where the unknown vector Ak, which must be calculated, is considered as

Ak = [ak,1 ak,2 . . . ak,NM ]T . (6)
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Now, we approximate u′k(t) as follows:

u′k(t) ' A′Tk L(t), k = 1, 2, . . . , n, (7)

where A′k ' (AT
k − uTk(0))P

−1 and uk(0) can be obtained as follows:

uk(0) =

(
uk(0)

M−1︷ ︸︸ ︷
0 0 . . . 0 uk(0)

M−1︷ ︸︸ ︷
0 0 . . . 0 . . . uk(0)

M−1︷ ︸︸ ︷
0 0 . . . 0︸ ︷︷ ︸

NM

)T
. (8)

Considering equation (3), the known functions gk and hr,k, r, k = 1, 2, . . . , n, by the
basis functions {`ij}, can be written as

gk(t) ' GTk L(t), (9)

and

hr,k(t) ' HTr,kL(t). (10)

Also, the terms hr,k(t)uk(t), r, k = 1, 2, . . . , n, can be expanded in terms of the vector
L(t) as

hr,k(t)uk(t) ' (HTr,kL(t))(AT
kL(t)) = HTr,kL(t)LT (t)Ak = HTr,kÃkL(t). (11)

Note that if hr,k(t) is a constant as c, then equation (11) can be written as

hr,k(t)uk(t) ' cAT
kL(t), r, k = 1, 2, . . . , n.

Now, by substituting equations (5) - (11) into equation (4) and replacing ' with =,
we have 

(
(AT

1 − uT1(0))P
−1 − GT1 −

n∑
k=1

HT1,kÃk

)
L(t) = 0,

(
(AT

2 − uT2(0))P
−1 − GT2 −

n∑
k=1

HT2,kÃk

)
L(t) = 0,

...(
(AT

n − uTn(0))P
−1 − GTn −

n∑
k=1

HTn,kÃk

)
L(t) = 0.

(12)

By collocating system (12) at the points t = 2ζ−1
2NM , ζ = 1, 2, . . . , NM , and solving the

obtained linear system of algebraic equations by a well-known numerical method,
the vector Ak is obtained and uk(t) is consequently determined by using equation
(5).
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3.2. Implementation for non-linear systems of ODEs

A non-linear system of ODEs is considered as

du1
dt

= f1(t, u1, u2, . . . , un),

du2
dt

= f2(t, u1, u2, . . . , un),

...

dun
dt

= fn(t, u1, u2, . . . , un).

(13)

Here, uk(t) and u′k(t) are expanded as equations (5) and (7), respectively. If neces-
sary, we use equation (9) to expand a known function. Also, non-linear terms can
be expanded in terms of the vector L(t) as

ur(t)uk(t) ' (AT
r L(t))(AT

kL(t)) = AT
r L(t)LT (t)Ak = AT

r ÃkL(t), r, k = 1, 2, . . . , n,

and

u3k(t) = u2k(t).uk(t) ' (AT
k ÃkL(t))(AT

kL(t)) = AT
k ÃkL(t)LT (t)Ak = AT

k Ã
2

kL(t),

and in the same way, uαk (t) ' AT
k Ã

α−1
k L(t), where α is a positive integer. Suppose

fk(t, u1, u2, . . . , un) ' F̄
T
kL(t), k = 1, 2, . . . , n;

then system (13) can be written as the following non-linear algebraic system:(
(AT

k − uTk(0))P
−1 − F̄

T
k

)
L(t) = 0, k = 1, 2, . . . , n. (14)

Like the linear form, by collocating system (14) at the points t = 2ζ−1
2NM , ζ =

1, 2, . . . , NM , and solving the obtained non-linear system of algebraic equations
by a proper method such as Newton’s method, the vector Ak is obtained and uk(t)
is consequently determined by using equation (5).

4. Error analysis

In this section, considering the Sobolev space and the associated norm, an upper
bound of the error for the HBPLM is obtained. We consider the Sobolev norm on
the interval (−1, 1) as follows:

‖f‖Hd(−1,1) =

( d∑
i=0

‖f (i)‖2L2(−1,1)

) 1
2

,

where d ≥ 0 is an integer.
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Lemma 1. [8] Let {Lq}q=0 be the sequence of Legendre polynomials and PS(t) =∑S
q=0 aqLq(t) the best polynomial approximation of degree S for f ∈ L2(−1, 1).

Then, for d ≥ 1, there exists a constant C0 > 0 such that

‖f − PS‖L∞(−1,1) ≤ C0S
3
4−d‖f‖Hd(−1,1),

for all functions f in Hd(−1, 1).

Lemma 2. Let f ∈ Hd[0, 1) and let fNM be the polynomial approximation of f
defined in equation (3). Then,

‖f − fNM‖L∞[0,1) ≤ C0(NM)
3
4−d max

1≤i≤N
‖f‖Hd(Ii),

where Ii = [ i−1N , iN ) and C0 is a positive constant.

Proof. It can be obviously concluded by using Lemma 1.

Before we express the following theorem, we represent system (1) as

U(t) = U(0) +

∫ t

0

F (τ, U(τ)) dτ, (15)

where

U(t) = [u1(t), u2(t), . . . , un(t)]T ,

F (τ, U(τ)) =


f1(τ, U(τ))
f2(τ, U(τ))

...
fn(τ, U(τ))

 .

Theorem 1. Let U ∈ Hd[0, 1) be the exact solution of equation (15) and Ũ(t) =
UNM (t) the approximate solution obtained by the HBPLM. Moreover, assume that
fk(τ, U(τ)), k = 1, 2, . . . , n is a continuous function for 0 ≤ τ ≤ t < 1 and that
satisfies the Lipschitz condition

|fk(τ, U(τ))− fk(τ,W (τ))| ≤ Lk ‖U −W‖∞, (16)

where Lk > 0, k = 1, 2, . . . , n, is a Lipschitz constant. Then, there exists a constant
δ > 0 such that

‖U − Ũ‖∞ ≤ δ max
1≤i≤N

‖up‖Hd(Ii).

Proof. Let ũk(t) = uk(NM)(t), k = 1, 2, . . . , n, be the approximate solution of the
system defined in equation (15), and let ek(t) = uk(t) − ũk(t) be the error term.
Then,

ek(t) = uk(t)− ũk(t) =

∫ t

0

(
fk(τ, U(τ))− fk(τ, Ũ(τ))

)
dτ.
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Using equation (16) and 0 ≤ t < 1, we obtain

|ek(t)| ≤ Lk ‖U − Ũ‖∞ = Lk max
1≤k≤n

‖uk − ũk‖∞.

Let L = max
1≤k≤n

Lk; then

‖ek‖∞ ≤ L ‖up − ũp‖∞, p ∈ {1, 2, . . . , n}. (17)

Now, by using Lemma 2 and equation (17), we have

‖ek‖∞ ≤ L ‖up − ũp‖∞ = L ‖up − ũp‖L∞[0,1) ≤ δ max
1≤i≤N

‖up‖Hd(Ii), (18)

where δ = LC0(NM)
3
4−d.

If e(t) = U(t)− Ũ(t), then using (18), we get

‖e‖∞ = ‖U − Ũ‖∞ ≤ δ max
1≤i≤N

‖up‖Hd(Ii).

5. Numerical examples

In this section, the effectiveness of the present method is studied by applying the
HBPLM to several examples of linear and non-linear systems of ODEs. As the
first example, a mathematical model for HIV interactions with CD4+ T cells is
considered. Then, the predator-prey problem, two examples of linear and non-linear
stiff systems, and two other examples are solved. All computations are performed
using Matlab 2017a software package on a laptop with the Intel core i5-3210M CPU
processor and 4GB RAM.

Example 1. As the first example, we consider a mathematical model of HIV in-
teractions with CD4+ T cells, which is described by a three-dimensional system of
non-linear ODEs as [27, 32, 41, 45, 46]:

T ′(t) = s− µT + rT

(
1− T + I

Tmax

)
− αV T,

I ′(t) = αV T − βI,
V ′(t) = CβI − γV,

(19)

where the initial conditions and parameters are as given
T (0) = 0.1, I(0) = 0, V (0) = 0.1,

r = 3, s = 0.1, µ = 0.02, Tmax = 1500, α = 0.0027,

β = 0.3, C = 10, γ = 2.4.

In this example, the HBPLM is implemented for the above model for N = 2,M = 8,
which reduces it to a non-linear system of algebraic equations. Since system (19)
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has no exact solution, we prefer to use the solution of the classical forth-order
Runge-Kutta method (RK4) as an acceptable solution for the purpose of compar-
ison. Hence, numerical results of the suggested method and those of the modified
variational iteration method (MVIM) [27], the Bessel collocation method (BCM)
[46], the differential transform method (DTM) [41], and the Laplace Adomian de-
composition method (LADM) [32] for T (t), I(t) and V (t), are compared with the
RK4 solutions. Tables 1a, 1b and 1c show these comparisons.

(a) Comparisons for T (t)

t HBPLM MVIM [27] LADM [32] BCM [46] DTM [41]
0.0 0 0 0 0 0
0.2 1.80E-09 3.50E-09 8.10E-07 4.95E-03 2.84E-03
0.4 0.90E-09 2.56E-07 1.35E-04 2.59E-02 1.64E-02
0.6 0.90E-09 0.00E-00 3.28E-03 6.90E-02 5.35E-02
0.8 21.9E-09 0.00E-00 3.67E-02 1.38E-01 1.32E-01

(b) Comparisons for I(t)

t HBPLM MVIM [27] LADM [32] BCM [46] DTM [41]
0.0 0 0 0 0 0
0.2 9.10E-14 4.99E-13 5.13E-12 2.15E-07 3.34E-07
0.4 1.90E-13 3.91E-11 8.21E-10 2.23E-07 8.34E-07
0.6 3.70E-13 4.75E-10 4.46E-08 8.71E-07 1.43E-06
0.8 5.60E-13 2.91E-09 1.08E-07 1.80E-06 3.11E-06

(c) Comparisons for V (t)

t HBPLM MVIM [27] LADM [32] BCM [46] DTM [41]
0.0 0 0 0 0 0
0.2 1.00E-10 6.54E-08 1.17E-07 7.52E-08 1.57E-07
0.4 2.00E-10 1.07E-06 1.84E-05 4.71E-08 1.41E-05
0.6 1.00E-10 5.74E-06 6.87E-04 2.31E-07 2.15E-04
0.8 1.00E-10 2.01E-05 4.71E-03 7.94E-07 1.53E-03

Table 1: Comparisons between approximate solutions for (a) T (t), (b) I(t) and (c)
V (t) by HBPLM, MVIM, LADM, BCM and DTM with RK4

Example 2. Consider the following system of ODEs that arises in the modeling of
the two species predator and prey problem [7]:{

u′(t) =
(
2− v(t)

)
u(t),

v′(t) =
(
u(t)− 1

)
v(t),

(20)

in which u denotes the prey population and v is the population of predators. With
the passage of time, a permanently repeated cycle of interrelated falls and rises in
the predator and prey populations occurs. The time period of these repeated cycles,
which is indicated by the letter T , has been calculated in [7], from which, with
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starting values u(0) = 2 and v(0) = 2, we see that the time period converges to
T ' 4.61. We solved system (20) by the HBPLM for N = 2,M = 8 and the RK4
method. Figure 1 shows the approximate solutions obtained by the HBPLM and
RK4. Also, the obtained numerical results are shown in Table 2.

t
u v

RK4 HBPLM absolute error RK4 HBPLM absolute error
0.5 1.531714 1.529849 1.87E-03 3.036906 3.038620 1.71E-03
1.0 0.819587 0.819081 5.06E-04 3.274107 3.275590 1.48E-03
1.5 0.490400 0.491720 1.32E-03 2.715792 2.713292 2.50E-03
2.0 0.406754 0.404548 2.21E-03 2.047384 2.050809 3.43E-03
2.5 0.455341 0.449063 6.28E-03 1.533120 1.542198 9.08E-03
3.0 0.628130 0.627862 2.67E-04 1.212053 1.211689 3.64E-04
3.5 0.969317 0.969139 1.78E-04 1.087093 1.087698 6.05E-04
4.0 1.501637 1.502164 5.26E-04 1.215055 1.214361 6.94E-04
4.5 1.974847 1.973759 1.09E-03 1.784686 1.785414 7.27E-04
5.0 1.705620 1.704236 1.38E-03 2.828001 2.827758 2.43E-04

Table 2: Numerical results for Example 2

0 1 2 3 4 5 6 7 8 9 10

t

0.5

1

1.5

2

2.5

3

3.5

u(t)-RK4

v(t)-RK4

u(t)-HBPLM

v(t)-HBPLM

Figure 1: Comparison between approximate solutions by the HBPLM and RK4

Example 3. In this example, the following system is considered as a linear stiff
system of ODEs [3]: {

u′1(t) = −u1(t) + 95u2(t),

u′2(t) = −u1(t)− 97u2(t).
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For the initial conditions u1(0) = 1, u2(0) = 1, the exact solution is u1(t) =
1
47 (95e−2t − 48e−96t), u2(t) = 1

47 (48e−96t − e−2t). The absolute errors of u1 and
u2 by using the HBPLM for N = 10, M = 12, the HPM [3], and the rational HPM
(RHPM) [3] are shown in Table 3.

t
Absolute error of u1 Absolute error of u2

HBPLM RHPM [3] HPM [3] HBPLM RHPM [3] HPM [3]
0.5 2.59E-16 1.98E-06 1.46E-06 5.07E-18 4.32E-05 6.83E-05
1.0 2.33E-16 8.71E-07 3.73E-05 8.82E-17 3.95E-05 1.54E-03
1.5 4.96E-18 1.22E-06 1.79E-04 1.36E-17 4.24E-05 6.56E-03
2.0 1.55E-15 8.19E-07 4.53E-04 3.09E-17 3.11E-07 1.45E-02
2.5 1.99E-15 1.54E-06 8.13E-04 4.82E-17 2.94E-05 2.25E-02
3.0 2.61E-17 7.77E-07 1.18E-03 5.52E-17 1.36E-05 2.75E-02
3.5 1.06E-16 4.38E-07 1.48E-03 1.27E-17 8.66E-06 2.79E-02
4.0 1.25E-16 1.39E-06 1.68E-03 2.03E-17 1.82E-05 2.41E-02
4.5 1.40E-16 1.87E-06 1.75E-03 2.54E-17 1.65E-05 1.73E-02
5.0 1.50E-16 1.93E-06 1.73E-03 2.98E-17 1.02E-05 9.20E-03

Table 3: Absolute errors for Example 3

Example 4. As a non-linear stiff system of ODEs, we consider the following system
[3]: {

u′1(t) = −1002u1(t) + 1000u22(t),

u′2(t) = u1(t)− u2(t)− u22(t),

with the initial conditions u1(0) = 1, u2(0) = 1, and the exact solution u1(t) = e−2t,
u2(t) = e−t. The absolute errors of u1 and u2 using the HBPLM for N = 4, M = 12,
the HPM [3] and the RHPM [3] are shown in Table 4.

t
Absolute error of u1 Absolute error of u2

HBPLM RHPM [3] HPM [3] HBPLM RHPM [3] HPM [3]
0.5 2.54E-12 3.00E-10 0.00E+00 1.09E-15 1.26E-08 0.00E+00
1.0 6.30E-13 1.50E-08 0.00E+00 5.36E-16 1.49E-07 2.80E-09
1.5 6.12E-14 2.75E-07 0.00E+00 5.52E-18 1.70E-07 1.75E-06
2.0 2.05E-13 4.61E-07 2.80E-09 3.11E-16 1.80E-07 1.66E-04
2.5 6.07E-13 3.69E-07 9.69E-08 7.05E-16 4.51E-08 5.62E-03
3.0 1.61E-14 6.80E-08 1.75E-06 3.87E-16 1.75E-07 9.93E-02
3.5 7.18E-15 3.99E-07 2.01E-05 2.83E-16 4.54E-08 1.12E+00
4.0 3.70E-15 8.09E-08 1.66E-04 7.72E-16 1.91E-07 9.09E+00
4.5 3.74E-15 5.19E-07 1.07E-03 3.88E-16 2.27E-07 5.75E+01
5.0 4.26E-14 1.19E-06 5.62E-03 2.12E-16 7.20E-07 2.98E+02

Table 4: Absolute errors for Example 4
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Example 5. Consider a system of ODEs of order two as [5]{
u′′1(t)− u′′2(t) + u1(t)− 4u2(t) = 0,

u′1(t) + u′2(t) = cos t+ 2 cos 2t,
(21)

with the initial conditions u1(0) = 0, u2(0) = 0, u′1(0) = 1, u′2(0) = 2, and the exact
solution u1(t) = sin t, u2(t) = sin 2t. We convert system (21) into a system of ODEs
of order one and solve it using the HBPLM. To do this, we define functions w1(t),
w2(t), w3(t), and w4(t) as

w1(t) = u1(t), w2(t) = u′1(t), w3(t) = u2(t), w4(t) = u′2(t).

Now, the following system is obtained:

w′1(t) = w2(t),

w′2(t) = −1

2
w1(t) + 2w3(t)− 1

2
(sin t+ 4 sin 2t),

w′3(t) = w4(t),

w′4(t) =
1

2
w1(t)− 2w3(t)− 1

2
(sin t+ 4 sin 2t),

(22)

where the initial conditions are w1(0) = 0, w2(0) = 1, w3(0) = 0, and w4(0) = 2. In
Table 5a, the absolute errors of u1 and u2, using the HBPLM for N = 2, M = 8,
and VIM [5] are compared. We point out that according to the definition of the
functions w2 and w4, the approximate solutions of u′1 and u′2 are also obtained by
solving system (22). By considering u′1(t) = cos t, u′2(t) = 2 cos 2t, as the exact
solutions of the derivatives, the absolute errors of u′1 and u′2 are shown in Table 5b.
Compared to the errors obtained for u1 and u2 by the HBPLM, the errors for u′1
and u′2 are larger. The fact is that the numerical errors are usually larger for the
derivatives.

Example 6. As the last example, we consider Duffing’s equation as [44]

u′′(t) + u′(t) + u(t) + u3(t) = cos3 t− sin t, u(0) = 1, u′(0) = 0. (23)

Considering w1(t) = u(t) and w2(t) = u′(t), system (23) is converted into the fol-
lowing system of ODEs:{

w′1(t) = w2(t),

w′2(t) = cos3 t− sin t− w1(t)− w2(t)− w3
1(t),

(24)

with the initial conditions w1(0) = 1 and w2(0) = 0. The HBPLM is used for solving
system (24) for N = 2, M = 8. Then, the results obtained for the solutions of (24)
and consequently for equation (23) with the exact solution u(t) = cos t are presented
in Table 6.
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(a)

t
u1 u2

HBPLM VIM [5] HBPLM VIM [5]
0.1 5.85E-10 4.10E-09 3.45E-10 7.40E-09
0.2 7.36E-10 9.60E-09 6.52E-10 6.60E-09
0.3 7.10E-10 2.50E-08 6.95E-10 1.20E-08
0.4 5.29E-10 2.50E-08 6.78E-10 2.30E-08
0.5 2.50E-10 2.70E-08 1.39E-10 2.90E-08
0.6 6.25E-10 4.00E-08 1.17E-09 3.40E-08
0.7 7.63E-10 3.50E-08 9.83E-10 2.80E-08
0.8 7.12E-10 4.50E-08 7.91E-10 3.90E-08
0.9 5.03E-10 6.10E-08 2.67E-10 6.10E-08
1.0 4.12E-10 1.50E-08 4.15E-10 1.70E-07

(b)

HBPLM
u′1 u′2

1.01e-08 1.10e-08
4.02e-09 4.23e-09
6.48e-09 6.59e-09
1.29e-08 1.37e-08
3.89e-08 4.04e-08
8.00e-09 8.03e-09
2.56e-09 2.62e-09
8.13e-09 8.11e-09
1.52e-08 1.52e-08
2.12e-08 2.12e-08

Table 5: Absolute errors for (a) u1, u2 and (b) u′1, u
′
2 in Example 5

t Exact HBPLM Absolute error
0.1 0.9950041652 0.9950041641 1.09E-09
0.2 0.9800665778 0.9800665793 1.48E-09
0.3 0.9553364891 0.9553364875 1.58E-09
0.4 0.9210609940 0.9210609952 1.27E-09
0.5 0.8775825618 0.8775825614 4.77E-10
0.6 0.8253356149 0.8253356156 7.00E-10
0.7 0.7648421872 0.7648421864 8.50E-10
0.8 0.6967067093 0.6967067101 7.72E-10
0.9 0.6216099682 0.6216099677 5.30E-10
1.0 0.5403023058 0.5403023063 4.51E-10

Table 6: Numerical results for Example 6

6. Conclusion

This paper applied a hybrid functions method based on the combination of BPFs
and Legendre polynomials to solve the systems of ODEs in linear and non-linear
forms. By using the present method, a system of ODEs was reduced to a linear or
non-linear system of algebraic equations. An upper bound of the error was obtained
for the presented method. Various examples such as problem of HIV interactions
with CD4+ T cells, the predator and prey problem, and two examples of linear and
non-linear stiff systems were solved. In addition, a system of ODEs of order two and
Duffing’s equation were converted into the systems of ODEs of order one and then
solved. Simple application and the desired accuracy of the results obtained by this
method show the efficiency of our proposed method.
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12(2007), 39–52.
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