Explicit forms for three integrals in Wand et al.*

Tibor K. Pogány ${ }^{1,2, \dagger}$ and Saralees Nadarajah ${ }^{3}$
${ }^{1}$ Faculty of Maritime Studies, University of Rijeka, Studentska 2, HR-51 000 Rijeka, Croatia
${ }^{2}$ Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Bécsi út 96/b, Hungary
${ }^{3}$ Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Received September 3, 2020; accepted January 13, 2021

Abstract

We derive explicit forms for the three integrals used in Kim and Wand [3] and Wand, Ormerody, Padoan and Frühwirth [7]. The explicit forms involve known special functions for which in-built routines are available.

AMS subject classifications: Primary 60E10; Secondary 33C60, 62G32
Key words: Grünwald-Letnikov fractional derivative, Kummer's confluent hypergeometric function, parabolic cylinder function, Tricomi confluent hypergeometric function

1. Introduction

Article [3] gave an explicit form of expectation propagation for a simple statistical model, while [7] studied mean field variational Bayes for elaborate distributions. Their studies involved the following three integrals. The first integral is

$$
\begin{equation*}
\mathcal{A}(p, q, r, s, t, u)=\int_{\mathbb{R}} \frac{x^{p} \exp \left\{q x-r x^{2}\right\}}{\left(t+s x+x^{2}\right)^{u}} \mathrm{~d} x \tag{1}
\end{equation*}
$$

for $p \geq 0, q, s \in \mathbb{R}, r, u>0$ and $s^{2}<4 t$; see equation (2.1) on page 552 of [3]. The second integral is

$$
\begin{equation*}
\mathcal{B}(p, q, r, s, t, u)=\int_{\mathbb{R}} \frac{x^{p} \exp \left\{q x-r \mathrm{e}^{x}-s \mathrm{e}^{x} /\left(t+\mathrm{e}^{x}\right)\right\}}{\left(t+\mathrm{e}^{x}\right)^{u}} \mathrm{~d} x \tag{2}
\end{equation*}
$$

for $p, s \geq 0, q \in \mathbb{R}$ and $r, t, u>0$; see equation (2.1) on page 552 of [3]. The third integral is

$$
\begin{equation*}
\mathcal{I}(p, q, r, s)=\int_{\mathbb{R}} x^{p} \exp \left\{q x-r x^{2}-s \mathrm{e}^{-x}\right\} \mathrm{d} x \tag{3}
\end{equation*}
$$

for $p \geq 0, q \in \mathbb{R}$ and $s, r>0$; see page 851 in [7].
*The research of Tibor K. Pogány has been supported in part by the University of Rijeka, Croatia; project codes uniri-pr-prirod-19-16 and uniri-tehnic-18-66.
${ }^{\dagger}$ Corresponding author. Email address: poganj@pfri.hr (T.K.Pogány), Saralees.Nadarajah@manchester.ac.uk (S. Nadarajah)
http://www.mathos.hr/mc (C)2021 Department of Mathematics, University of Osijek

Both publications [3] and [7] provided explicit forms for none of the three integrals. In this note, we provide explicit forms for all three integrals. The forms involve known special functions and in-built routines for computing them are available in the literature.

The organization of this note is the following. Section 2 gives two explicit forms for (1). Section 3 gives one explicit form for (2). Section 4 gives two explicit forms for (3).

2. The integral \mathcal{A}

We present an approach in which we use the Grünwald-Letnikov fractional derivative. The Grünwald-Letnikov fractional derivative of order ν with respect to the argument x of a suitable function f is defined by [6]

$$
\mathbb{D}_{x}^{\nu}[f]:=\lim _{h \downarrow 0} \frac{1}{h^{\nu}} \sum_{m=0}^{\infty}(-1)^{m}\binom{\nu}{m} f(x+(\nu-m) h),
$$

where $h \downarrow 0$ means that in approaching zero h remains positive. As is well-known (see, for example, [4]), the Grünwald-Letnikov fractional derivative \mathbb{D}_{x}^{ν} of order ν of the exponential function is

$$
\begin{equation*}
\mathbb{D}_{x}^{\nu}\left[\mathrm{e}^{\alpha x}\right]=\alpha^{\nu} \mathrm{e}^{\alpha x} \tag{4}
\end{equation*}
$$

Firstly, consider the well-known integral

$$
\mathscr{I}(\alpha, \beta)=\int_{\mathbb{R}} \mathrm{e}^{\alpha x-\beta x^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{\beta}} \exp \left\{\frac{\alpha^{2}}{4 \beta}\right\}, \quad \Re(\beta)>0
$$

Obviously, we have

$$
\mathbb{D}_{\alpha}^{p}[\mathscr{I}(\alpha, \beta)]=\int_{\mathbb{R}} x^{p} \mathrm{e}^{\alpha x-\beta x^{2}} \mathrm{~d} x .
$$

On the other hand,

$$
\mathbb{D}_{\alpha}^{p}[\mathscr{I}(\alpha, \beta)]=\int_{0}^{\infty} x^{p} \mathrm{e}^{\alpha x-\beta x^{2}} \mathrm{~d} x+\int_{-\infty}^{0} x^{p} \mathrm{e}^{\alpha x-\beta x^{2}} \mathrm{~d} x=: I^{+}+I^{-}
$$

Using equation (13), page 313 of [1],

$$
I^{+}=(2 \beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp \left\{\frac{\alpha^{2}}{8 \beta}\right\} D_{-p-1}\left(-\frac{\alpha}{\sqrt{2 \beta}}\right)
$$

where $D_{\mu}(\cdot)$ denotes the parabolic cylinder function of order μ (see, for example, [2]), and the constraint $p+1>0$ should be satisfied (which is definitely a weaker assumption than the assumed $p>0$ by Kim and Wand [3]). Accordingly, we have

$$
I^{-}=(-1)^{p}(2 \beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp \left\{\frac{\alpha^{2}}{8 \beta}\right\} D_{-p-1}\left(\frac{\alpha}{\sqrt{2 \beta}}\right)
$$

Therefore,

$$
\begin{aligned}
\mathbb{D}_{\alpha}^{p}[\mathscr{I}(\alpha, \beta)]= & (2 \beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp \left\{\frac{\alpha^{2}}{8 \beta}\right\} \\
& \times\left[D_{-p-1}\left(-\frac{\alpha}{\sqrt{2 \beta}}\right)+(-1)^{p} D_{-p-1}\left(\frac{\alpha}{\sqrt{2 \beta}}\right)\right]
\end{aligned}
$$

Now, introduce a parameter $a>0$ and specify $\alpha=q-a s \in \mathbb{R}$ and $\beta=r+a$, the latter evidently positive; therefore nothing harms the assumption on the parameter space of (p, q, r, s, t). Considering now the integral

$$
\mathrm{e}^{-a t} \mathbb{D}_{q-a s}^{p}[\mathscr{I}(q-a s, r+a)]=\int_{\mathbb{R}} x^{p} \mathrm{e}^{q x-r x^{2}-a\left(t+s x+x^{2}\right)} \mathrm{d} x
$$

we conclude that

$$
\mathcal{A}(p, q, r, s, t, u)=\left.(-1)^{u} \mathbb{D}_{a}^{-u}\left[\mathrm{e}^{-a t} \mathbb{D}_{q-a s}^{p}[\mathscr{I}(q-a s, r+a)]\right]\right|_{a=0}
$$

This formula proves the following result.
Proposition 1. For all $p \geq 0, q, s \in \mathbb{R}, r, u>0$ and $s^{2}<4 t$, we have

$$
\begin{aligned}
\mathcal{A}(p, q, r, s, t, u)= & \mathrm{e}^{\mathrm{i} \pi u} 2^{-\frac{p+1}{2}} \Gamma(p+1) \lim _{a \downarrow 0} \mathbb{D}_{a}^{-u}\left[(r+a)^{-\frac{p+1}{2}} \exp \left\{\frac{(q-a s)^{2}}{8(r+a)}-a t\right\}\right. \\
& \left.\times\left\{D_{-p-1}\left(\frac{a s-q}{\sqrt{2(r+a)}}\right)+\mathrm{e}^{\mathrm{i} \pi p} D_{-p-1}\left(\frac{q-a s}{\sqrt{2(r+a)}}\right)\right\}\right]
\end{aligned}
$$

We now present another approach to calculating integral \mathcal{A}. Kummer's (or confluent hypergeometric) function series definition is

$$
{ }_{1} F_{1}(a, c, z)=\sum_{n \geq 0} \frac{(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!}
$$

The parabolic cylinder function D_{ν} is expressible in terms of the Tricomi confluent hypergeometric function, viz.

$$
U(a ; c ; z)=\frac{\Gamma(1-c)}{\Gamma(1+a-c)}{ }_{1} F_{1}(a ; c ; z)+\frac{\Gamma(c-1)}{\Gamma(a)} z^{1-c}{ }_{1} F_{1}(1+a-c ; 2-c ; z)
$$

as (see equations (2) and (4) on page 117 of [2])

$$
\begin{equation*}
D_{\nu}(z)=2^{\frac{\nu}{2}} \mathrm{e}^{-\frac{z^{2}}{4}} U\left(-\frac{\nu}{2}, \frac{1}{2}, \frac{z^{2}}{2}\right)=2^{\frac{\nu-1}{2}} z \mathrm{e}^{-\frac{z^{2}}{4}} U\left(\frac{1-\nu}{2}, \frac{3}{2}, \frac{z^{2}}{2}\right) \tag{5}
\end{equation*}
$$

where in both cases $-\pi<2 \arg (z) \leq \pi$. Applying the first formula in (5), we obtain
Proposition 2. For the same parameter space as in the previous proposition, we have

$$
\begin{aligned}
\mathcal{A}(p, q, r, s, t, u)= & 2^{-(p+1)} \mathrm{e}^{\mathrm{i} \pi u}\left(1+\mathrm{e}^{\mathrm{i} \pi p}\right) \Gamma(p+1) \\
& \times \lim _{a \downarrow 0} \mathbb{D}_{a}^{-u}\left[\frac{\mathrm{e}^{-a t}}{(r+a)^{\frac{p+1}{2}}} U\left(\frac{p+1}{2}, \frac{1}{2}, \frac{(q-a s)^{2}}{4(r+a)}\right)\right] .
\end{aligned}
$$

3. The integral \mathcal{B}

We apply again the Grünwald-Letnikov fractional derivative (4) of the exponential function. Firstly, we eliminate the denominator and the power x^{p} in the integrand, namely,

$$
\mathcal{B}(p, q, r, s, t, u)=(-1)^{u} \mathbb{D}_{s}^{u} \mathbb{D}_{q-u}^{p}\left[\int_{\mathbb{R}} \exp \left\{(q-u) x-r \mathrm{e}^{x}-\frac{s \mathrm{e}^{x}}{t+\mathrm{e}^{x}}\right\} \mathrm{d} x\right]
$$

Now, we transform the inner integral $I(s)$ and use the Maclaurin expansion with respect to s of the appropriate exponential term to obtain

$$
\begin{align*}
\mathcal{B}(p, q & , r, s, t, u) \\
& =(-1)^{u} \mathbb{D}_{s}^{u}\left[\mathrm{e}^{-s} \mathbb{D}_{q-u}^{p}\left[\int_{\mathbb{R}} \exp \left\{(q-u) x-r \mathrm{e}^{x}+\frac{s t}{t+\mathrm{e}^{x}}\right\} \mathrm{d} x\right]\right] \\
& =(-1)^{u} \mathbb{D}_{s}^{u}\left[\mathrm{e}^{-s} \mathbb{D}_{q-u}^{p}\left[\sum_{n \geq 0} \frac{(s t)^{n}}{n!} \int_{\mathbb{R}} \frac{\mathrm{e}^{(q-u) x-r \mathrm{e}^{x}}}{\left(t+\mathrm{e}^{x}\right)^{n}} \mathrm{~d} x\right]\right] \\
& =(-1)^{u} \sum_{n \geq 0} \frac{t^{n}}{n!} \mathbb{D}_{s}^{u}\left[\mathrm{e}^{-s} s^{n} \mathbb{D}_{q-u}^{p}\left[\int_{\mathbb{R}_{+}} \frac{y^{q-u-1} \mathrm{e}^{-r y}}{(t+y)^{n}} \mathrm{~d} y\right]\right] \\
& =(-1)^{u} \sum_{n \geq 0} \frac{1}{n!} \mathbb{D}_{s}^{u}\left[\mathrm{e}^{-s} s^{n} \mathbb{D}_{w}^{p}\left[\Gamma(w) t^{w} U(w, w+1-n, r t)\right]_{w=q-u}\right] \tag{6}
\end{align*}
$$

where in (6) the Laplace transform formula (see equation (2.1.3.1) on page 18 of [5])

$$
\int_{\mathbb{R}_{+}} \frac{\mathrm{e}^{-p x} x^{\alpha-1}}{(x+z)^{\rho}} \mathrm{d} x=\Gamma(\alpha) z^{\alpha-\rho} U(\alpha, \alpha+1-\rho, p z)
$$

was used, which holds for all $\Re(\alpha)>0, \Re(p)>0$ and $|\arg (z)|<\pi$. This proves the following result.

Proposition 3. For all $p, s \geq 0, q \in \mathbb{R}, r, t, u>0$ and $q>-u$, we have

$$
\begin{align*}
\mathcal{B}(p, q, r, s, t, u)= & \mathrm{e}^{\mathrm{i} \pi u} \sum_{n \geq 0} \frac{1}{n!} \mathbb{D}_{s}^{u}\left[\mathrm{e}^{-s} s^{n}\right. \\
& \left.\times \mathbb{D}_{q-u}^{p}\left[\Gamma(q-u) t^{q-u} U(q-u, q-u+1-n, r t)\right]\right] \tag{7}
\end{align*}
$$

Unfortunately, our method holds true for $q-u>0$ only since $\Gamma(q-u)$ in (7).

4. The integral \mathcal{I}

This time it is enough to split the integration domain into positive and negative reals and take the Maclaurin expansion in both sub-integrals of the exponential expression $\exp \left\{-s \mathrm{e}^{-x}\right\}$. We obtain the following

Proposition 4. For all $p \geq 0, q \in \mathbb{R}, s, r>0$, we have

$$
\begin{equation*}
\mathcal{I}(p, q, r, s)=\frac{\Gamma(p+1)}{(2 r)^{\frac{p+1}{2}}} \sum_{n \geq 0} \frac{(-s)^{n}}{n!}\left\{D_{-p-1}\left(\frac{n-q}{\sqrt{2 r}}\right)+\mathrm{e}^{\mathrm{i} \pi p} D_{-p-1}\left(\frac{q-n}{\sqrt{2 r}}\right)\right\} \tag{8}
\end{equation*}
$$

Moreover, the following computable series representation holds:

$$
\mathcal{I}(p, q, r, s)=\frac{\Gamma(p+1)}{(4 r)^{\frac{p+1}{2}}}\left(1+\mathrm{e}^{\mathrm{i} \pi p}\right) \sum_{n \geq 0} \frac{(-s)^{n}}{n!} U\left(\frac{p+1}{2}, \frac{1}{2}, \frac{(q-n)^{2}}{4 r}\right)
$$

Expression (8) could be deduced by some aspects of the discussion on pages 851852 of [7]. However, there the authors' approach to quadratures for $I(p, q, r, s)$ was completely different.

Acknowledgement

The authors are indebted to anonymous referees for their careful reading of an earlier version of the manuscript and their valuable comments and corrections.

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, volume I, McGraw-Hill, New York, 1954. (Based, in part, on notes left by Harry Bateman).
[2] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, volume II, McGraw-Hill, New York, 1954. (Based, in part, on notes left by Harry Bateman).
[3] A. S. I. Kim, M. P. Wand, The explicit form of expectation propagation for a simple statistical model, Electron. J. Stat. 10(2016), 550-581.
[4] M. D. Ortigueira, A coherent approach to non-integer order derivatives, Signal Process. 86(2006), 2505-2515.
[5] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series. Direct Laplace transforms, volume 4, Gordon and Breach, New York, 1992.
[6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993.
[7] M. P. Wand, J. T. Ormerody, S. A. Padoan, R. Frühwirth, Mean field variational Bayes for elaborate distributions, Bayesian Anal. 6(2011), 847-900.

