Explicit forms for three integrals in Wand et al.*

TIBOR K. POGÁNY^{1,2,†}AND SARALEES NADARAJAH³

¹ Faculty of Maritime Studies, University of Rijeka, Studentska 2, HR-51000 Rijeka, Croatia

 2 Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Bécsi út 96/b, Hungary

³ Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Received September 3, 2020; accepted January 13, 2021

Abstract. We derive explicit forms for the three integrals used in Kim and Wand [3] and Wand, Ormerody, Padoan and Frühwirth [7]. The explicit forms involve known special functions for which in-built routines are available.

AMS subject classifications: Primary 60E10; Secondary 33C60, 62G32

Key words: Grünwald–Letnikov fractional derivative, Kummer's confluent hypergeometric function, parabolic cylinder function, Tricomi confluent hypergeometric function

1. Introduction

Article [3] gave an explicit form of expectation propagation for a simple statistical model, while [7] studied mean field variational Bayes for elaborate distributions. Their studies involved the following three integrals. The first integral is

$$\mathcal{A}(p,q,r,s,t,u) = \int_{\mathbb{R}} \frac{x^p \exp\left\{qx - rx^2\right\}}{\left(t + sx + x^2\right)^u} \,\mathrm{d}x \tag{1}$$

for $p \ge 0, q, s \in \mathbb{R}$, r, u > 0 and $s^2 < 4t$; see equation (2.1) on page 552 of [3]. The second integral is

$$\mathcal{B}(p,q,r,s,t,u) = \int_{\mathbb{R}} \frac{x^p \, \exp\left\{qx - re^x - s \, e^x / \, (t+e^x)\right\}}{\left(t+e^x\right)^u} \, \mathrm{d}x \tag{2}$$

for $p, s \ge 0, q \in \mathbb{R}$ and r, t, u > 0; see equation (2.1) on page 552 of [3]. The third integral is

$$\mathcal{I}(p,q,r,s) = \int_{\mathbb{R}} x^p \, \exp\left\{qx - rx^2 - s \, \mathrm{e}^{-x}\right\} \, \mathrm{d}x \tag{3}$$

for $p \ge 0, q \in \mathbb{R}$ and s, r > 0; see page 851 in [7].

http://www.mathos.hr/mc

^{*}The research of Tibor K. Pogány has been supported in part by the University of Rijeka, Croatia; project codes uniri-pr-prirod-19-16 and uniri-tehnic-18-66.

[†]Corresponding author. *Email address:* poganj@pfri.hr (T.K.Pogány), Saralees.Nadarajah@manchester.ac.uk (S.Nadarajah)

^{©2021} Department of Mathematics, University of Osijek

Both publications [3] and [7] provided explicit forms for none of the three integrals. In this note, we provide explicit forms for all three integrals. The forms involve known special functions and in-built routines for computing them are available in the literature.

The organization of this note is the following. Section 2 gives two explicit forms for (1). Section 3 gives one explicit form for (2). Section 4 gives two explicit forms for (3).

2. The integral \mathcal{A}

We present an approach in which we use the Grünwald-Letnikov fractional derivative. The Grünwald-Letnikov fractional derivative of order ν with respect to the argument x of a suitable function f is defined by [6]

$$\mathbb{D}_{x}^{\nu}[f] := \lim_{h \downarrow 0} \frac{1}{h^{\nu}} \sum_{m=0}^{\infty} (-1)^{m} \binom{\nu}{m} f(x + (\nu - m)h),$$

where $h \downarrow 0$ means that in approaching zero h remains positive. As is well-known (see, for example, [4]), the Grünwald-Letnikov fractional derivative \mathbb{D}_x^{ν} of order ν of the exponential function is

$$\mathbb{D}_{x}^{\nu}\left[\mathrm{e}^{\alpha x}\right] = \alpha^{\nu}\mathrm{e}^{\alpha x}.\tag{4}$$

Firstly, consider the well-known integral

$$\mathscr{I}(\alpha,\beta) = \int_{\mathbb{R}} e^{\alpha x - \beta x^2} \, \mathrm{d}x = \sqrt{\frac{\pi}{\beta}} \, \exp\left\{\frac{\alpha^2}{4\beta}\right\}, \qquad \Re(\beta) > 0.$$

Obviously, we have

$$\mathbb{D}^p_{\alpha}\left[\mathscr{I}(\alpha,\beta)\right] = \int_{\mathbb{R}} x^p \mathrm{e}^{\alpha x - \beta x^2} \, \mathrm{d}x$$

On the other hand,

$$\mathbb{D}^p_{\alpha}\left[\mathscr{I}(\alpha,\beta)\right] = \int_0^\infty x^p \mathrm{e}^{\alpha x - \beta x^2} \,\mathrm{d}x + \int_{-\infty}^0 x^p \mathrm{e}^{\alpha x - \beta x^2} \,\mathrm{d}x =: I^+ + I^-.$$

Using equation (13), page 313 of [1],

$$I^{+} = (2\beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp\left\{\frac{\alpha^{2}}{8\beta}\right\} D_{-p-1}\left(-\frac{\alpha}{\sqrt{2\beta}}\right),$$

where $D_{\mu}(\cdot)$ denotes the parabolic cylinder function of order μ (see, for example, [2]), and the constraint p + 1 > 0 should be satisfied (which is definitely a weaker assumption than the assumed p > 0 by Kim and Wand [3]). Accordingly, we have

$$I^{-} = (-1)^{p} (2\beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp\left\{\frac{\alpha^{2}}{8\beta}\right\} D_{-p-1}\left(\frac{\alpha}{\sqrt{2\beta}}\right).$$

Therefore,

$$\mathbb{D}^{p}_{\alpha}\left[\mathscr{I}(\alpha,\beta)\right] = (2\beta)^{-\frac{p+1}{2}} \Gamma(p+1) \exp\left\{\frac{\alpha^{2}}{8\beta}\right\} \\ \times \left[D_{-p-1}\left(-\frac{\alpha}{\sqrt{2\beta}}\right) + (-1)^{p} D_{-p-1}\left(\frac{\alpha}{\sqrt{2\beta}}\right)\right].$$

Now, introduce a parameter a > 0 and specify $\alpha = q - as \in \mathbb{R}$ and $\beta = r + a$, the latter evidently positive; therefore nothing harms the assumption on the parameter space of (p, q, r, s, t). Considering now the integral

$$e^{-at}\mathbb{D}_{q-as}^p\left[\mathscr{I}(q-as,r+a)\right] = \int_{\mathbb{R}} x^p e^{qx-rx^2-a\left(t+sx+x^2\right)} \, \mathrm{d}x,$$

we conclude that

$$\mathcal{A}(p,q,r,s,t,u) = (-1)^u \mathbb{D}_a^{-u} \left[e^{-at} \mathbb{D}_{q-as}^p \left[\mathscr{I}(q-as,r+a) \right] \right] \Big|_{a=0}$$

This formula proves the following result.

Proposition 1. For all $p \ge 0, q, s \in \mathbb{R}$, r, u > 0 and $s^2 < 4t$, we have

$$\mathcal{A}(p,q,r,s,t,u) = e^{i\pi u} 2^{-\frac{p+1}{2}} \Gamma(p+1) \lim_{a \downarrow 0} \mathbb{D}_{a}^{-u} \left[(r+a)^{-\frac{p+1}{2}} \exp\left\{ \frac{(q-as)^{2}}{8(r+a)} - at \right\} \times \left\{ D_{-p-1} \left(\frac{as-q}{\sqrt{2(r+a)}} \right) + e^{i\pi p} D_{-p-1} \left(\frac{q-as}{\sqrt{2(r+a)}} \right) \right\} \right].$$

We now present another approach to calculating integral \mathcal{A} . Kummer's (or confluent hypergeometric) function series definition is

$$_{1}F_{1}(a,c,z) = \sum_{n \ge 0} \frac{(a)_{n}}{(c)_{n}} \frac{z^{n}}{n!}$$

The parabolic cylinder function D_{ν} is expressible in terms of the Tricomi confluent hypergeometric function, *viz*.

$$U(a;c;z) = \frac{\Gamma(1-c)}{\Gamma(1+a-c)} {}_{1}F_{1}(a;c;z) + \frac{\Gamma(c-1)}{\Gamma(a)} {}_{2}z^{1-c} {}_{1}F_{1}(1+a-c;2-c;z),$$

as (see equations (2) and (4) on page 117 of [2])

$$D_{\nu}(z) = 2^{\frac{\nu}{2}} e^{-\frac{z^2}{4}} U\left(-\frac{\nu}{2}, \frac{1}{2}, \frac{z^2}{2}\right) = 2^{\frac{\nu-1}{2}} z e^{-\frac{z^2}{4}} U\left(\frac{1-\nu}{2}, \frac{3}{2}, \frac{z^2}{2}\right), \quad (5)$$

where in both cases $-\pi < 2 \arg(z) \le \pi$. Applying the first formula in (5), we obtain **Proposition 2.** For the same parameter space as in the previous proposition, we have

$$\begin{aligned} \mathcal{A}(p,q,r,s,t,u) &= 2^{-(p+1)} e^{i\pi u} \left(1 + e^{i\pi p}\right) \Gamma(p+1) \\ &\times \lim_{a \downarrow 0} \mathbb{D}_a^{-u} \left[\frac{e^{-at}}{(r+a)^{\frac{p+1}{2}}} U\left(\frac{p+1}{2}, \frac{1}{2}, \frac{(q-as)^2}{4(r+a)}\right) \right]. \end{aligned}$$

3. The integral \mathcal{B}

We apply again the Grünwald-Letnikov fractional derivative (4) of the exponential function. Firstly, we eliminate the denominator and the power x^p in the integrand, namely,

$$\mathcal{B}(p,q,r,s,t,u) = (-1)^u \, \mathbb{D}_s^u \mathbb{D}_{q-u}^p \left[\int_{\mathbb{R}} \exp\left\{ (q-u)x - r\mathrm{e}^x - \frac{s \, \mathrm{e}^x}{t + \mathrm{e}^x} \right\} \, \mathrm{d}x \right].$$

Now, we transform the inner integral I(s) and use the Maclaurin expansion with respect to s of the appropriate exponential term to obtain

$$\begin{aligned} \mathcal{B}(p,q,r,s,t,u) \\ &= (-1)^u \, \mathbb{D}_s^u \left[e^{-s} \, \mathbb{D}_{q-u}^p \left[\int_{\mathbb{R}} \exp\left\{ (q-u)x - re^x + \frac{s \, t}{t+e^x} \right\} \, \mathrm{d}x \right] \right] \\ &= (-1)^u \, \mathbb{D}_s^u \left[e^{-s} \, \mathbb{D}_{q-u}^p \left[\sum_{n \ge 0} \frac{(st)^n}{n!} \int_{\mathbb{R}} \frac{e^{(q-u)x - re^x}}{(t+e^x)^n} \, \mathrm{d}x \right] \right] \\ &= (-1)^u \, \sum_{n \ge 0} \frac{t^n}{n!} \, \mathbb{D}_s^u \left[e^{-s} \, s^n \, \mathbb{D}_{q-u}^p \left[\int_{\mathbb{R}_+} \frac{y^{q-u-1}e^{-ry}}{(t+y)^n} \, \mathrm{d}y \right] \right] \\ &= (-1)^u \, \sum_{n \ge 0} \frac{1}{n!} \, \mathbb{D}_s^u \Big[e^{-s} \, s^n \, \mathbb{D}_w^p \big[\Gamma(w) \, t^w \, U(w,w+1-n,r \, t) \big]_{w=q-u} \Big], \quad (6) \end{aligned}$$

where in (6) the Laplace transform formula (see equation (2.1.3.1) on page 18 of [5])

$$\int_{\mathbb{R}_+} \frac{\mathrm{e}^{-px} x^{\alpha-1}}{(x+z)^{\rho}} \, \mathrm{d}x = \Gamma(\alpha) \ z^{\alpha-\rho} \ U(\alpha, \alpha+1-\rho, p \ z)$$

was used, which holds for all $\Re(\alpha) > 0$, $\Re(p) > 0$ and $|\arg(z)| < \pi$. This proves the following result.

Proposition 3. For all $p, s \ge 0, q \in \mathbb{R}$, r, t, u > 0 and q > -u, we have

$$\mathcal{B}(p,q,r,s,t,u) = e^{i\pi u} \sum_{n\geq 0} \frac{1}{n!} \mathbb{D}_s^u \Big[e^{-s} s^n \\ \times \mathbb{D}_{q-u}^p \Big[\Gamma(q-u) t^{q-u} U(q-u,q-u+1-n,r t) \Big] \Big].$$
(7)

Unfortunately, our method holds true for q - u > 0 only since $\Gamma(q - u)$ in (7).

4. The integral \mathcal{I}

This time it is enough to split the integration domain into positive and negative reals and take the Maclaurin expansion in both sub-integrals of the exponential expression $\exp\{-se^{-x}\}$. We obtain the following

104

Proposition 4. For all $p \ge 0, q \in \mathbb{R}$, s, r > 0, we have

$$\mathcal{I}(p,q,r,s) = \frac{\Gamma(p+1)}{(2r)^{\frac{p+1}{2}}} \sum_{n \ge 0} \frac{(-s)^n}{n!} \left\{ D_{-p-1}\left(\frac{n-q}{\sqrt{2r}}\right) + e^{i\pi p} D_{-p-1}\left(\frac{q-n}{\sqrt{2r}}\right) \right\}.$$
 (8)

Moreover, the following computable series representation holds:

$$\mathcal{I}(p,q,r,s) = \frac{\Gamma(p+1)}{(4r)^{\frac{p+1}{2}}} \left(1 + e^{i\pi p}\right) \sum_{n \ge 0} \frac{(-s)^n}{n!} U\left(\frac{p+1}{2}, \frac{1}{2}, \frac{(q-n)^2}{4r}\right).$$

Expression (8) could be deduced by some aspects of the discussion on pages 851-852 of [7]. However, there the authors' approach to quadratures for I(p, q, r, s) was completely different.

Acknowledgement

The authors are indebted to anonymous referees for their careful reading of an earlier version of the manuscript and their valuable comments and corrections.

References

- A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER, F. G. TRICOMI, *Tables of Integral Transforms*, volume I, McGraw-Hill, New York, 1954. (Based, in part, on notes left by Harry Bateman).
- [2] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER, F. G. TRICOMI, *Higher Transcen*dental Functions, volume II, McGraw-Hill, New York, 1954. (Based, in part, on notes left by Harry Bateman).
- [3] A. S. I. KIM, M. P. WAND, The explicit form of expectation propagation for a simple statistical model, Electron. J. Stat. **10**(2016), 550–581.
- M. D. ORTIGUEIRA, A coherent approach to non-integer order derivatives, Signal Process. 86(2006), 2505–2515.
- [5] A. P. PRUDNIKOV, YU. A. BRYCHKOV, O. I. MARICHEV, Integrals and series. Direct Laplace transforms, volume 4, Gordon and Breach, New York, 1992.
- [6] S. G. SAMKO, A. A. KILBAS, O. I. MARICHEV, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993.
- [7] M. P. WAND, J. T. ORMERODY, S. A. PADOAN, R. FRÜHWIRTH, Mean field variational Bayes for elaborate distributions, Bayesian Anal. 6(2011), 847–900.