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Abstract. We derive explicit forms for the three integrals used in Kim and Wand [3] and
Wand, Ormerody, Padoan and Frühwirth [7]. The explicit forms involve known special
functions for which in-built routines are available.
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1. Introduction

Article [3] gave an explicit form of expectation propagation for a simple statistical
model, while [7] studied mean field variational Bayes for elaborate distributions.
Their studies involved the following three integrals. The first integral is

A(p, q, r, s, t, u) =

∫
R

xp exp
{
qx− rx2

}
(t+ sx+ x2)

u dx (1)

for p ≥ 0, q, s ∈ R, r, u > 0 and s2 < 4t; see equation (2.1) on page 552 of [3]. The
second integral is

B(p, q, r, s, t, u) =

∫
R

xp exp {qx− rex − s ex/ (t+ ex)}
(t+ ex)

u dx (2)

for p, s ≥ 0, q ∈ R and r, t, u > 0; see equation (2.1) on page 552 of [3]. The third
integral is

I(p, q, r, s) =

∫
R
xp exp

{
qx− rx2 − s e−x

}
dx (3)

for p ≥ 0, q ∈ R and s, r > 0; see page 851 in [7].
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Both publications [3] and [7] provided explicit forms for none of the three inte-
grals. In this note, we provide explicit forms for all three integrals. The forms involve
known special functions and in-built routines for computing them are available in
the literature.

The organization of this note is the following. Section 2 gives two explicit forms
for (1). Section 3 gives one explicit form for (2). Section 4 gives two explicit forms
for (3).

2. The integral A

We present an approach in which we use the Grünwald-Letnikov fractional derivative.
The Grünwald-Letnikov fractional derivative of order ν with respect to the argument
x of a suitable function f is defined by [6]

Dνx[f ] := lim
h↓0

1

hν

∞∑
m=0

(−1)m
(
ν

m

)
f (x+ (ν −m)h) ,

where h ↓ 0 means that in approaching zero h remains positive. As is well-known
(see, for example, [4]), the Grünwald-Letnikov fractional derivative Dνx of order ν of
the exponential function is

Dνx [eαx] = ανeαx. (4)

Firstly, consider the well-known integral

I (α, β) =

∫
R

eαx−βx
2

dx =

√
π

β
exp

{
α2

4β

}
, <(β) > 0.

Obviously, we have

Dpα [I (α, β)] =

∫
R
xpeαx−βx

2

dx.

On the other hand,

Dpα [I (α, β)] =

∫ ∞
0

xpeαx−βx
2

dx+

∫ 0

−∞
xpeαx−βx

2

dx =: I+ + I−.

Using equation (13), page 313 of [1],

I+ = (2β)−
p+1
2 Γ(p+ 1) exp

{
α2

8β

}
D−p−1

(
− α√

2β

)
,

where Dµ(·) denotes the parabolic cylinder function of order µ (see, for example,
[2]), and the constraint p + 1 > 0 should be satisfied (which is definitely a weaker
assumption than the assumed p > 0 by Kim and Wand [3]). Accordingly, we have

I− = (−1)p(2β)−
p+1
2 Γ(p+ 1) exp

{
α2

8β

}
D−p−1

(
α√
2β

)
.
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Therefore,

Dpα [I (α, β)] = (2β)−
p+1
2 Γ(p+ 1) exp

{
α2

8β

}
×
[
D−p−1

(
− α√

2β

)
+ (−1)pD−p−1

(
α√
2β

)]
.

Now, introduce a parameter a > 0 and specify α = q − as ∈ R and β = r + a, the
latter evidently positive; therefore nothing harms the assumption on the parameter
space of (p, q, r, s, t). Considering now the integral

e−atDpq−as [I (q − as, r + a)] =

∫
R
xpeqx−rx

2−a(t+sx+x2) dx,

we conclude that

A(p, q, r, s, t, u) = (−1)u D−ua
[
e−atDpq−as [I (q − as, r + a)]

] ∣∣∣
a=0

.

This formula proves the following result.

Proposition 1. For all p ≥ 0, q, s ∈ R, r, u > 0 and s2 < 4t, we have

A(p, q, r, s, t, u) = eiπu 2−
p+1
2 Γ(p+ 1) lim

a↓0
D−ua

[
(r + a)−

p+1
2 exp

{
(q − as)2

8(r + a)
− at

}

×

{
D−p−1

(
as− q√
2(r + a)

)
+ eiπp D−p−1

(
q − as√
2(r + a)

)}]
.

We now present another approach to calculating integral A. Kummer’s (or con-
fluent hypergeometric) function series definition is

1F1(a, c, z) =
∑
n≥0

(a)n
(c)n

zn

n!
.

The parabolic cylinder function Dν is expressible in terms of the Tricomi confluent
hypergeometric function, viz.

U(a; c; z) =
Γ(1− c)

Γ(1 + a− c) 1F1(a; c; z) +
Γ(c− 1)

Γ(a)
z1−c 1F1(1 + a− c; 2− c; z),

as (see equations (2) and (4) on page 117 of [2])

Dν(z) = 2
ν
2 e−

z2

4 U

(
−ν

2
,

1

2
,
z2

2

)
= 2

ν−1
2 z e−

z2

4 U

(
1− ν

2
,

3

2
,
z2

2

)
, (5)

where in both cases −π < 2 arg(z) ≤ π. Applying the first formula in (5), we obtain

Proposition 2. For the same parameter space as in the previous proposition, we
have

A(p, q, r, s, t, u) = 2−(p+1) eiπu
(
1 + eiπp

)
Γ(p+ 1)

× lim
a↓0

D−ua

[
e−at

(r + a)
p+1
2

U

(
p+ 1

2
,

1

2
,

(q − as)2

4(r + a)

)]
.
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3. The integral B

We apply again the Grünwald-Letnikov fractional derivative (4) of the exponential
function. Firstly, we eliminate the denominator and the power xp in the integrand,
namely,

B(p, q, r, s, t, u) = (−1)u DusD
p
q−u

[∫
R

exp

{
(q − u)x− rex − s ex

t+ ex

}
dx

]
.

Now, we transform the inner integral I(s) and use the Maclaurin expansion with
respect to s of the appropriate exponential term to obtain

B(p, q, r, s, t, u)

= (−1)u Dus
[
e−s Dpq−u

[∫
R

exp

{
(q − u)x− rex +

s t

t+ ex

}
dx

]]

= (−1)u Dus

e−s Dpq−u

∑
n≥0

(st)n

n!

∫
R

e(q−u)x−re
x

(t+ ex)
n dx


= (−1)u

∑
n≥0

tn

n!
Dus

[
e−s sn Dpq−u

[∫
R+

yq−u−1e−ry

(t+ y)n
dy

]]

= (−1)u
∑
n≥0

1

n!
Dus
[
e−s sn Dpw

[
Γ(w) tw U(w,w + 1− n, r t)

]
w=q−u

]
, (6)

where in (6) the Laplace transform formula (see equation (2.1.3.1) on page 18 of [5])∫
R+

e−px xα−1

(x+ z)ρ
dx = Γ(α) zα−ρ U(α, α+ 1− ρ, p z)

was used, which holds for all <(α) > 0, <(p) > 0 and | arg(z)| < π. This proves the
following result.

Proposition 3. For all p, s ≥ 0, q ∈ R, r, t, u > 0 and q > −u, we have

B(p, q, r, s, t, u) = eiπu
∑
n≥0

1

n!
Dus
[
e−s sn

× Dpq−u
[
Γ(q − u) tq−u U(q − u, q − u+ 1− n, r t)

]]
. (7)

Unfortunately, our method holds true for q − u > 0 only since Γ(q − u) in (7).

4. The integral I

This time it is enough to split the integration domain into positive and negative reals
and take the Maclaurin expansion in both sub-integrals of the exponential expression
exp {−se−x}. We obtain the following
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Proposition 4. For all p ≥ 0, q ∈ R, s, r > 0, we have

I(p, q, r, s) =
Γ(p+ 1)

(2r)
p+1
2

∑
n≥0

(−s)n

n!

{
D−p−1

(
n− q√

2r

)
+ eiπp D−p−1

(
q − n√

2r

)}
. (8)

Moreover, the following computable series representation holds:

I(p, q, r, s) =
Γ(p+ 1)

(4r)
p+1
2

(
1 + eiπp

) ∑
n≥0

(−s)n

n!
U

(
p+ 1

2
,

1

2
,

(q − n)2

4r

)
.

Expression (8) could be deduced by some aspects of the discussion on pages 851-
852 of [7]. However, there the authors’ approach to quadratures for I(p, q, r, s) was
completely different.
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