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1. Introduction

In 1967, Prof. Robert Langlands introduced the Langlands program. It is about the
connection between number theory and geometry. As a part thereof, he introduced
the Local Langlands conjecture which is related to the n-dimensional complex rep-
resentations. There are many different groups and many different fields for which
these conjectures can be stated. One version is the p-adic Langlands correspondence.
The p-adic Langlands correspondence for GL2(Q,) states:

2-dim p-adic representations PN p-adic Banach space representations
of Gal(Q,/Qy) of GLy(Qp)

In 2002, Schneider and Teitelbaum developed the theory of p-adic Banach space
representations of p-adic groups, which are important to study the p-adic Lang-
lands program. In this paper, we study the p-adic Banach space representation of a
split connected reductive p-adic group, parabolically induced from a character of a
parabolic subgroup. We show that the continuous dual of such a representation can
be expressed in terms of the tensor product of modules. This explicit description can
be useful when applying the Schneider-Teitelbaum duality theory for studying Ba-
nach space representations because the duality theory of Schneider and Teitelbaum
relates p-adic Banach space representations to the corresponding Iwasawa modules
[9].

Let F' be a finite extension of Q, and let o denote the ring of integers of F'. For
a profinite group H, there is a op-module

or|[H]] = Proj lim op[H/N].
NC N(H)
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Here NV (H) denotes the family of all open normal subgroups of H. Then we can
define Iwasawa module F[[H]] = F ®,, or[[H]], [9] with the finest locally convex
topology such that the inclusion of or[[H]] is continuous.

In this paper, we have considered sequence finite extensions of @, such that
K O L 2 Q, Letpr denote the unique maximal ideal of o7. Let G be a split
and connected reductive algebraic Z-group, and Gy the group of or-points. Fix a
maximal split torus Ty in G, and a minimal parabolic subgroup Py = P, containing
Ty. Let W be the Weyl group of Gy and A the set of simple roots. For © C A, Pg
denotes the standard parabolic subgroup corresponding to the set ©. Set Pgo =
Po(or). Let K[[Gp]] be the completed group algebra defined in [8] (see section 2).

Let x : Mg, — 0}({ be a continuous character, extended to Pg ¢ by making it
trivial on Ug 9. We consider the degenerate principal series representation

Ind3? (x') ={f € C(Go, K) | f(gp) = x(p)f(g) for any g € Go, p € Po,o}-

The character x induces a K|[[Pg o]]-module structure on K (proposition 1, corol-
lary 1). We write K for this K[[Pg g|]-module.
Our main result is the following theorem.

Theorem 1. Let © C A. Let Po = MgUg and x is a continuous character of
Me,o. Then the dual of the degenerate principal series representation Indgg) O()(_1)

is isomorphic to K|[[Go)] ®k[ipe.o)) K.

The statement of the theorem for principal series representations (case © = ()
can be found in [9] for GL2(Q,) and in [10]. A consequence of the theorem is that
the degenerate principal series representation I ndgg . (x~1) is an admissible Banach
space representation (see [7], Proposition 2.4). 1

We briefly describe the content of the paper. In section 2, we introduce notations.
In section 3, we present some results related to the dual of degenerate principal series
representations. We construct a convenient and explicit decomposition for Go/Pe o
in section 4. Finally, in section 5, we produce the proof of the main theorem.

2. Notations

Let L be a finite extension of Q,, o, its ring of integers and p; a unique maximal
ideal of oy,. Let K be a finite extension of L, and define ox and px analogously. Let
G be a split and connected reductive algebraic Z-group, and G = G(L). We write
[ for op/pr. For any algebraic subgroup H of G, we write H for H(l) and Hy for
H(OL).

We fix a split maximal torus T C G. Let ® denote the set of roots of T in G.
Also, we fix a base A of ®. The choice of A determines the corresponding Borel
subgroup B.

We let W denote the Weyl group of G, which is naturally isomorphic to the
quotient of the normalizer Ng(T) of T in G. For © C A, we denote by ®F (re-
spectively, ®g) a set of positive (respectively, negative) roots in the linear span of
©. We denote by Wg the subgroup of W generated by simple reflections for roots
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a € O. The set
[W/Wg] ={weW |wb > 0}
is a set of coset representatives of W/Wg as defined in [3]. Let Pg = MgUg
be a standard parabolic subgroup corresponding to O, with Mg a standard Levi
subgroup and Ug its unipotent radical.
Let x : Mg,o — o) be a continuous character. The character x can be extended
to Po,o by making it trivial on Ug o. Define

IndZ (x') ={f € C(Go,K) | f(gp) = x(p)f(g) for any g€ Go, p € Poo}-

Via the left inverse translation action g.f(x) = f(g~'x), this is a K-Banach space
representation of Gy. The representation [ ndggﬂo(x’l) is called the degenerate
principal series representation.
Notice that Gy is a compact p-adic group. Therefore we have the projective
limit ok [[Go]] := Proj limox [Go/H] taken over compact open normal subgroups H
H

of Go. We work with the completed group algebra K[[Go]] := K ®o, ok[[Go]]-
Let C'(Gy, K) denote the vector space of continuous distributions on Gy which,
by definition, is the dual to the space C(Gyp, K) of continuous K-functions on Gjy.
Then K[[Gy]] can be identified with C’(Gy, K) by identifying g € Gy with the Dirac
distribution 4.

Proposition 1. Let x : Pgo — o) be a continuous character. Then x induces an
ok [[Peo]]-module structure on ok .

Proof. By continuity of x at 1, for each integer n > 0 such that x|p,, # 1, there

is a maximal integer I,, such that x(Po,,) C 1+p'. If x|p,, =1, we take l,, = co.
Thus, we can define a group homomorphism

Xn : P®70/P®,n — (OK/IJZ")X

in such a way that x,(pPe ) = x(p)(1 + p'»). By that, we have the corresponding
ring homomorphism

O : 0k [Po,0/Pon] — ok /p'"
such that > a; p;Pon — Y aix(pi), where a; € ox and p; € Pg . It is clear from
the construction that the maps {6, }»>0 are compatible. Also, lim,,_, I, = 0o and
hence projlim,, ox /p'» = ox. Then by the projective limit we obtain an og-linear
continuous ring homomorphism, which we denote again by x:

X : 0k [[Po,o]] — oK.
The corresponding action ox[[Pe o]] X ox — ok is given by (i, a) — x(u)a. O
Corollary 1. Let x : Pog — o be a continuous character. Then x induces a
K[[Ps o]]-module structure on K.

Proof. Tensoring with idx®,,, we get a map x : K[[Poo]] = K. More specifically,
p € K[[Po,0]] can be written as = apg for some a € K and o € ox[[Po,o]]. Then
O

x (1) = ax(po)-

We write KX for K equipped with the K[[Pg o]]-module structure induced by
X-
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3. The dual of a principal series representation

The representation Indgg ) (x~1) is a closed subspace of the Banach space C(Go, K).
Therefore, we can define a short exact sequence of left K[[Gy]]-modules

0— mdf;‘(;,o(x—l) — C(Gp, K) — A — 0, (1)

where A = C(Gy, K)/Indgg),o (x~1). Because Gy acts on Indggyo (x~ 1) by left inverse
translation g- f(z) = f(g7'z), K[Go] acts on Indgg . (x~1). Then by continuity there
is a left K[[Go]]-action on Indgg) L.

Taking the continuous dual of (1), we obtain the following exact sequence:

0— A — C'(Go, K) — Ind$§2 (x™') — 0.

Here, A" = {y € C"(Go,K) | u(f) = 0 Vf € Indg2 (x~")}. Identifying C'(Go, K)
with K[[Gy]], we get the following isomorphism:

Ind3g (x™") = K[[Go]l/A'. (2)
Henceforth, we use the set A’ as defined above.

Lemma 1. The set A’ defined above is a left K[[Go]]-module.

Proof. Define a map (g -1)(a) := (g ta) for any g € Go ,a € Aandl € A’. Tt
is not hard to show that this map is a left action. Hence, A’ has a left Gy-action.

This Gp-action on A’ extends to a K[Ggl-action, and by linearity and continuity it
extends to a K[[Go]]-action. Then A’ is a left K[[Go]]-module. O

Furthermore, with set A’ being a subgroup of K[[Gy]] and having a K[[Pgo]]-
action, we can introduce a left K[[Pg o]]-module structure for K[[Gy]]/A’, by section
10.2 in [4].

4. Coset representatives for G,/ Po

Let w e W. If B~ = TU™ is the Borel subgroup containing 7' opposite to B, by
28.1 in [5], we have T-stable subgroups of U

U, =UnwUw™, U,=UnwU w '

Their respective sets of roots partition ®*, & = {a > 0 | w(a) > 0} and ¥, =
{a > 0 | w(a) < 0}. Proposition in 28.1 [5] shows that for each w € W, U =
U,U, = U,,U,, but in general this direct span is not a semidirect product. This
implies that the double coset BwB can also be written as U,wB. The following
propositon is the main result in this section.

Proposition 2. Let © be a subset of the set of simple roots. Let Pg be a standard
parabolic subgroup corresponding to ©. Then there is a disjoint union decomposition

GO = |_| wU67w71/2P@,O7
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where w ranges over the set [W/We] and Ug 12 = IT Uaox 11 Uan.
T a<0, a<0,
wa>0 wa<0,

acd " \og
Proof. We have - o
G=| |BwB. (3)
w

Identity (3) gives a canonical map W — B\G/B. We also know that Pg =
Uwew, BwB. Proposition 1.3.1 of [3] implies

G= |_| BwPe. (4)
we[W/We]

In general, we can present BwPg as TUwPg, which can be written as UwPg
since T normalizes U. Since UwB = U,wB, we have UwPg = U, wPg. It follows

G = |_| wape.

we[W/We]
Pulling back, we have Gy = Ll (UoNnwU-w HwGPe . Then
we[W/We)]
Go = I_l Uw70w01P@70. (5)
we[W/We]

Since G = U; 11Uy, we can write

Go = |_| U, owG1Pe o = |_| wU,, 1 ,5Pe 0,
we[W/We] we[W/We]

where U, ) p = w™ Uy, owUy by [2]. Again by [2], we have

qu,l/2: H Ua’ox H Ua,1~

a<0, a<0,
wa>0 wa<0

From the above product we want to eliminate the subgroups U, contained in Pg.
Note that U;,l/Z is a subgroup of U, . We know that Uy NPeog = [[ Ua,o. Since
acdg

we [W/We]={we W | w0 > 0}, we have

Il Voo I Uax=1 and ] Uaon [ Uar= ][] Uau

acdg ifgb aEdg 3526 acdg

Therefore, we can write Gy as a disjoint union

GO = |_| wU@_7w71/2P@,07 (6)
we[W/We]
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where
Vo= 11 Vaox I Uan.
a<0, a<0,
wa>0 wa<0,
acd " \og

The following technical result is analogous to Lemma 4.5 of [2].

Lemma 2. Fiz wo € [W/We] and uo € Ug 12 Letn=1. Then

ualwal( |_le(;710,1/2 ) N GnP@’O = Ué,n

w

Proof. Consider the projection from Gy to G. The sets wUg 1o for w € [W/We]
all project into different elements of B\G/Pg . Then,

w0u0G1P@70 n U}U(;,w,l/2 7é ¢ = W = Wy.
Without loss of generality, let us assume w = wy. Then
—1 —1yr— —
ug Wy Wer1/2 g Ug 172 C Ug o

Hence, it is enough to prove Ug o N GnPo,o C G,,. We consider the projection to
Go/G,,. Since UgoNPoo= {1}, the only element of Go/G,, which is in the image
of both P o and Ug , is the identity. O

5. Main theorem

We begin by analysing K [[Go]] @ k(s o) KX. We denote K[[Go]] ®x(ipe. o)) KX
by M) and ox[[Go]] ®ox [[Pe.ol] O(X) by MSX).

Lemma 3. Let © C A. Let Po = MgUg and let x be a continuous character of
Meg,o. Then

M(X) (PI‘OJ lim ox [GO/G ]) ok [[Pe,o]] 0%)
= Proj lim (ox[Go/Gn] @0 [Pe o] Oﬁ())'

Proof. The case © = () is proposition 3.2 of [1]. With minor changes, the proof
applies to an arbitrary ©. O

Lemma 4. Let © C A. Let Po = MgUg and x let be a continuous character of
Meg,o. Then

0k[Go/Gnl o (P 0F = D woxlUg 1 /2/Us)
wE[W/W(_)]

as ox -modules.
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Proof. From proposition 2, Gy = L] wUg ,, 1/2
we[W/We o

can write this in a unique way as g = wup, where u € U w1/2 and p € Pg . Any

Pg . Hence, if g € Go, we

x € og[Go/Gy] can be written as a finite sum:

m
T = E a;w;u;p; G,
1=1

where a; € ok, w; € [W/Wg], u; € U@ wil/2) and p; € Pg .

Let agGn ® 1 € 0k [Go/Gn] @0y [P o] O(I?). Writing ¢ = wup as above, we get
agG, ® 1 = ax(p)wuG, ® 1. Let S = {uq,---,u;} be a set of representatives of
Ue_,w,l/Q/U@;,n' Then agG, ® 1 can be written as ax(p)wu,Gy ® 1 for some u, € S.
We want to show that this expression is unique. First we show that w is unique.

Let us denote by I the Iwahori subgroup of Gy. Then I = G1Fy. So G, C I
for all n > 1. Fix wo € [W/We]. The coset wolUg ow 1/2P@70 is a disjoint union of
several cosets TwBg because Py = UweW@ BwB. However, wg has least length in
woWe, by Lemma 1.1.2 in [3]. Hence, if wU@ wo 1/2P@)0 NwolUg w 1/2P@ o # ¢, for
some w € [W/Weg], it follows w = wg. In particular, for g € Go, there is a unique
w € [W/Weg] such that ¢G,, = wupG,, for some u € Ug w12 @nd p € Po .

To show that u, € S is unique, assume that ax(p)wu,G, = ax(p)wu;G, for

some u; € S. Thenuj Lug € G, N @w1/2—UénaSO“j:W~

Using the uniqueness of the above expression of agG,, ® 1, we can define
U (agGn ® 1) = ax(p)wulg ,,.

This is well-defined and does not depend on the choice of the set of representatives
S. We extend ¥,, og-linearly to a map

Uy 0k [Go/Co] Bonipoa 0 — D woklUg 1 1/a/Us )
we[W/We]
Then W, is clearly surjective and injective. O
The above results yield the following lemma.

Lemma 5. M®X) maps isomorphically onto Duecw wo WE[Ug ,, 1/2]] as a topo-
logical K-module.

Proof. By Lemma 4, we have a collection of maps
Uy, 1ok [Go/Gn] ® ok [Pe,o0] O%) — EB w oK [Ue_,w,l/Q/U@_,n]-
we[W/We]

First we show that these maps are compatible. Let m > n. Then the following
diagram commutes.

W, — —
[GO/G ] ok [Pe,o0] 0%) @u;e[W/W@] w OK[U@@J/Q/U@,m]

So'm.nl \ch'mn

\I’n — p—
1[Go/Gn] @os[Poo) OF° B e we) ¥ 0k Ug 4112/ Vs ]
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Let {g1, - ,9-} and {uy,---,us} be sets of representatives of Gy/G,, and
Ué,w,l/Q/U@;,m’ respectively. Let (4 ® a) € og[Go/Gm] @oy(Po.o] 0%), where

= Z a'Lgle Thena

i=1

T t
\I]n o Spmn(u ® a) = an(z aigiGn ® a) = Z azX(Pz>szzUé)n
i=1

i=1

Similarly,

t t
Prn © Ui (n® @) = ¢, Y aix(pi)wiwils,,,) = Y aix(pi)wiwUs ,,-

i=1 i=1

Hence we have,
¥ = Proj limW,, : Proj lim(ox [Go/Gn] @y (po o) 0%)

— Proj lim( @ woK[U@_,w71/2/U6,n])'
" we[W/We

The components W¥,, are injective, and by general properties of projective limits ¥ is
injective as well. Surjectivity follows from Lemma 1.1.5 in [6] because ¥ is a map of
inverse systems of compact topological groups. In conclusion, ¥ is an isomorphism

from MM to DB e wo) Wox([Ug 4, 1 ol]- This implies that M®X is isomorphic to
@we[W/W@] wK[[U@_,wJ/Q]]' O

Every element of M) = K[[Go]] ® g((py;) KX can be written as ;1 ® 1, for some
w € K[[Go]].- The map
K[[Go]] — M™
pr—u®l
realizes M(X) as a quotient of K[[Go]]. For u € K[[Go]], set [u] :=p®1 e MO,
The embedding

B  wk(lUs,. ) = K[Goll,
we[W/We]

together with Lemma 5 gives us the following corollary:

Corollary 2. { [u] | 1€ K[[Goll } = { [u] | 1 € By jwo) WK Ug 1 o]l }-

Finally, after combining the above result with (2), it remains to prove

D wKUs, 1.0 K[Goll /A"
we[W/We]
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Proposition 3. Define ¥ : K[[G]] x KX — K[[Go]]/A’ by ¥ = 7o @, where ©
is the projection from K[[Go]] to K[[Go]]/A" and ¢ : K[[Go]] x K® — K[[Gy]] is
given by p(u,a) = ap. Then the map U is K[[Po ol]-balanced and K[[Gy]]-linear in
the first coordinate.

K[[Go]] x KX K{[Gol]

T A

K[[Go]] /A"

Proof. First, we observe that ¢ is K[[Pg,o]]-bilinear and that « is K[[Pe o]]-linear,
so ¥ is K[[Pg o]]-bilinear.
Let n € K[[Po,]]- Then we have to prove

U (p,ma) = V(un,a). (7)

Let us first prove this for Dirac distributions. Take any d, and §, with any g € Gy
and p € Pg o respectively. Then the expression in (7) can be written as

U(dg,0pa) = ¥(d40,,a). (8)
According to the way we have defined ¥, we can show that ¥(dy, d,a) = x(p)ady+ A’
and W(040,,a) = adgp + A’. Then we can see that [ x(p)ad, — adgp] € A’ because
X(p)ady(f) — adgp(f) =0 for any f € Indgg‘o(x’l). Thus expression (8) is true for
K[Pg ]; then by continuity it is true for K|[[Pe o]].
For the second part of the proposition, let n € K[[Go]]. Then ¥(nu,a)

w(p(np, a)) = anu+ A’, which is explicitly the same as n¥(u,a). Thus ¥ is K[[Go]]-
linear. O

With these required technical results, now we present the main result.

Theorem 2. Let © C A. Let Po = MgUg and x let be a continuous charac-
ter of Mgo. Then the dual of the principal series representation Indg; O(X_l) 18

isomorphic to K[[Go]] ®(ipe.o) KX.
Proof. By proposition 3, there is a K|[[Pg o]]-balanced map
U : K[[Go]] x K™ — K[[Gy]]/A’,

[[Go]]-linear in the first coordinate. Therefore, there exists the corresponding
[[Go]]-linear map

=

@ : K[[Gol] @x(rpo o) KX — K[Goll/4'. (9)

We have to prove that ® is an isomorphism. It is clearly surjective because ¥ is
surjective.
For injectivity, we take a non-zero element [n] of K[[Go]] ® K, and construct

a representative n = Y7 wny, for it as in Lemma 5. Here 7, € K[[Ug 1/2]}
we[W/We] o
for each w € [W/Wg].
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By scaling, we may assume that 7, = (nw1)iZ € 0kl[[Ug,, ]l for each w,
and that there exists n > 1, wy € [W/Wg] and 4y € U@7w,1/2/U6m, such that the
coefficient ¢y of up of 7y, 5, is a unit.

Let us now choose ug € Ug w,1/20 which projects to g, and let u = ug 1w0 7.
Since we can write p as an element of the projective limit p = (p4)7°, then

Un = Co + Z 59, Co € 0), C5 € OK. (10)
§€Go/Gn,g#1

We can write p = p/ + p”, Where 74 E OKHGn]] and supp(p”) C Go\Gy. Also note
that the support of p lies in ug wg *( |_|w 0.w,1/2 ) and by Lemma 2 supp(p) N

GnPo o is in Gy,. Thus the support of ,u is actually disjoint from G, Peg.

Moreover, we have the image of y’ under the augmentation map is precisely cg,
which is the coefficient of the identity coset of 1’ in equation (10). Since ¢ is a unit,
we know from proposition 7.1 in [2] that p/ is an invertible element of o [[G,]].
Multiplying by its inverse,

(W) =14 ()

Let us denote a new form of the element as 79 = 1 + v, where the support of v is
disjoint from G, Pg 0. We remark that 1 € ox[[Go]] is the Dirac distribution §;. We
show here that [ng] ¢ ker ®.

Recall that Gy = Ll wUg, 1/2P@,0, where
wE[W/We] o
@w1/2 H UaOX H Ua,1~
a<0, a<0,
wa>0 wa<0,
acd "\ og
Since UO 112 = I1 Uar= Ug.1, We have G, ﬁUa 112 = = GpNUg ;. Further-
a€d—\dg

more, as G, D Us.n> G, N Us1=Usg,,- We may define

_Jx(p), ifg=mxp,xelUg,,p€ Poyo,
flg) = : ’
0, otherwise.

The function f is in the induced space with support in G, Fg . Then we have
no(f) # 0 because (1 + v)(f) = 61(f) + v(f) = f(1) = x(1) # 0. That gives
[n0] ¢ ker ®, which implies [(#/)~'u] is not an element of the kernel of ®. Hence,
O([(u) ) ¢ A

As @ is a K[[Go]]-linear map, ®([(¢/) " p]) = (@)=t - ®([us]). Furthermore, since
A’ is a subset of K[[Go]] and a left K[[G]]-module, it is a left K[[Gp]]-ideal. There-
fore, ®([u]) ¢ A’. Similarly, ®([n]) ¢ A’

This means @ is an injective map. This completes the proof. O
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Corollary 3. IndIGDg 0<X_1) 1s an admissible Gy-representation.

We know that K[[Go]] ®k((ps o] KX is finitely generated K[[Go]]-module. Tt
is generated by the element 1 ® 1. As the dual of the principal series representa-
tion Indggo(xfl) is isomorphic to K[[Go]] ®x[pe) KX, by Lemma 3.4 of [9],

Indgg O(X_l) is an admissible Gy-representation.

Acknowledgement

I would like to thank my advisor Prof. Dubravka Ban, for her guidance throughout
this process.

References

[1]

[9]

[10]

D.BAN, J. HUNDLEY, Intertwining maps between p-adic principal series of p-adic
groups, preprint.

D.BaN, J. HUNDLEY, On reducibility of p-adic principal series representations of p-
adic groups, Represent. Theory 20(2016), 249-262.

W. CASSELMAN, Introduction to the theory of admissible representations of p-adic re-
ductive groups, preprint.

D.S. Dummit, R.M. FOOTE, Abstract algebra, John Wiley & Sons., Inc, Hoboken,
NJ, Third edition, 2004.

J. E. HUMPHREYS, Linear algebraic groups, in: Graduate Text in Mathematics, Vol.
21, Springer-Verlag, New York-Heidelberg, 1975.

L. RiBES, P.ZALESSKII, Profinite groups, in: FErgebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-
ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics,
Vol. 40, Second Edition, Springer-Verlag, Berlin, 2010.

P. SCHNEIDER, Continuous representation theory of p-adic Lie groups, in: Interna-
tional Congress of Mathematics, Vol. 11, Eur. Math. Soc., Zurich, 2006, 1261-1282.
P. SCHNEIDER, p-adic Lie groups, in: Grundlehren der Mathematichen Wissenschaften
[Fundamental Principles of Mathematical Sciences], Vol. 344, Springer, Heidelberg,
2011.

P. SCHNEIDER, J. TEITELBAUM, Banach space representations and Iwasawa theory,
Israel J. Math. 127(2002), 359-380.

P. SCHNEIDER, J. TEITELBAUM, Continuous and locally analytic representations, Lec-
tures at Hangzhou, August 2004.



