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1. Introduction

In 1967, Prof. Robert Langlands introduced the Langlands program. It is about the
connection between number theory and geometry. As a part thereof, he introduced
the Local Langlands conjecture which is related to the n-dimensional complex rep-
resentations. There are many different groups and many different fields for which
these conjectures can be stated. One version is the p-adic Langlands correspondence.
The p-adic Langlands correspondence for GL2(Qp) states:{

2-dim p-adic representations
of Gal(Q̄p/Qp)

}
←→

{
p-adic Banach space representations

of GL2(Qp)

}
In 2002, Schneider and Teitelbaum developed the theory of p-adic Banach space

representations of p-adic groups, which are important to study the p-adic Lang-
lands program. In this paper, we study the p-adic Banach space representation of a
split connected reductive p-adic group, parabolically induced from a character of a
parabolic subgroup. We show that the continuous dual of such a representation can
be expressed in terms of the tensor product of modules. This explicit description can
be useful when applying the Schneider-Teitelbaum duality theory for studying Ba-
nach space representations because the duality theory of Schneider and Teitelbaum
relates p-adic Banach space representations to the corresponding Iwasawa modules
[9].

Let F be a finite extension of Qp and let oF denote the ring of integers of F . For
a profinite group H, there is a oF -module

oF [[H]] = Proj lim
N⊂ N (H)

oF [H/N ].
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Here N (H) denotes the family of all open normal subgroups of H. Then we can
define Iwasawa module F [[H]] = F ⊗oF oF [[H]], [9] with the finest locally convex
topology such that the inclusion of oF [[H]] is continuous.

In this paper, we have considered sequence finite extensions of Qp such that
K ⊇ L ⊇ Qp. Let pL denote the unique maximal ideal of oL. Let G be a split
and connected reductive algebraic Z-group, and G0 the group of oL-points. Fix a
maximal split torus T0 in G0, and a minimal parabolic subgroup P0 = P∅ containing
T0. Let W be the Weyl group of G0 and ∆ the set of simple roots. For Θ ⊂ ∆, PΘ

denotes the standard parabolic subgroup corresponding to the set Θ. Set PΘ,0 =
PΘ(oL). Let K[[G0]] be the completed group algebra defined in [8] (see section 2).

Let χ : MΘ,0 → o×K be a continuous character, extended to PΘ,0 by making it
trivial on UΘ,0. We consider the degenerate principal series representation

IndG0

PΘ,0
(χ−1) = {f ∈ C(G0,K) | f(gp) = χ(p)f(g) for any g ∈ G0, p ∈ PΘ,0}.

The character χ induces a K[[PΘ,0]]-module structure on K (proposition 1, corol-
lary 1). We write K(χ) for this K[[PΘ,0]]-module.

Our main result is the following theorem.

Theorem 1. Let Θ ⊆ ∆. Let PΘ = MΘUΘ and χ is a continuous character of
MΘ,0. Then the dual of the degenerate principal series representation IndG0

PΘ,0
(χ−1)

is isomorphic to K[[G0]]⊗K[[PΘ,0]] K
(χ).

The statement of the theorem for principal series representations (case Θ = ∅)
can be found in [9] for GL2(Qp) and in [10]. A consequence of the theorem is that

the degenerate principal series representation IndG0

PΘ,0
(χ−1) is an admissible Banach

space representation (see [7], Proposition 2.4).
We briefly describe the content of the paper. In section 2, we introduce notations.

In section 3, we present some results related to the dual of degenerate principal series
representations. We construct a convenient and explicit decomposition for G0/PΘ,0

in section 4. Finally, in section 5, we produce the proof of the main theorem.

2. Notations

Let L be a finite extension of Qp, oL its ring of integers and pL a unique maximal
ideal of oL. Let K be a finite extension of L, and define oK and pK analogously. Let
G be a split and connected reductive algebraic Z-group, and G = G(L). We write
l for oL/pL. For any algebraic subgroup H of G, we write H̄ for H(l) and H0 for
H(oL).

We fix a split maximal torus T ⊂ G. Let Φ denote the set of roots of T in G.
Also, we fix a base ∆ of Φ. The choice of ∆ determines the corresponding Borel
subgroup B.

We let W denote the Weyl group of G, which is naturally isomorphic to the
quotient of the normalizer NG(T) of T in G. For Θ ⊂ ∆, we denote by Φ+

Θ (re-
spectively, Φ−Θ) a set of positive (respectively, negative) roots in the linear span of
Θ. We denote by WΘ the subgroup of W generated by simple reflections for roots
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α ∈ Θ. The set
[W/WΘ] = {w ∈W | wΘ > 0}

is a set of coset representatives of W/WΘ as defined in [3]. Let PΘ = MΘUΘ

be a standard parabolic subgroup corresponding to Θ, with MΘ a standard Levi
subgroup and UΘ its unipotent radical.

Let χ : MΘ,0 → o×K be a continuous character. The character χ can be extended
to PΘ,0 by making it trivial on UΘ,0. Define

IndG0

PΘ,0
(χ−1) = {f ∈ C(G0,K) | f(gp) = χ(p)f(g) for any g ∈ G0, p ∈ PΘ,0}.

Via the left inverse translation action g.f(x) = f(g−1x), this is a K-Banach space
representation of G0. The representation IndG0

PΘ,0
(χ−1) is called the degenerate

principal series representation.
Notice that G0 is a compact p-adic group. Therefore we have the projective

limit oK [[G0]] := Proj lim
H

oK [G0/H] taken over compact open normal subgroups H

of G0. We work with the completed group algebra K[[G0]] := K ⊗oK oK [[G0]].
Let C ′(G0,K) denote the vector space of continuous distributions on G0 which,
by definition, is the dual to the space C(G0,K) of continuous K-functions on G0.
Then K[[G0]] can be identified with C ′(G0,K) by identifying g ∈ G0 with the Dirac
distribution δg.

Proposition 1. Let χ : PΘ,0 → o×K be a continuous character. Then χ induces an
oK [[PΘ,0]]-module structure on oK .

Proof. By continuity of χ at 1, for each integer n ≥ 0 such that χ|PΘ,n
6= 1, there

is a maximal integer ln such that χ(PΘ,n) ⊆ 1 + pln . If χ|PΘ,n = 1, we take ln =∞.
Thus, we can define a group homomorphism

χn : PΘ,0/PΘ,n −→ (oK/p
ln)×

in such a way that χn(pPΘ,n) = χ(p)(1 + pln). By that, we have the corresponding
ring homomorphism

θn : oK [PΘ,0/PΘ,n] −→ oK/p
ln

such that
∑
ai piPΘ,n 7−→

∑
āiχ̄(pi), where ai ∈ oK and pi ∈ PΘ,0. It is clear from

the construction that the maps {θn}n≥0 are compatible. Also, limn→∞ ln =∞ and
hence proj limn oK/p

ln = oK . Then by the projective limit we obtain an oK-linear
continuous ring homomorphism, which we denote again by χ:

χ : oK [[PΘ,0]] −→ oK .

The corresponding action ok[[PΘ,0]]× oK → oK is given by (µ, a) 7→ χ(µ)a.

Corollary 1. Let χ : PΘ,0 → o×K be a continuous character. Then χ induces a
K[[PΘ,0]]-module structure on K.

Proof. Tensoring with idK⊗oK , we get a map χ : K[[PΘ,0]]→ K. More specifically,
µ ∈ K[[PΘ,0]] can be written as µ = aµ0 for some a ∈ K and µ0 ∈ oK [[PΘ,0]]. Then
χ(µ) = aχ(µ0).

We write K(χ) for K equipped with the K[[PΘ,0]]-module structure induced by
χ.
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3. The dual of a principal series representation

The representation IndG0

PΘ,0
(χ−1) is a closed subspace of the Banach space C(G0,K).

Therefore, we can define a short exact sequence of left K[[G0]]-modules

0 −→ IndG0

PΘ,0
(χ−1) ↪→ C(G0,K) −→ A −→ 0, (1)

where A = C(G0,K)/IndG0

PΘ,0
(χ−1). Because G0 acts on IndG0

PΘ,0
(χ−1) by left inverse

translation g·f(x) = f(g−1x), K[G0] acts on IndG0

PΘ,0
(χ−1). Then by continuity there

is a left K[[G0]]-action on IndG0

PΘ,0
(χ−1).

Taking the continuous dual of (1), we obtain the following exact sequence:

0 −→ A′ −→ C ′(G0,K) −→ IndG0

PΘ,0
(χ−1)′ −→ 0.

Here, A′ = {µ ∈ C ′(G0,K) | µ(f) = 0 ∀f ∈ IndG0

PΘ,0
(χ−1)}. Identifying C ′(G0,K)

with K[[G0]], we get the following isomorphism:

IndG0

PΘ,0
(χ−1)′ ∼= K[[G0]]/A′. (2)

Henceforth, we use the set A′ as defined above.

Lemma 1. The set A′ defined above is a left K[[G0]]-module.

Proof. Define a map (g · l)(a) := l(g−1a) for any g ∈ G0 , a ∈ A and l ∈ A′. It
is not hard to show that this map is a left action. Hence, A′ has a left G0-action.
This G0-action on A′ extends to a K[G0]-action, and by linearity and continuity it
extends to a K[[G0]]-action. Then A′ is a left K[[G0]]-module.

Furthermore, with set A′ being a subgroup of K[[G0]] and having a K[[PΘ,0]]-
action, we can introduce a left K[[PΘ,0]]-module structure for K[[G0]]/A′, by section
10.2 in [4].

4. Coset representatives for G0/PΘ,0

Let w ∈ W . If B− = TU− is the Borel subgroup containing T opposite to B, by
28.1 in [5], we have T -stable subgroups of U

U ′w = U ∩ wUw−1, Uw = U ∩ wU−w−1.

Their respective sets of roots partition Φ+, Φ+
w = {α > 0 | w(α) > 0} and Φ−w =

{α > 0 | w(α) < 0}. Proposition in 28.1 [5] shows that for each w ∈ W , U =
UwU

′
w = U ′wUw, but in general this direct span is not a semidirect product. This

implies that the double coset BwB can also be written as UwwB. The following
propositon is the main result in this section.

Proposition 2. Let Θ be a subset of the set of simple roots. Let PΘ be a standard
parabolic subgroup corresponding to Θ. Then there is a disjoint union decomposition

G0 =
⊔
w

wU−Θ,w,1/2PΘ,0,
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where w ranges over the set [W/WΘ] and U−Θ,w,1/2 =
∏
α<0,
wα>0

Uα,0 ×
∏
α<0,
wα<0,

α∈Φ−\Φ−Θ

Uα,1.

Proof. We have
Ḡ =

⊔
w

B̄wB̄. (3)

Identity (3) gives a canonical map W −→ B̄\Ḡ/B̄. We also know that PΘ =⋃
w∈WΘ

BwB. Proposition 1.3.1 of [3] implies

Ḡ =
⊔

w∈[W/WΘ]

B̄wP̄Θ. (4)

In general, we can present BwPΘ as TUwPΘ, which can be written as UwPΘ

since T normalizes U . Since UwB = UwwB, we have UwPΘ = UwwPΘ. It follows

Ḡ =
⊔

w∈[W/WΘ]

ŪwwP̄Θ.

Pulling back, we have G0 =
⊔

w∈[W/WΘ]

(U0 ∩ wU−w−1)wG1PΘ,0. Then

G0 =
⊔

w∈[W/WΘ]

Uw,0wG1PΘ,0. (5)

Since G1 = U−1 T1U1, we can write

G0 =
⊔

w∈[W/WΘ]

Uw,0wG1PΘ,0 =
⊔

w∈[W/WΘ]

wU−w,1/2PΘ,0,

where U−w,1/2 = w−1Uw,0wU
−
1 by [2]. Again by [2], we have

U−w,1/2 =
∏
α<0,
wα>0

Uα,0 ×
∏
α<0,
wα<0

Uα,1.

From the above product we want to eliminate the subgroups Uα contained in PΘ.
Note that U−w,1/2 is a subgroup of U−0 . We know that U−0 ∩PΘ,0 =

∏
α∈Φ−Θ

Uα,0. Since

w ∈ [W/WΘ] = {w ∈W | wΘ > 0}, we have∏
α∈Φ−Θ

Uα,0 ∩
∏
α<0,
wα>0

Uα,1 = 1 and
∏
α∈Φ−Θ

Uα,0 ∩
∏
α<0,
wα<0

Uα,1 =
∏
α∈Φ−Θ

Uα,1.

Therefore, we can write G0 as a disjoint union

G0 =
⊔

w∈[W/WΘ]

wU−Θ,w,1/2PΘ,0, (6)
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where
U−Θ,w,1/2 =

∏
α<0,
wα>0

Uα,0 ×
∏
α<0,
wα<0,

α∈Φ−\Φ−Θ

Uα,1.

The following technical result is analogous to Lemma 4.5 of [2].

Lemma 2. Fix w0 ∈ [W/WΘ] and u0 ∈ U−Θ,w0,1/2
. Let n ≥ 1. Then

u−1
0 w−1

0 (
⊔
w

wU−Θ,w,1/2 ) ∩GnPΘ,0 = U−Θ,n

Proof. Consider the projection from G0 to Ḡ. The sets wU−Θ,w,1/2 for w ∈ [W/WΘ]

all project into different elements of B̄\Ḡ/P̄Θ . Then,

w0u0G1PΘ,0 ∩ wU−Θ,w,1/2 6= φ =⇒ w = w0.

Without loss of generality, let us assume w = w0. Then

u−1
0 w−1

0 wU−Θ,w,1/2 = u−1
0 U−Θ,w,1/2 ⊂ U

−
Θ,0.

Hence, it is enough to prove U−Θ,0 ∩ GnPΘ,0 ⊂ Gn. We consider the projection to

G0/Gn. Since U−Θ,0 ∩ PΘ,0 = {1}, the only element of G0/Gn which is in the image

of both PΘ,0 and U−Θ,0 is the identity.

5. Main theorem

We begin by analysing K[[G0]] ⊗K[[PΘ,0]] K
(χ). We denote K[[G0]] ⊗K[[PΘ,0]] K

(χ)

by M (χ) and oK [[G0]]⊗oK [[PΘ,0]] o
(χ)
K by M

(χ)
0 .

Lemma 3. Let Θ ⊂ ∆. Let PΘ = MΘUΘ and let χ be a continuous character of
MΘ,0. Then

M
(χ)
0 = (Proj lim

n
oK [G0/Gn])⊗oK [[PΘ,0]] o

(χ)
K

∼= Proj lim
n

(oK [G0/Gn]⊗oK [PΘ,0] o
(χ)
K ).

Proof. The case Θ = ∅ is proposition 3.2 of [1]. With minor changes, the proof
applies to an arbitrary Θ.

Lemma 4. Let Θ ⊂ ∆. Let PΘ = MΘUΘ and χ let be a continuous character of
MΘ,0. Then

oK [G0/Gn]⊗oK [PΘ,0] o
(χ)
K
∼=

⊕
w∈[W/WΘ]

w oK [U−Θ,w,1/2/U
−
Θ,n]

as oK-modules.
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Proof. From proposition 2, G0 =
⊔

w∈[W/WΘ]

wU−Θ,w,1/2PΘ,0. Hence, if g ∈ G0, we

can write this in a unique way as g = wup, where u ∈ U−Θ,w,1/2 and p ∈ PΘ,0. Any

x ∈ oK [G0/Gn] can be written as a finite sum:

x =

m∑
i=1

aiwiuipiGn,

where ai ∈ oK , wi ∈ [W/WΘ], ui ∈ U−Θ,wi,1/2
, and pi ∈ PΘ,0.

Let agGn ⊗ 1 ∈ oK [G0/Gn] ⊗oK [PΘ,0] o
(χ)
K . Writing g = wup as above, we get

agGn ⊗ 1 = aχ(p)wuGn ⊗ 1. Let S = {u1, · · · , ut} be a set of representatives of
U−Θ,w,1/2/U

−
Θ,n. Then agGn ⊗ 1 can be written as aχ(p)wu`Gn ⊗ 1 for some u` ∈ S.

We want to show that this expression is unique. First we show that w is unique.
Let us denote by I the Iwahori subgroup of G0. Then I = G1P0. So Gn ⊆ I

for all n ≥ 1. Fix w0 ∈ [W/WΘ]. The coset w0U
−
Θ,w,1/2PΘ,0 is a disjoint union of

several cosets IwB0 because PΘ =
⋃
w∈WΘ

BwB. However, w0 has least length in

w0WΘ, by Lemma 1.1.2 in [3]. Hence, if wU−Θ,w0,1/2
PΘ,0 ∩ w0U

−
Θ,w,1/2PΘ,0 6= φ, for

some w ∈ [W/WΘ], it follows w = w0. In particular, for g ∈ G0, there is a unique
w ∈ [W/WΘ] such that gGn = wupGn, for some u ∈ U−Θ,w,1/2 and p ∈ PΘ,0.

To show that u` ∈ S is unique, assume that aχ(p)wu`Gn = aχ(p)wujGn for
some uj ∈ S. Then u−1

j u` ∈ Gn ∩ U−Θ,w,1/2 = U−Θ,n, so uj = u`.

Using the uniqueness of the above expression of agGn ⊗ 1, we can define

Ψn(agGn ⊗ 1) = aχ(p)wu`U
−
Θ,n.

This is well-defined and does not depend on the choice of the set of representatives
S. We extend Ψn oK-linearly to a map

Ψn : oK [G0/Gn]⊗oK [PΘ,0] o
(χ)
K −→

⊕
w∈[W/WΘ]

w oK [U−Θ,w,1/2/U
−
Θ,n].

Then Ψn is clearly surjective and injective.

The above results yield the following lemma.

Lemma 5. M (χ) maps isomorphically onto
⊕

w∈[W/WΘ] wK[[U−Θ,w,1/2]] as a topo-

logical K-module.

Proof. By Lemma 4, we have a collection of maps

Ψn : oK [G0/Gn]⊗oK [PΘ,0] o
(χ)
K −→

⊕
w∈[W/WΘ]

w oK [U−Θ,w,1/2/U
−
Θ,n].

First we show that these maps are compatible. Let m > n. Then the following
diagram commutes.

oK [G0/Gm]⊗oK [PΘ,0] o
(χ)
K

ϕmn

��

Ψm //⊕
w∈[W/WΘ] w oK [U−Θ,w,1/2/U

−
Θ,m]

ϕ′mn

��
oK [G0/Gn]⊗oK [PΘ,0] o

(χ)
K

Ψn //⊕
w∈[W/WΘ] w oK [U−Θ,w,1/2/U

−
Θ,n]
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Let {g1, · · · , gr} and {u1, · · · , ut} be sets of representatives of G0/Gm and

U−Θ,w,1/2/U
−
Θ,m, respectively. Let (µ ⊗ a) ∈ oK [G0/Gm] ⊗oK [PΘ,0] o

(χ)
K , where

µ =
r∑
i=1

aigiGm. Then,

Ψn ◦ ϕmn(µ⊗ a) = Ψn(

r∑
i=1

aigiGn ⊗ a) =

t∑
i=1

aiχ(pi)wiuiU
−
Θ,n.

Similarly,

ϕ′mn ◦Ψm(µ⊗ a) = ϕ′mn(

t∑
i=1

aiχ(pi)wiuiU
−
Θ,m) =

t∑
i=1

aiχ(pi)wiuiU
−
Θ,n.

Hence we have,

Ψ = Proj lim
n

Ψn : Proj lim
n

(oK [G0/Gn]⊗oK [PΘ,0] o
(χ)
K )

−→ Proj lim
n

(
⊕

w∈[W/WΘ]

woK [U−Θ,w,1/2/U
−
Θ,n]).

The components Ψn are injective, and by general properties of projective limits Ψ is
injective as well. Surjectivity follows from Lemma 1.1.5 in [6] because Ψ is a map of
inverse systems of compact topological groups. In conclusion, Ψ is an isomorphism

from M
(χ)
0 to

⊕
w∈[W/WΘ] woK [[U−Θ,w,1/2]]. This implies that M (χ) is isomorphic to⊕

w∈[W/WΘ] wK[[U−Θ,w,1/2]].

Every element of M (χ) = K[[G0]]⊗K[[P0]] K
(χ) can be written as µ⊗ 1, for some

µ ∈ K[[G0]]. The map

K[[G0]] −→M (χ)

µ 7−→ µ⊗ 1

realizes M (χ) as a quotient of K[[G0]]. For µ ∈ K[[G0]], set [µ] := µ ⊗ 1 ∈ M (χ).
The embedding ⊕

w∈[W/WΘ]

wK[[U−Θ,w,1/2]] ↪→ K[[G0]],

together with Lemma 5 gives us the following corollary:

Corollary 2. { [µ] | µ ∈ K[[G0]] } = { [µ] | µ ∈
⊕

w∈[W/WΘ] wK[[U−Θ,w,1/2]] }.

Finally, after combining the above result with (2), it remains to prove⊕
w∈[W/WΘ]

wK[[U−Θ,w,1/2]] ∼= K[[G0]]/A′.
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Proposition 3. Define Ψ : K[[G0]] ×K(χ) −→ K[[G0]]/A′ by Ψ = π ◦ ϕ, where π
is the projection from K[[G0]] to K[[G0]]/A′ and ϕ : K[[G0]] × K(χ) → K[[G0]] is
given by ϕ(µ, a) = aµ. Then the map Ψ is K[[PΘ,0]]-balanced and K[[G0]]-linear in
the first coordinate.

K[[G0]]×K(χ)

Ψ ''

ϕ // K[[G0]]

π
xx

K[[G0]]/A′

Proof. First, we observe that ϕ is K[[PΘ,0]]-bilinear and that π is K[[PΘ,0]]-linear,
so Ψ is K[[PΘ,0]]-bilinear.

Let η ∈ K[[PΘ,0]]. Then we have to prove

Ψ(µ, ηa) = Ψ(µη, a). (7)

Let us first prove this for Dirac distributions. Take any δg and δp with any g ∈ G0

and p ∈ PΘ,0 respectively. Then the expression in (7) can be written as

Ψ(δg, δpa) = Ψ(δgδp, a). (8)

According to the way we have defined Ψ, we can show that Ψ(δg, δpa) = χ(p)aδg+A′

and Ψ(δgδp, a) = aδgp + A′. Then we can see that [ χ(p)aδg − aδgp] ∈ A′ because

χ(p)aδg(f)− aδgp(f) = 0 for any f ∈ IndG0

PΘ,0
(χ−1). Thus expression (8) is true for

K[PΘ,0]; then by continuity it is true for K[[PΘ,0]].
For the second part of the proposition, let η ∈ K[[G0]]. Then Ψ(ηµ, a) =

π(ϕ(ηµ, a)) = aηµ+A′, which is explicitly the same as ηΨ(µ, a). Thus Ψ is K[[G0]]-
linear.

With these required technical results, now we present the main result.

Theorem 2. Let Θ ⊂ ∆. Let PΘ = MΘUΘ and χ let be a continuous charac-
ter of MΘ,0. Then the dual of the principal series representation IndG0

PΘ,0
(χ−1) is

isomorphic to K[[G0]]⊗K[[PΘ,0]] K
(χ).

Proof. By proposition 3, there is a K[[PΘ,0]]-balanced map

Ψ : K[[G0]]×K(χ) −→ K[[G0]]/A′,

K[[G0]]-linear in the first coordinate. Therefore, there exists the corresponding
K[[G0]]-linear map

Φ : K[[G0]]⊗K[[PΘ,0]] K
(χ) −→ K[[G0]]/A′. (9)

We have to prove that Φ is an isomorphism. It is clearly surjective because Ψ is
surjective.

For injectivity, we take a non-zero element [η] of K[[G0]] ⊗K(χ), and construct
a representative η =

∑
w∈[W/WΘ]

wηw for it as in Lemma 5. Here ηw ∈ K[[U−Θ,w,1/2]]

for each w ∈ [W/WΘ].
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By scaling, we may assume that ηw = (ηw,l)
∞
l=0 ∈ oK [[U−Θ,w,1/2]] for each w,

and that there exists n ≥ 1, w0 ∈ [W/WΘ] and ū0 ∈ U−Θ,w,1/2/U
−
Θ,n, such that the

coefficient c0 of ū0 of ηw,n is a unit.
Let us now choose u0 ∈ U−Θ,w,1/2, which projects to ū0, and let µ = u−1

0 w−1
0 η.

Since we can write µ as an element of the projective limit µ = (µl)
∞
l=0, then

µn = c0 +
∑

ḡ∈G0/Gn,ḡ 6=1

cḡ ḡ, c0 ∈ o×K , cḡ ∈ oK . (10)

We can write µ = µ′ + µ′′, where µ′ ∈ oK [[Gn]] and supp(µ′′) ⊂ G0\Gn. Also note
that the support of µ lies in u−1

0 w−1
0 (

⊔
w
wU−Θ,w,1/2 ) and by Lemma 2 supp(µ) ∩

GnPΘ,0 is in Gn. Thus the support of µ′′ is actually disjoint from GnPΘ,0.

Moreover, we have the image of µ′ under the augmentation map is precisely c0,
which is the coefficient of the identity coset of µ′ in equation (10). Since c0 is a unit,
we know from proposition 7.1 in [2] that µ′ is an invertible element of oK [[Gn]].
Multiplying by its inverse,

(µ′)−1µ = 1 + (µ′)−1µ′′.

Let us denote a new form of the element as η0 = 1 + ν, where the support of ν is
disjoint from GnPΘ,0. We remark that 1 ∈ oK [[G0]] is the Dirac distribution δ1. We
show here that [η0] /∈ ker Φ.

Recall that G0 =
⊔

w∈[W/WΘ]

wU−Θ,w,1/2PΘ,0, where

U−Θ,w,1/2 =
∏
α<0,
wα>0

Uα,0 ×
∏
α<0,
wα<0,

α∈Φ−\Φ−Θ

Uα,1.

Since U−Θ,1,1/2 =
∏

α∈Φ−\Φ−Θ

Uα,1 = U−Θ,1, we have Gn∩U−Θ,1,1/2 = Gn∩U−Θ,1. Further-

more, as Gn ⊃ U−Θ,n, Gn ∩ U−Θ,1 = U−Θ,n. We may define

f(g) =

{
χ(p), if g = xp, x ∈ U−Θ,n, p ∈ PΘ,0,

0, otherwise.

The function f is in the induced space with support in GnPΘ,0. Then we have
η0(f) 6= 0 because (1 + ν)(f) = δ1(f) + ν(f) = f(1) = χ(1) 6= 0. That gives
[η0] /∈ ker Φ, which implies [(µ′)−1µ] is not an element of the kernel of Φ. Hence,
Φ([(µ′)−1µ]) /∈ A′.

As Φ is a K[[G0]]-linear map, Φ([(µ′)−1µ]) = (µ′)−1 ·Φ([µ]). Furthermore, since
A′ is a subset of K[[G0]] and a left K[[G0]]-module, it is a left K[[G0]]-ideal. There-
fore, Φ([µ]) /∈ A′. Similarly, Φ([η]) /∈ A′.

This means Φ is an injective map. This completes the proof.
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Corollary 3. IndG0

PΘ,0
(χ−1) is an admissible G0-representation.

We know that K[[G0]] ⊗K[[PΘ,0]] K
(χ) is finitely generated K[[G0]]-module. It

is generated by the element 1 ⊗ 1. As the dual of the principal series representa-
tion IndG0

PΘ,0
(χ−1) is isomorphic to K[[G0]] ⊗K[[PΘ,0]] K

(χ), by Lemma 3.4 of [9],

IndG0

PΘ,0
(χ−1) is an admissible G0-representation.
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