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Abstract. We continue our study on relationships between Bernoulli polynomials and
balancing (Lucas-balancing) polynomials. From these polynomial relations, we deduce new
combinatorial identities with Fibonacci (Lucas) and Bernoulli numbers. Moreover, we prove
a special identity involving Bernoulli polynomials and Fibonacci numbers in arithmetic
progression. Special cases and some corollaries will highlight interesting aspects of our
findings. Our results complement and generalize these of Frontczak (2019).
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1. Motivation and preliminaries

Let Bn(x), x ∈ C, be the n-th Bernoulli polynomial defined by

H(x, z) =

∞∑
n=0

Bn(x)
zn

n!
=

zexz

ez − 1
(|z| < 2π),

and let Bn = Bn(0) be the n-th Bernoulli number [1].
Let further B∗

n(x) be the n-th balancing polynomial [2], i.e., polynomials defined
by the recurrence

B∗
n(x) = 6xB∗

n−1(x)−B∗
n−2(x), n ≥ 2,

with the initial terms B∗
0(x) = 0 and B∗

1(x) = 1. Similarly, Lucas-balancing polyno-
mials are defined by

Cn(x) = 6xCn−1(x)− Cn−2(x), n ≥ 2,

with the initial terms C0(x) = 1 and C1(x) = 3x. For more information about
these polynomials see [2, 4, 5, 8, 9, 10]. The numbers B∗

n(1) = B∗
n and Cn(1) = Cn
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are called balancing and Lucas-balancing numbers, respectively (see entries A001109
and A001541 in the On-Line Encyclopedia of Integer Sequences [11]).

Connections between Bernoulli polynomials Bn(x) and balancing polynomials
B∗

n(x) are interesting, as they also give relations involving Bernoulli numbers and
Fibonacci numbers (we refer to the papers [3, 6, 12]). The links are

B∗
n

(L2m

6

)
=

F2mn

F2m
, Cn

(L2m

6

)
=

L2mn

2
, (1)

B∗
n

( i
6
L2m+1

)
= in−1F(2m+1)n

F2m+1
, Cn

( i
6
L2m+1

)
= in

L(2m+1)n

2
, (2)

where m is a nonnegative integer, i =
√
−1, and Fn and Ln denote Fibonacci and

Lucas numbers, respectively. These sequences are defined by F0 = 0, F1 = 1, L0 = 2,
L1 = 1 and Xn = Xn−1 +Xn−2 for n ≥ 2 (entries A000045 and A000032 in [11]).

Recently, Frontczak [3] showed, among other things, that

n∑
k=0

n≡k (mod 2)

(
n

k

)
B∗

k(x)(2
√

9x2 − 1)n−kBn−k = nCn−1(x). (3)

Goubi [7] instantly “improved” this relation to

n∑
k=0

(
n

k

)
B∗

k(x)(2
√
9x2 − 1)n−kBn−k = n

(
Cn−1(x)−

√
9x2 − 1B∗

n−1(x)
)
. (4)

We point out that since B2n+1 = 0 for n ≥ 1, the only non-zero contribution in
Goubi’s sum on the left comes from the index k = n− 1, which obviously equals(

n

n− 1

)
B∗

n−1(x)(2
√
9x2 − 1)

(
− 1

2

)
= −n

√
9x2 − 1B∗

n−1(x).

So, identities (3) and (4) are actually equivalent and the “improvement” is a simple
reformulation. Nevertheless, to keep the notation simple, we will renounce the mod
notation and work with the second formulation.

In this paper, we prove more relations between Bernoulli polynomials and balanc-
ing polynomials. The proofs are based on our recent findings concerning exponential
generating functions for these polynomials. From these polynomial relations, we de-
duce new combinatorial identities with Fibonacci (Lucas) and Bernoulli numbers.
Moreover, we prove a special identity involving Bernoulli polynomials and Fibonacci
numbers in arithmetic progression. Some consequences are stated as corollaries.

2. New Bernoulli-balancing relations

The next lemma [4] deals with exponential generating functions for balancing and
Lucas-balancing polynomials. It will play a key role in the first part of the paper.
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Lemma 1. Let b1(x, z) and b2(x, z) be the exponential generating functions of odd
and even indexed balancing polynomials, respectively. Then

b1(x, z) =

∞∑
n=0

B∗
2n+1(x)

zn

n!

=
e(18x

2−1)z

√
9x2 − 1

(
3x sinh(6x

√
9x2 − 1z) +

√
9x2 − 1 cosh(6x

√
9x2 − 1z)

)
and

b2(x, z) =

∞∑
n=0

B∗
2n(x)

zn

n!
=

e(18x
2−1)z

√
9x2 − 1

sinh(6x
√

9x2 − 1z).

Similarly, for Lucas-balancing polynomials we have

c1(x, z) =

∞∑
n=0

C2n+1(x)
zn

n!

= e(18x
2−1)z

(
3x cosh(6x

√
9x2 − 1z) +

√
9x2 − 1 sinh(6x

√
9x2 − 1z)

)
and

c2(x, z) =

∞∑
n=0

C2n(x)
zn

n!
= e(18x

2−1)z cosh(6x
√
9x2 − 1z).

We start with the following results involving even indexed balancing polynomials.

Theorem 1. For each n ≥ 0 and x ∈ C, we have

n∑
k=0

(
n

k

)
(12x

√
9x2 − 1)n−kBn−kB

∗
2k(x)

= 6xn
(
C2n−2(x)−

√
9x2 − 1B∗

2n−2(x)
)
. (5)

Proof. From
2

e2x − 1
= cothx− 1

we get

H(0, 12x
√
9x2 − 1z) = 6xz

√
9x2 − 1

(
coth(6x

√
9x2 − 1z)− 1

)
.

This yields

∞∑
n=0

( n∑
k=0

(
n

k

)(
12x
√

9x2 − 1)n−kBn−kB
∗
2k(x)

)zn
n!

= b2(x, z)H(0, 12x
√
9x2 − 1z)

= 6xze(18x
2−1)z

(
cosh(6x

√
9x2 − 1z)− sinh(6x

√
9x2 − 1z)

)
= 6xzc2(x, z)− 6x

√
9x2 − 1z b2(x, z)

= 6x

∞∑
n=0

n
(
C2n−2(x)−

√
9x2 − 1B∗

2n−2(x)
)zn
n!

.

The proof is complete.
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Corollary 1. For each n ≥ 0, the following relation holds:

n∑
k=0

(
n

k

)
(24

√
2)n−kB∗

2kBn−k = 6n
(
C2n−2 − 2

√
2B∗

2n−2

)
.

Proof. Set x = 1 in (5).

Corollary 2. For each n ≥ 0 and j ≥ 1,

n∑
k=0

(
n

k

)
(
√
5F2j)

n−kF2kjBn−k =
n

2
F2j

(
L2j(n−1) −

√
5F2j(n−1)

)
. (6)

Proof. Evaluate (5) at the points x = i
6L2m+1 and x = 1

6L2m, respectively, and
use the links from (1) and (2). To simplify the square root recall that L2

n = 5F 2
n +

(−1)n4.

The special case

n∑
k=0

(
n

k

)
(
√
5)n−kF2kBn−k =

n

2

(
L2n−2 −

√
5F2n−2

)
appears as equation (22) in [3]. We will derive an extension of this result in the
sequel.

Remark 1. By reindexing, we can write (5) as follows:

⌊n/2⌋∑
k=0

(
n

2k

)(
144x2(9x2 − 1)

)k
B2kB

∗
2(n−2k)(x) = 6nxC2(n−1)(x). (7)

Another interesting identity involving even indexed balancing polynomials is our
next theorem.

Theorem 2. For each n ≥ 0 and x ∈ C, we have the relation

n∑
k=0

(
n

k

)
(12x

√
9x2 − 1)n−kB∗

2k(x)Bn−k(x)

= 6nx
(
18x2 − 1 + 6x(2x− 1)

√
9x2 − 1

)n−1
. (8)

Proof. Since

H(x, z) =
z

2

e(x−1/2)z

sinh z
2

,

it follows that
∞∑

n=0

( n∑
k=0

(
n

k

)
(12x

√
9x2 − 1)n−kB∗

2k(x)Bn−k(x)
)zn
n!

= b2(x, z)H(x, 12x
√

9x2 − 1z)

= 6xze(18x
2−1)z+6x(2x−1)

√
9x2−1z

= 6x

∞∑
n=0

n
(
18x2 − 1 + 6x(2x− 1)

√
9x2 − 1

)n−1 zn

n!
.
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The proof is complete.

Corollary 3. For each n ≥ 0,

n∑
k=0

(
n

k

)
(3
√
5)n−k

(
21−(n−k) − 1

)
F4kBn−k = 3n

(7
2

)n−1

. (9)

Proof. Set x = 1
2 in (8) and use B∗

2n(
1
2 ) = F4n and Bn(

1
2 ) = (21−n − 1)Bn [1,

Corollary 9.1.5].

The last identity could be compared with

n∑
k=0

(
n

k

)
(
√
5)n−k

(
21−(n−k) − 1

)
F2kBn−k = n

(3
2

)n−1

, (10)

which is equation (30) in [3]. It is maybe worth remarking that the value x = − 1
2

in conjunction with B∗
n(−x) = (−1)n+1B∗

n(x) [2] and the difference equation for
Bernoulli polynomials Bn(x+ 1)−Bn(x) = nxn−1 [1, Proposition 9.1.3] gives

n∑
k=0

(
n

k

)
(−3

√
5)n−kF4k

(
(21−(n−k) − 1)Bn−k + (n− k)(−1)n−k21−(n−k)

)
= 3n

(7 + 6
√
5

2

)n−1

.

So, by Corollary 3, we end with

n∑
k=0

(
n

k

)
(n− k)(3

√
5)n−k21−(n−k)F4k = 3n

((7 + 6
√
5

2

)n−1

−
(7
2

)n−1)
or, equivalently,

n∑
k=0

(
n

k

)
k
(3√5

2

)k
F4(n−k) =

3n

2n
(
(7 + 6

√
5)n−1 − 7n−1

)
.

Theorem 3. For each n ≥ 0 and x ∈ C, we have the relation

⌊n/2⌋∑
k=0

(
n

2k

)
(4k−1)

(
144x2(9x2−1)

)k
B2kC2(n−2k)(x) = 6nx(9x2−1)B∗

2(n−1)(x). (11)

Proof. Combine c1(x, z) with c2(x, z).

Remark 2. Combining b2(x, z) with c1(x, z) yields

⌊n/2⌋∑
k=0

(
n

2k

)(
144x2(9x2 − 1)

)k
B2kB

∗
2(n−2k)(x)

= 2n
(
C2n−1(x)− (9x2 − 1)B∗

2(n−1)(x)
)
.
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Since Cn(x) = 3xCn−1(x) + (9x2 − 1)B∗
n−1(x) [2, Proposition 2.3], the right-hand

side equals 2n
(
C2n−1(x)− (9x2 − 1)B∗

2(n−1)(x)
)
= 6nxC2(n−1)(x), so we again have

(7). Similarly, relating b1(x, z) to c2(x, z) gives

⌊n/2⌋∑
k=0

(
n

2k

)
(4k − 1)

(
144x2(9x2 − 1)

)k
B2kC2(n−2k)(x)

= 2n(9x2 − 1)
(
B∗

2n−1(x)− C2(n−1)(x)
)
,

but since Cn(x) = B∗
n+1(x)−3xB∗

n(x) [2, Proposition 2.3], the right-hand side equals
2n(9x2 − 1)

(
B∗

2n−1(x)− C2(n−1)(x)
)
= 6nx(9x2 − 1)B∗

2(n−1)(x), and we again end

with (11).

The next identity is the counterpart of Corollary 2.

Corollary 4. For each n ≥ 0 and j ≥ 1,

⌊n/2⌋∑
k=0

(
n

2k

)
(20k − 5k)F 2k

2j B2kL2j(n−2k) =
5n

2
F2jF2j(n−1).

Proof. Insert x = i
6L2m+1 and x = 1

6L2m, respectively, in (11) to get

⌊n/2⌋∑
k=1

(
n

2k

)
(4k − 1)B2k

(
L4
2m − 4L2

2m

)k
L4m(n−2k) =

n

2

L2m

F2m
(L2

2m − 4)F4m(n−1),

⌊n/2⌋∑
k=1

(
n

2k

)
(4k − 1)B2k

(
L4
2m + 4L2

2m

)k
L2(2m+1)(n−2k)

=
n

2

L2m+1

F2m+1
(L2

2m+1 + 4)F2(2m+1)(n−1).

Simplify using L2
n = 5F 2

n + (−1)n4 and LnFn = F2n.

When j = 1, then

⌊n/2⌋∑
k=0

(
n

2k

)
(4k − 1)5kB2kL2(n−2k) =

5n

2
F2(n−1),

which is equation (23) in [3]. When j = 2, then

⌊n/2⌋∑
k=0

(
n

2k

)
(4k − 1)45kB2kL4(n−2k) =

15n

2
F4(n−1).

We conclude the analysis with the following result.
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Theorem 4. For each n ≥ 0 and x ∈ C, we have the relations

(6x)n−1

⌊n/2⌋∑
k=0

(
n

2k

)
(36x2 − 4)kB2kB

∗
n−2k(x)

= n

(
n−1∑
k=0

(
n− 1

k

)
B∗

2k+1(x)−
(6x)n

2
B∗

n−1(x)

)
(12)

and

(6x)n−1

⌊n/2⌋∑
k=0

(
n

2k

)
(4k − 1)(36x2 − 4)kB2kCn−2k(x)

= n

(
n−1∑
k=0

(
n− 1

k

)
C2k+1(x)−

(6x)n

2
Cn−1(x)

)
. (13)

Proof. For the first identity, combine b1(x, z) with b(x, z), where b(x, z) is the ex-
ponential generating function for B∗

n(x) [2],

b(x, z) =

∞∑
n=0

B∗
n(x)

zn

n!
=

e3xz√
9x2 − 1

sinh(
√
9x2 − 1z).

The second identity follows from relating c1(x, z) to c(x, z) with

c(x, z) =

∞∑
n=0

Cn(x)
zn

n!
= e3xz cosh(

√
9x2 − 1z).

Corollary 5. For each n ≥ 0 and j ≥ 1,

⌊n/2⌋∑
k=0

(
n

2k

)
(5F 2

j )
kFj(n−2k)B2k

= (−1)nj
n

Ln−1
j

n−1∑
k=0

(
n− 1

k

)
(−1)kjFj(2k+1) −

n

2
Fj(n−1)Lj ,

⌊n/2⌋∑
k=0

(
n

2k

)
(4k − 1)(5F 2

j )
kLj(n−2k)B2k

= (−1)nj
n

Ln−1
j

n−1∑
k=0

(
n− 1

k

)
(−1)kjLj(2k+1) −

n

2
Lj(n−1)Lj .

Proof. Set x = i
6L2m+1 and x = 1

6L2m in (12) and (13), respectively, and simplify
as before.
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3. A special polynomial identity

Equations (6), (9) and (10) give rise to the question if there is a connection between
them. The answer to that question is positive, as will be shown in the next theorem.
The theorem generalizes Theorem 9 in [3], which has been generalized in a different
way in [6]. The proof of the extension presented here does not require the notion of
balancing polynomials.

Theorem 5. Let α be the golden ratio, α = (1+
√
5)/2, and β = (1−

√
5)/2 = −1/α.

Then, for each n ≥ 0, j ≥ 1, and x ∈ C, we have the relations

n∑
k=0

(
n

k

)
Fjk(

√
5Fj)

n−kBn−k(x) = nFj

(
(
√
5x+ β)Fj + Fj−1

)n−1
(14)

and

n∑
k=0

(
n

k

)
Fjk(−

√
5Fj)

n−kBn−k(x) = nFj

(
(α−

√
5x)Fj + Fj−1

)n−1
. (15)

Proof. Let F (z) be the exponential generating function for (Fjn)n≥0, j ≥ 1. Evi-
dently, the Binet formula for Fjn gives

F (z) =

∞∑
n=0

Fjn
zn

n!
=

1√
5

(
eα

jz − eβ
jz
)
.

Now we use the relations αj = αFj + Fj−1 and βj = βFj + Fj−1 to write

F (z) =
2√
5
e(1/2Fj+Fj−1)z sinh

(√5Fj

2
z
)
.

Hence, it follows that

∞∑
n=0

( n∑
k=0

(
n

k

)
Fjk(

√
5Fj)

n−kBn−k(x)
)zn
n!

= F (z)H(x,
√
5Fjz)

= Fjz e
((x−1/2)

√
5Fj+1/2Fj+Fj−1)z

= Fjz e
((
√
5x+β)Fj+Fj−1)z.

This proves the first equation. The second follows upon replacing x by 1 − x and
using Bn(1− x) = (−1)nBn(x) [1, Proposition 9.1.3] and α− β =

√
5.

When x = 0, then

n∑
k=0

(
n

k

)
(
√
5Fj)

n−kFjkBn−k = nFjβ
j(n−1) =

n

2
Fj

(
Lj(n−1) −

√
5Fj(n−1)

)
,

which generalizes (6). Similarly,

n∑
k=0

(
n

k

)
(−

√
5Fj)

n−kFjkBn−k = nFjα
j(n−1) =

n

2
Fj

(
Lj(n−1) +

√
5Fj(n−1)

)
.
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A combination of both yields

n∑
k=0

(
n

k

)
(
√
5Fj)

n−k
(
1 + (−1)n−k

)
FjkBn−k = nFjLj(n−1).

Corollary 6. For each n ≥ 0 and j ≥ 1,

n∑
k=0

(
n

k

)
(
√
5Fj)

n−k
(
21−(n−k) − 1

)
FjkBn−k = n21−nFjL

n−1
j . (16)

Proof. Set x = 1
2 in (14) or (15) and use once more Bn(

1
2 ) = (21−n − 1)Bn. When

simplifying, keep in mind the relation Fj + 2Fj−1 = Lj .

When j = 2 and j = 4, we get (9) and (10), respectively. For j = 3, the identity
becomes

n∑
k=0

(
n

k

)
(2
√
5)n−k

(
21−(n−k) − 1

)
F3kBn−k = n2n.

Corollary 7. Let n, j and q be integers with n, j ≥ 1 and q ≥ 2. Then it holds that

n∑
k=0

(
n

k

)
(
√
5Fj)

n−k
(
q1−(n−k) − 1

)
FjkBn−k

= nFjq
1−n

q−1∑
r=1

(
rαj + (q − r)βj

)n−1
. (17)

Proof. The multiplication theorem [1, Proposition 9.1.3]

1

q

q−1∑
r=0

Bn

(
x+

r

q

)
=

Bn(qx)

qn

gives (
q1−(n−k) − 1

)
Bn−k =

q−1∑
r=1

Bn

(r
q

)
.

Therefore, we can write

n∑
k=0

(
n

k

)
Fjk(

√
5Fj)

n−k
(
q1−(n−k) − 1

)
Bn−k

= nFj

q−1∑
r=1

((√
5
r

q
+ β

)
Fj + Fj−1

)n−1

= nFjq
1−n

q−1∑
r=1

(√
5rFj + q(βFj + Fj−1)

)n−1

= nFjq
1−n

q−1∑
r=1

(
rαj + (q − r)βj

)n−1
.
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When q = 2, then (17) gives (16). When q = 3, then we obtain

n∑
k=0

(
n

k

)
Fjk(

√
5Fj)

n−k
(
31−(n−k) − 1

)
Bn−k

= nFj3
1−n
(
(Lj + βj)n−1 + (Lj + αj)n−1

)
.

Corollary 8. Let n, j and m be integers with n, j ≥ 1 and 0 ≤ m ≤ n− 1. Then

n−m∑
k=0

(
n

k

)
Fjk(

√
5Fj)

n−k(n− k)mBn−m−k(x)

= (n)m+1Fj(
√
5Fj)

m
(
(
√
5x+ β)Fj + Fj−1

)n−1−m
,

and

n−m∑
k=0

(
n

k

)
Fjk(−

√
5Fj)

n−k(n− k)mBn−m−k(x)

= (n)m+1Fj

(
−
√
5Fj

)m(
(α−

√
5x)Fj + Fj−1

)n−1−m
,

where (y)n = y(y − 1) · · · (y − n+ 1), (y)0 = 1, denotes the falling factorial.

Proof. Differentiate the identities in Theorem 5 m times and use the fact B′
n(x) =

nBn−1(x) [1, Proposition 9.1.2]. When m ≥ n, then both sides of the identities
become zero.

Corollary 9. For nonnegative integers n, N and j ≥ 1, we have the identities

N∑
s=0

((
αj +

√
5Fjs

)n −
(
βj +

√
5Fjs

)n)
=
(√

5FjN + αj
)n − βjn,

N∑
s=0

((
βj −

√
5Fjs

)n −
(
αj −

√
5Fjs

)n)
=
(
−
√
5FjN + βj

)n − αjn.

Proof. We only prove the first identity. Integrate both sides of (14) from 0 to N+1
and use the formula

N∑
s=0

sn =

∫ N+1

0

Bn(x)dx.

The last integral identity actually reads:

N∑
s=0

sn =

∫ N+1

0

Bn(x)dx =
1

N + 1

(
Bn+1(N + 1)−Bn+1

)
(Faulhaber’s formula) and holds for all n ≥ 2, so justification is needed. As we will
work with the integral part only, with the convention that 00 = 1, the cases n = 0
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and n = 1 can be checked explicitly. Hence, for the LHS of (14) we obtain

n∑
k=0

(
n

k

)
Fjk

(√
5Fj

)n−k
∫ N+1

0

Bn−k(x)dx

=

N∑
s=0

n∑
k=0

(
n

k

)
Fjk

(√
5Fjs

)n−k

=
1√
5

N∑
s=0

((
αj +

√
5Fjs

)n −
(
βj +

√
5Fjs

)n)
.

The integral on the RHS of (14) is easily evaluated as

nFj

∫ N+1

0

(
(
√
5x+ β)Fj + Fj−1

)n−1
dx =

1√
5

(√
5Fj(N + 1) + βj

)n − βjn.

The proof of the second formula is similar.

4. Conclusion

In this paper, we have discovered new identities relating Bernoulli numbers (poly-
nomials) to balancing and Lucas-balancing polynomials. We have also derived a
general identity involving Bernoulli polynomials and Fibonacci numbers in arith-
metic progression. In our future papers, we will discuss the analogue results for
Euler polynomials and Lucas-balancing polynomials as well as identities connecting
Bernoulli polynomials with Fibonacci and Chebyshev polynomials.
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