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Abstract. The present work is devoted to the study of a higher-order parabolic equation
set on a singular domain in RN+1. The existence and uniqueness of a periodic strict solution
are discussed in the framework of Hölder spaces. The techniques used here are essentially
based on the Dunford functional calculus and the methods applied in [1] and [2].
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1. Introduction of the problem

The solvability and regularity of the boundary value problems (BVP) on certain
non-smooth domains is a popular subject of research of many mathematicians. In
[2] and [3], some regularity results for a particular BVP model set on cusp domains
were obtained in the framework of little Hölder spaces. The authors opted for the
use of the theory of abstract differential equations. Using the same strategy, a
detailed studies of a BVP for a second order linear differential equation set on a
singular cylindrical domain and a BVP for an elliptic system on a conical domain
can be found in [4] and [5], respectively (see also references therein). Here, we will
show that a similar approach can be exploited in order to give a complete study of
an initial BVP set on a cylindrical domain in the framework of Hölder continuous
functions. More precisely, we consider a cylindrical domain Π defined by

Π = R+ × Ω,

where its base Ω ⊂ RN is the singular domain given by

Ω =
{
(x1, x2, . . . , xN ) ∈ RN−1 × R+ :

√
x21 + · · ·+ x2N−1 ≤ φ (xN )

}
,
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and φ denotes a non-negative function of parametrization, which is supposed to be
of class Cθ, 0 < θ < 1, satisfying φ (0) = 0.
In the cylindrical domain Π, we consider the equation:

D4
t u (t, x)−

N∑
i=1

D2m
xi
u (t, x)− λu (t, x) = h (t, x) , m ∈ N∗, (1)

where x = (x1, x2, . . . , xN ) denotes an arbitrary generic point of RN , λ is a positive
spectral parameter and Dtu = ∂u/∂t.

As a special case of (1), we can consider the fourth order differential equations,
which are often encountered in several concrete situations. Problems of this kind
actually arise in the context of linear elasticity, deformation of structures, or soil
settlement. Equation (1) can also be viewed, in some sense, as a fourth order version
of the following equation:

Dtu = µ∆2u+ κ∆ |∇|2 u+ h,

known in the literature as the equation of Kardar-Parisi-Zhang, which often appears
in crystallography; here µ and κ are some suitable physical parameters, see [9]. An-
other motivation for this work comes from the fact that the initial BVP, which is
studied in the present paper, appears as a model linear version for a large class of
higher order equations arising in statistical mechanics, phase field models, hydrody-
namics and suspension bridge models, see [7], [12], and references therein.
Suppose first that h ∈ BUC (R+;C (Ω)) , whereBUC (R+;C (Ω)) , denotes the space
of vector-valued functions h : R+ → C (Ω), uniformly continuous and bounded
in [0,+∞[, while BUCl (R+;C (Ω)) denotes the space of vector-valued functions
h : R+ → C (Ω), uniformly continuous and bounded derivatives up to order l in
[0,+∞[. The introduction of these spaces is necessary in order to be able to state
our main results. We also introduce the Banach space of bounded and θ-Hölder con-
tinuous functions Cθ (R+;C (Ω)) , 0 < θ < 1, consisting of functions h : R+ → C (Ω)
such that sup

t≥0
‖h (t)‖C(Ω) <∞ and there exists C > 0 such that for every t′, t ∈ R+,

we have
‖h (t′)− h (t)‖C(Ω) ≤ C |t′ − t|θ .

This space is endowed with the norm

‖h‖Cθ(R+;C(Ω)) := sup
t≥0

‖h (t)‖C(Ω) + sup
t′>t>0

‖h (t′)− h (t)‖C(Ω)

|t′ − t|θ
.

Furthermore, h is supposed to be periodic in the variable t with period T > 0. We
also impose the following condition:

h|∂Ω = 0, (2)

and consider equation (1) under homogenous Dirichlet conditions:

u|R+×∂Ω = 0. (3)
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The main aim of this paper is to investigate the solvability of problem (1)-(3) asso-
ciated with the following T−periodic initial conditions:

u|{t}×Ω = 0, u|{t+T}×Ω = 0, t ∈ R+. (4)

In this work, we develop a new abstract approach to discuss the solvability of (1)-
(4). The choice of this problem is justified by the fact that the framework of Hölder
spaces and the singular character of domain Π make the usage of the potential theory
or variational techniques or other classical methods a hard task.

The paper is organized as follows. The first section of the paper is devoted to
the statement of the transformed version of our problem (1)-(4). Section 2 contains
some regularity results for the transformed problem. Finally, in the last section, we
go back to our original domain and deduce our main result.

2. Change of variables and statement of the transformed prob-
lem

Our strategy is mainly based on the approximation of the singular domain Π by a
sequence of domains of the form:

Πn = R+ × Ωn,

where

Ωn =
{
(x1, x2, . . . , xN ) ∈ RN−1 × [xN,n,+∞[ :

√
x21 + · · ·+ x2N−1 ≤ φ (xN )

}
,

and (xN,n)n∈N is a decreasing sequence of real numbers such that

lim
n→+∞

xN,n = 0.

We put

un = u|Πn
.

Consequently, the solution u of (1) will be defined using the approximate solutions
un of

D4
t un (t, x)−

N∑
i=1

D2m
xi
un (t, x)− λun (t, x) = h (t, x) , (t, x) ∈ Πn, (5)

accompanied with the initial conditions

u|{t}×Ωn
= 0, u|{t+T}×Ωn

= 0,

and

u|R+×∂Ωn
= 0. (6)
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3. Some regularity results for the transformed problem

We start with the abstract setting of the transformed problem (5)-(6). First, we
consider the following change of variables:

Υ : Πn → Qn,

(t, x1, x2, . . . , xN ) 7→ (t, ξ1, . . . , ξN ) =

(
t,

x1
φ (xN )

, . . . ,
xN−1

φ (xN )
, xN

)
,

(7)

where

Πn := R+ × Ωn and Qn := R+ ×Dn.

Here,

Dn := D × [ξN,n,+∞[ = D × [xN,n,+∞[

and

D := D (0, 1) =
{
(ξ1, . . . , ξN−1) ∈ RN−1 :

√
ξ21 + · · ·+ ξ2N−1 ≤ 1

}
.

Now, we introduce the following change of functions:un (t, x) = vn (t, ξ) ,

h (t, x) = f (t, ξ) ,
(8)

where arbitrary generic points in RN will be denoted by x = (x1, . . . , xN ) and
ξ = (ξ1, . . . , ξN ). Using this change of variables and functions, equation (5) is
reduced to the following one:

D4
t vn (t, ξ)−A (ξ,Dξi) vn (t, ξ)− λvn (t, x) = f (t, ξ) , t ∈ R+, (9)

where

A (ξ,Dξi) = D2m
ξN

+ ψ1 (ξN )
N−1∑
i=1

D2m
ξi

+ ψ2 (ξN )
N−1∑
i=1

ξiDξi , t ∈ R+. (10)

Here,

ψ1 (ξN ) =
1

φ2m (ξN )
and ψ2 (ξN ) =

φ′ (ξN )

φ (ξN )
. (11)

The following lemma is stated to describe the effect of the change of variables in the
functional framework.

Lemma 1. Let 0 < θ < 1. Then

h ∈ Cθ
(
R+;C (Ωn)

)
⇔ f ∈ Cθ

(
R+;C (Dn)

)
.

Proof. We prove the implication

h ∈ Cθ
(
R+;C (Ωn)

)
⇒ f ∈ Cθ

(
R+;C (Dn)

)
.
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Given a small δ > 0, let (t′, ξ), (t, ξ) ∈ Qn such that t′ 6= t and |t′ − t| ≤ δ. Assume,
for instance, that t ≤ t′. Then it is easy to see that

sup
(t,ξ)∈Qn

|f (t, ξ)| <∞.

Furthermore,

|f (t′, ξ)− f (t, ξ)|
|t′ − t|θ

=

∣∣h ◦Υ−1 (t′, ξ′)− h ◦Υ−1 (t, ξ)
∣∣

|t′ − t|θ
.

Consequently,

|f (t′, ξ)− f (t, ξ)|
|t′ − t|θ

=

∣∣h ◦Υ−1 (t′, ξ)− h ◦Υ−1 (t, ξ)
∣∣

|Υ−1 (t′, ξ)−Υ−1 (t, ξ)|

∣∣Υ−1 (t′, ξ)−Υ−1 (t, ξ)
∣∣

|t′ − t|θ
.

First, observe that

∥∥Υ−1 (t′, ξ)−Υ−1 (t, ξ)
∥∥ =

(t′ − t)
2
+

(
N−1∑
i=1

(φ (t′) ξi − φ (t) ξi)

)2
1/2

≤ sup
Ωn

|ξi|
(
(t′ − t)

2
+ (φ (t)− φ (t′))

2
)1/2

.

Since φ is of class Cθ, then there exists C > 0 such that∥∥Υ−1 (t′, ξ)−Υ−1 (t, ξ)
∥∥ ≤ sup

Ωn

|ξi|
(
(t′ − t)

2
+ |t′ − t|2θ

)1/2
≤ C

(
(t′ − t)

2
+ |t′ − t|2θ

)1/2
≤ C

(
(t′ − t)

2θ
(t′ − t)

1−2θ
+ |t′ − t|2θ

)1/2
≤ C (δ) |t′ − t|θ .

Summing up, we deduce that∥∥Υ−1 (t′, ξ)−Υ−1 (t, ξ)
∥∥

|t′ − t|θ
≤ C.

Taking into account the regularity of the function h, we conclude that

|f (t′, ξ)−f (t, ξ)|
|t′−t|θ

=

∣∣h ◦Υ−1 (t′, ξ)− h ◦Υ−1 (t, ξ)
∣∣

|Υ−1 (t′, ξ)−Υ−1 (t, ξ)|

∣∣Υ−1 (t′, ξ)−Υ−1 (t, ξ)
∣∣

|t′ − t|θ
< +∞.

We can prove the opposite implication in the same way.

A direct computation allows us to deduce the smoothness of coefficients of the
operator A given by (10).
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Lemma 2. Let ψi (.) , i = 1, 2 be the real valued functions given by (11). Then,
ψi (.) , i = 1, 2 are of class Cθ, with 0 < θ < 1.

We consider the following vector-valued functions:

vn : R+ → E; t −→ vn(t); vn(t)(ξ) = vn (t, ξ) ,

f : R+ → E; t −→ f(t); f(t)(ξ) = f (t, ξ) ,

where E = C (Dn) and problem (6)-(9) is formulated in its abstract setting by

v
(4)
n (t) +Avn (t)− λvn (t) = f (t) , t ∈ R+,

with
vn (t) = vn(t+ T ).

Here, A is a closed linear operator given by
D (A) :=

{
w ∈W 2m,p

0 (Dn) ∩ C (Dn) , p > 2, m ∈ N− {0} :

A (ξi, Dξi)w ∈ C(Dn)} ,
Aw (ξ) := A

(
ξi, Dξj

)
w (ξ) , 2 ≤ i ≤ N − 1.

Set
Q := A− λI. (12)

After doing this, we obtain the following problem:

v
(4)
n (t)−Qvn (t) = f (t) , t ∈ R+, (13)

with
vn (t) = vn(t+ T ). (14)

In the following proposition, we clarify interesting spectral properties of the operator
Q given by (12), see also [8]:

Proposition 1. For t ∈ R+, the closed linear operator Q with domain D(Q), not
necessarily dense in E, satisfies the Krein ellipticity property, namely,

∃M > 0, ∀z > 0 :
∥∥(Q− zI)−1

∥∥
L(E)

6 M

1 + z
. (15)

Proof. Keeping in mind Lemma 2, estimate (15) is handled by exploiting the results
of [10].

Remark 1. The use of a classical argument of analytic continuation on the resolvent
allows us to conclude that the previous statement holds in the sector:

Πθ0,r0 = {z : |z| > r0 and θ0 6 arg z 6 2π − θ0} , (16)

with some small θ0 > 0, and r0 > 0. Here, ρ(Q) denotes the resolvent set of Q.
Furthermore, we can replace z by z + λ.
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In the sequel, our goal will be to provide a complete study for problem (13)-(14)
by building an explicit representation of the solution vn and studying its regularity.
We note here that by virtue of (15), it is possible to make use of square roots

− (−Q)
1/2

, t ∈ R+,

which are well defined and generate analytic semigroups (not strongly continuous at
zero). The operator Q is not densely defined. So, we prefer the natural use of Green’s
kernels. The techniques used here are essentially based on the use of the Dunford
functional calculus. The calculus is very cumbersome, so one must be careful. The
main lines of the proof are as follows:

1. First, our representation formula for the solution of (13)-(14) can be heuristi-
cally derived by the following argument: taking into account the scalar case,
our solution is given in the following form:

vn (t) = − 1

2πi

∫
γ

∫ t+T

t

Kω (t, s) (Q− zI)−1f(s) ds dz, (17)

where

Kω (t, s) =
e−ω(s−t) + eω(s−t−T )

4ω3 (1− e−ωT )
+
e−ω(t−s) + eω(t−s+T )

4ω3 (1− e−ωT )
, t ≤ s ≤ t+ T.

Here, ω := 4
√
z with Re(ω) is positive. The curve γ is the retrograde oriented

boundary of the sector Πθ0,r0 defined by (16).

2. Next, by the periodic character of the function f and adapting the same ar-
gument applied in [3], [4] and [5], we show that

v(4)n (t) = − 1

2iπ

∫
γ

∫ t+T

t

(
e−ω(s−t) + eω(s−t−T )

4ω3 (1− e−ωT )
+
e−ω(t−s) + eω(t−s+T )

4ω3 (1− e−ωT )

)
×Q(Q− zI)−1f(s) ds dz +

1

πi

∫
γ

Q(Q− zI)−1

2
f(t) dz.

Since

Qvn (t) = − 1

2πi

∫
γ

∫ t+T

t

Kω (t, s)Q(Q− zI)−1f(s) ds dz,

we have

v(4)n (t)−Qvn (t) =
1

πi

∫
γ

Q(Q− zI)−1

2
f(t)dz.

At this level, the Cauchy theorem allows us to conclude that

v(4)n (t)−Qvn (t) = f(t).

In this study, we are dealing with the notion of a strict solution for (13)-(14),
i.e., any vector-valued function vn satisfying

vn ∈ BUC4 (R+, E) , vn ∈ D (Q) , Qvn ∈ BUC (R+, E) ,

and the initial periodic boundary conditions (14). Let us start with the following
technical result:



248 B. Chaouchi, M. Kostić and D. Velinov

Lemma 3. There exists Cθ0 > 0 such that for all z ∈ Πθ0,r0 one has:

|(1− exp(−ωT ))| > Cθ0 = min

(
1− e

−T
π

2 tan(π
2 − θ0

4 ) , 1− e−Tr
1/4
0 cos(π

2 − θ0
4 )

)
> 0.

Proof. Let z ∈ Πθ0,r0 satisfy |z| = r0. Then∣∣1− e−Tω
∣∣ > 1− e−T Reω = 1− e−Tr

1/4
0 cos ν > 1− e−Tr

1/4
0 cos(π

4 − θ0
4 ),

with ν ∈
[
−π

4 + θ0
4 ,

π
4 − θ0

4

]
. For z ∈ Πθ0,r0 and |z| > r0, one has∣∣1− e−Tω

∣∣2 =
∣∣1− e−T Reω−iT Imω

∣∣2
=
∣∣e−T Reω

(
eT Reω − e−iT Imω

)∣∣2
= e−2T Reω

(
e2T Reω − 2eT Reω cos (T Imω) + 1

)
=
(
e−2T Reω + 1

)
− 2e−T Reω cos (T Imω) .

If Reω > π/
(
2 tan

(
π
4 − θ0

4

))
, then

cos
(
T Im

√
−z
)
6 0,

and ∣∣1− e−Tω
∣∣2 >

(
1 + e−2T Reω

)
− 2e−T Reω + 2e−T Reω

>
(
1− e−T Reω

)2
+ 2e−T Reω

>
(
1− e−T Reω

)2
>
(
1− e

−T
π

2 tan(π
4 − θ0

4 )

)2

.

If Reω 6 π/
(
2 tan

(
π
4 − θ0

4

))
, then

cos (T Imω) > 0,

and ∣∣1 + e−Tω
∣∣2 >

(
e−2T Reω + 1

)
− 2e−T Reω

>
(
1− e−T Reω

)2
>
(
1− e

−T
π

2 tan(π
4 − θ0

4 )

)2

.

The case z ∈ Πθ0,r0 with arg(z) = θ ∈]θ0, 2π − θ0[ can be treated by the same
argument.

Remark 2. By the previous lemma and estimate (15), the integrals appearing in
formula (17) converge. This implies that our formal solution given above is well
defined.
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Next, we give our first result concerning the formal solution (17).

Proposition 2. Suppose that f ∈ Cθ(R+, E), 0 < θ < 1 and (15) holds. Then

vn (·) ∈ D (Q) .

Proof. First, one has

f(s) = f(s)− f(t) + f(t).

Then we can write

vn(t) = − 1

2iπ

∫
γ1

∫ t+T

t

kω(t, s)(Q− zI)−1f(s)dsdz

= − 1

2iπ

∫
γ

∫ t+T

t

kω(t, s)(Q− zI)−1 (f(s)− f(t)) dsdz

− 1

2iπ

∫
γ

∫ t+T

t

kω(t, s)(Q− zI)−1f(t)dsdz

= I + J.

Let us start with the second integral. One has

J = − 1

2iπ

∫
γ1

∫ t+T

t

kω(t, s)(Q− zI)−1f(t)dsdz

= − 1

2iπ

∫
γ1

(∫ t+T

t

kω(t, s)ds

)
(Q− zI)−1f(t)dz

= − 1

2iπ

∫
γ1

(∫ t+T

t

e−ω(s−t)) + eω(s−t−T ))

4ω3 (1− exp e−ωT )
ds

)
(Q− zI)−1f(t)dz

− 1

2iπ

∫
γ1

(∫ t+T

t

e−ω(t−s) + eω(t−s+T )

4ω3 (1− e−ωT )
ds

)
(Q− zI)−1f(t)dz

A direct computation yields

− 1

2iπ

∫
γ1

(∫ t+T

t

e−ω(s−t)) + eω(s−t−T ))

4ω3 (1− exp e−ωT )
ds

)
(Q− zI)−1f(t)dz

= − 1

4iπ

∫
γ1

(Q− zI)−1

z
f(t)dz

and

− 1

2iπ

∫
γ1

1

4ω3 (1− exp e−ωT )

(∫ t+T

t

e−ω(t−s) + eω(t−s+T )ds

)
(Q− zI)−1f(t)dz

= − 1

4iπ

∫
γ1

eωT (Q− zI)−1

z
f(t)dz,
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from which we conclude that

J = − 1

4iπ

∫
γ1

(Q− zI)−1

z
f(t)dz − 1

4iπ

∫
γ1

eωT (Q− zI)−1

z
f(t)dz.

Now, using the well-known Cauchy theorem, we deduce that

J = Q−1f(t).

Regarding the integral I, the direct use of Hölder’s inequality shows that∥∥∥∥∥
∫ t+T

t

kω(t, s) (f(s)− f(t))ds

∥∥∥∥∥
E

6 C

(∫ +∞

0

|kω(t, s)| |t− s|θ ds
)

6 C

(
sup
t>0

∫ +∞

0

|kω(t, s)| |t− s|θ ds
)

6 C

|z|1+θ
.

Consequently, it is easy to see that the quantity

‖QI‖E =

∥∥∥∥∥ 1

2iπ

∫
γ1

∫ t+T

t

kω(t, s)Q(Q− zI)−1 (f(s)− f(t)) ds

∥∥∥∥∥
E

is bounded. Summing up, we are able to conclude that

vn(t) ∈ D (Q) .

Furthermore, we have:

Proposition 3. Let f ∈ BUC(R+, E). Then,

Qvn (·) and v(4)n (·) ∈ BUC(R+;E).

Proof. First, observe that

v4n (·) = f(·) +Qvn (·) .

Keeping this in mind, it suffices to prove that

Qvn (·) ∈ BUC(R+;E).

Let t2 > t1 ∈ R+ such that

t1 < t2 < t1 + T < t2 + T.

First, we write

Qv (t2)−Qv (t1) = − 1

2πi

∫
γ

∫ t2+T

t2

Kω (t2, s)Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t1+T

t1

Kω (t1, s)Q(Q− zI)−1f(s) ds dz.
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Then

Qv (t2)−Qv (t1) = − 1

2πi

∫
γ

∫ t1+T

t2

Kω (t2, s)Q(Q− zI)−1f(s) ds dz

− 1

2πi

∫
γ

∫ t2+T

t1+T

Kω (t2, s)Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t2

t1

Kω (t1, s)Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t1+T

t2

Kω (t1, s)Q(Q− zI)−1f(s) ds dz,

and therefore

Qv (t2)−Qv (t1) = − 1

2πi

∫
γ

∫ t1+T

t2

(Kω (t2, s)−Kω (t1, s))Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t2

t1

Kω (t1, s)Q(Q− zI)−1f(s) ds dz

− 1

2πi

∫
γ

∫ t2+T

t1+T

Kω (t2, s)Q(Q− zI)−1f(s) ds dz

: =

3∑
i=1

Ii.

All these three integrals can be treated similarly. So, we restrict ourselves to the
first one and have

I1 =
1

2πi

∫
γ

∫ t1+T

t2

(Kω (t2, s)−Kω (t1, s))Q(Q− zI)−1f(s) ds dz,

so

I1 =
1

2πi

∫
γ

(eωt2 − eωt1)

4 (1− e−ωT )

(∫ t1+T

t2

e−ωs

ω3
Q(Q− zI)−1f(s) ds

)
dz

+
1

2πi

∫
γ

eω(t2+T ) − eω(t1+T )

4 (1− e−ωT )

(∫ t1+T

t2

e−ωs

ω3
Q(Q− zI)−1f(s) ds

)
dz

+
1

2πi

∫
γ

(
1 + e−ωT

)
(e−ωt2 − e−ωt1)

4 (1− e−ωT )

(∫ t1+T

t2

eωs

ω3
Q(Q− zI)−1f(s) ds

)
dz

=

3∑
k=1

I1k.

Let us start with the quantity I11. We have

I11 =
1

2πi

∫
γ

(eωt2 − eωt1)

4 (1− e−ωT )

(∫ t1+T

t2

e−ωs

ω3
Q(Q− zI)−1f(s) ds

)
dz,
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Keeping in mind (15) and using the Lagrange mean value theorem, we get:

‖I11‖E ≤ C

∫
γ

Reω eReωτ

4 (1− e−ωT )

∫ t1+T

t2

e−Reωs

|ω|3
ds |dz| |t2 − t1|

≤ C

∫
γ

Reω eReωτ

4 (1− e−ωT )

∫ t1+T

t2

e−Reωs

|ω|3
ds |dz| |t2 − t1|

≤ C

∫
γ

(
e−Reω(t2−τ) − e−Reω(t1+T−τ)

4 |1− e−ωT | |ω|4
|dz|

)
|t2 − t1| .

Therefore,
‖I11‖E ≤ C |t2 − t1| .

Furthemore,

I2 =
1

2πi

∫
γ

∫ t2

t1

e−ω(s−t1) + eω(s−t1−T )

4ω3 (1− e−ωT )
Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t2

t1

e−ω(t1−s) + eω(t1−s+T )

4ω3 (1− e−ωT )
Q(Q− zI)−1f(s) ds dz.

Then

I2 =
1

2πi

∫
γ

∫ t2

t1

e−ω(s−t1) + e−ω(t1−s)

4ω3 (1− e−ωT )
Q(Q− zI)−1f(s) ds dz

+
1

2πi

∫
γ

∫ t2

t1

e−ω(t1+T−s) + eω(t1−s+T )

4ω3 (1− e−ωT )
Q(Q− zI)−1f(s) ds dz

= I21 + I22.

For I21, the required estimates can be easily handled. Regarding I22, we have

I22 =
1

2πi

∫
γ

∫ t2

t1

eω(t1+T−s) + e−ω(t1+T−s)

4ω3 (1− e−ωT )
Q(Q− zI)−1f(s) ds dz

=
1

2πi

∫
γ

1

2ω3 (1− e−ωT )

(∫ t2

t1

cosh (ω (t1 + T − s))Q(Q− zI)−1f(s) ds

)
dz.

This implies that

‖I22‖E ≤ C

∫
γ

1

2 |ω|3 |1− e−ωT |

∫ t2

t1

|cosh (t1 + T − s)|
∥∥Q(Q− zI)−1f(s)

∥∥
E
ds |dz|

≤

(∫
γ

cosh (Reω (t1 + T − s))

2 |ω|3 |1− e−ωT |
|dz|

)
|t2 − t1|

≤ C |t2 − t1| .

Reiterating the same techniques as above, we may deduce the following:
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Proposition 4. Let f ∈ Cθ(R+, E), 0 < θ < 1. Then the formal solution (17)
satisfies equation (13) accompanied with the initial condition (14). Furthermore,

Qvn (·) and v(4)n (·) ∈ Cθ(R+;E).

Immediately, we get the following:

Corollary 1. Let f ∈ Cθ(R+, E), 0 < θ < 1. Then there exist λ∗ > 0 and C > 0
such that for all λ > λ∗, the strict solution w given by (17) fulfills the estimate

max
t

‖vn(t)‖E ≤ C.

Proof. The result is a direct consequence of estimate (15).

Next, we will describe the smoothness of (17), when the right-hand term of
problem (13)-(14) has spatial smoothness; that is, for every t ≥ 0, we have:

f ∈ L∞(R+, DQ(σ,+∞)), 0 < σ <
1

2m
.

where DQ(σ,+∞) denotes a real Banach interpolation space between D (Q) and E
defined by the set {

ζ ∈ E : sup
r>0

∥∥∥rσQ (Q− rI)
−1
ζ
∥∥∥
E
<∞

}
.

More details about these spaces are given, for instance, in [10] and [11].

Proposition 5. Suppose that f ∈ L∞(R+, DQ(σ,+∞)), 0 < σ <
1

2m
. Then

assumptions (15) and (2) imply

vn (·) ∈ L∞(R+, DQ(σ,+∞)).

Proof. The required result is obtained from the estimate

sup
t>0

sup
r>0

∥∥rσQ(Q− rI)−1vn(t)
∥∥
E
< +∞.

Using the identity

Q(Q− rI)−1(Q− zI)−1 =
Q(Q− zI)−1

z − r
− Q(Q− rI)−1

z − r
,

we get

rσQ(Q− rI)−1vn(t) = − rσ

2πi

∫
γ

∫ t+T

t

Kω (t, s)
Q(Q− zI)−1

z − r
f(s) ds dz

− rσ

2πi

∫ t+T

t

∫
γ

Kω (t, s)
Q(Q− rI)−1

z − r
f(s) ds dz = I1 + I2.



254 B. Chaouchi, M. Kostić and D. Velinov

It is easy to see that I2 = 0 by using the Cauchy formula and integrating to the left
of γ. For the quantity I1, we have:

‖I1‖E 6 rσ
∫
γ

∫ t+T

t

|Kω (t, s)| ds
|z − r| |z|σ

|dz| ‖f‖DA(σ,+∞) .

Since ∫
γ

|dz|
|z − r| |z|σ

= O
(
r−σ

)
,

we obtain

‖I1‖E 6 C ‖f‖DQ(σ,+∞) .

This concludes the proof.

Keeping in mind assumption (2), we have the following characterization:

DQ(σ,+∞) =
{
ψ ∈ C2mσ (Dn) : ψ|∂Dn

= 0
}
, 0 < σ <

1

2m
.

Summing up, our main results concerning the abstract problem (13)-(14) are
formulated as follows:

Theorem 1. Let

f ∈ Cθ(R+, E) ∩ L∞(R+, DQ(σ,+∞)), 0 < θ < 1, 0 < σ <
1

2m
.

Then there exist λ∗ > 0 and C > 0 such that for all λ > λ∗ the strict solution vn
given by (17) is bounded in the sense

max
t

‖vn(t)‖E ≤ C.

The following remark expresses the anisotropic character of the Hölder continuous
spaces.

Remark 3. We feel it is our duty to stress the distinction between Cυ (R+;Cυ (Ω))
and Cυ (Π) , 0 < υ < 1. In fact, it is well known that the space Cθ (Π) is decomposed
as follows:

Cυ (Π) = L∞(R+;Cυ(Ω)) ∩ Cυ(R+;C(Ω)).

For more details, we refer the reader to [6].

4. Return to the singular domain

Now, we are able to justify our main result concerning the specific transformation
given by (9), where Πn is transformed intoQn := R+×Dn. Recall that, by the change
of variables (7), the transformed domain Dn = D × [ξN,n,+∞[ , can be identified
with Dn = D × [xN,n,+∞[ . Observe also that, as a direct consequence of previous
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considerations and using a classical argument, it is possible to extract a convergent
subsequence (xN,ni) from (xN,n) such that

lim
i→+∞

xN,ni = 0 and lim
i→+∞

[xN,ni ,+∞[ = [0,+∞[ .

It is easy to see that if we denote by v(·) the limit of (vni
)

vni = vn (t, ξ1, . . . , ξN,ni) ,

then
vni = v|Qni

→ v|Q ,

where Q := R+ × D × R+. Summing up all these facts and keeping in mind the
inverse change of variables, we can show our main result for the specific problem
(1)-(4) set in the singular cylindrical domain:

Theorem 2. Let h ∈ Cmin(θ,σ) (Π) , where 0 < θ, 2mσ < 1, satisfying condition
(2). Then problem (1)-(4) has a unique strict solution u ∈ C4 (Π) such that

D4
t u and

N∑
i=1

D2m
xi
u ∈ Cmin(θ,σ) (Π) .

References

[1] P.Acquistapace, B.Terreni, Some existence and regularity results for abstract non-
autonomous parabolic equations, J. Math. Anal. 99(1984), 9–64.

[2] B.Chaouchi, R. Labbas, B.K. Sadallah, Laplace Equation on a Domain with a
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