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Abstract. Let p be a prime integer and m an integer such that p = 2 (mod 5) or p =
(mod 5), and let m be odd. We classify explicitly the cyclic codes of length 5p° over
R =TF,m + uF,m with u? = 0 and compute completely their dual codes.
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1. Introduction

Linear codes have been widely studied due to their algebraic structure which sim-
plifies study, and they even have many applications in storage and communication
systems as they have efficient encoding and decoding algorithms [18]. For the sake
of easy encoding and decoding, one naturally requires a cyclic shift of a codeword
in a code C to be still a codeword of C. This yields cyclic codes [13]. Namely, the
codes C such that: (co,...,c,) is a codeword in C implies that (¢, co,c1, ..., Cn_1)
is a codeword in C. Formally, cyclic codes of length p over a field k are defined as
the ideals of the ring k[X]/(X? — 1) [10].

In 1957, Prange [17] have been the first to study the cyclic codes. Since then, cyclic
codes over Fpm was completely classified (see [12, 11, 7, 8, 9, 5]). After that, cyclic
codes have been generalized over finite rings instead of fields only. Classifications of
cyclic codes over Fpm 4+ ulF,m for some lengths are known, e.g. for length p® in 2010
by Dinh [6], for length 2p® in 2014 by Liu and Xu [14], and for length 3p® in 2020
by Phuto and Klin-eam [16].

Our aim in this paper is to classify the cyclic codes of length 5p°® over R = Fpm +-ulF,m
when p =2 (mod 5) or p =3 (mod 5) and m is odd, and to give their dual codes.
We propose a method of the ideals classification inspired by the number theory
techniques based on the valuation language (see [15]). This new method allows to
simplify proofs and calculations, and it strengthens the algebraic coding vocabulary.
Moreover, our classification is characterized by an important parameter L which al-
lows the avoidance of the repetition of some codes in different given types or classes.
Let p be a prime integer such that p =2 (mod 5) or p = 3 (mod 5) and m is odd.
The decomposition of the cyclic codes of length 5p° yields a class of codes that we
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call the n—cyclotomic codes. So we define the n—cyclotomic codes and recall some
results about their factorization in preliminaries. Then, in Section 3, we classify the
cyclic codes of length 5p°® over R by giving a classification of 5-cyclotomic codes of
length 4p® over Fpm + ulFpm. Finally, the last section will be devoted to computing
all the dual codes for each given type.

2. Preliminaries

Let R = Fpm +ulFpm with u? = 0. Every element x of R is of the form z = o + ux,
with z; in Fym. We put v(z) = min{i € {0,1} | x; # 0}. Likewise, if I is an ideal of
R, then we put v(I) = max{i € {0,1} | I C v'R}. In R[X], a polynomial f(X) is of
the form f(X) = fo(X) + uf1(X) with f;(X) € F,m[X]. So we put v(f) = min{i €
{0,1} | f; # 0}, and for any ideal I in R[X], v(I) = max{i € {0,1} | I C u’R[X]}.
On the other hand, cyclotomic polynomials denoted by ®,,(X) are defined as special
divisors of polynomials of the form X™ — 1. When n is prime [1], we get

O (X)=X""t X" 2 X +1.

Lemma 1. [20] ®,,(X) is irreducible in Fo[X] if and only if q is a primitive root
modulo n and n is equal to 2, 4, v* or 2r*, where v is an odd prime and k is a
positive integer.

Definition 1. Let R be a commutative ring. We define a n-cyclotomic code of
length d,k over R as an ideal of the ring R[X]/(®,(X)*) where d,, = deg(®,,).

n-cyclotomic codes generalize cyclic and negacyclic codes; indeed, 1-cyclotomic
codes of length p°® are exactly the negacyclic codes of length p®, and 2-cyclotomic
codes of length p® are the cyclic codes of length p* [1]:

) (X)=1+X,
Dy(X)=1-X.

Proposition 1. ®5(X) is irreducible in Fpm if and only if p=2 (mod 5) orp=3
(mod 5) and m is odd.

Proof. If p=0 (mod 5) or p=1 (mod 5) or p =4 (mod 5), then clearly p™ is not
a primitive root modulo 5.

If p=2 (mod 5), then when m = 2k we get p™ =4 (mod 3) that is not a primitive
root modulo 5, and when m is odd, we get p™ = 2 (mod 5) or p™ = 3 (mod 5),
which are primitive root modulo 5. Likewise, we get that p™ is a primitive root
modulo 5 when p =3 (mod 5) and m is odd.

Therefore, ®5(X) is irreducible in F,m if and only if p = 2 (mod 5) or p =3 (mod 5)
and m is odd. O

Proposition 2. Let C be a cyclic code of length 5p° over Fpm + ulFpm. If p = 2
(mod 5) or p=3 (mod 5) and m is odd, then

C=0C @Cy,

where Cy is a cyclic code of length p°® over Fpm +ulFpm and Cq is a 5-cyclotomic code
of length 4p° over Fpm + ulFm.
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Proof. Notice that X*+X3+ X2+ X +1 = ®5(X) is the 5-th cyclotomic polynomial
[1]. Let R = Fpm + uFpm. When p = 2 (mod 5) or p = 3 (mod 5) and m is odd,
®5(X) is irreducible in Fpm[X]. We get (X° —1)P" = (X — 1)P"(X* + X3 + X2 +
X +1)P". By the Chinese remainder theorem [2] R[X]/((X® —1)P") = R[X]/{((X —
DPYPRIXN{(XA+ X2+ X2+ X +1)P). O

In order to classify the cyclic codes of length 5p° over Fpm + uFpm, it is enough
to classify the 5-cyclotomic codes of length 4p® over Fpm +uF,m and the cyclic codes
of length p® over Fpm + ulFpm.

Likewise, Ct = Ci @ C5. Then we should only compute the dual codes of the 5-
cyclotomic codes of length 4p* over F,m + uF,~ and the cyclic codes of length p®
over Fpm + ulFpm.

3. Classification of the cyclic codes of length 5p° over F,m +ulF,n

Theorem 1. Let f(z) =2* +23+22+2+1, andp =2 (mod 5) orp =3 (mod 5)
and m is odd. 5-cyclotomic codes of length 4p° over R = Fym +ulF,m are as follows:

1. Type 1: Cy: oy ; (1).

2. Type 2: Co(7): (uf(z)™); where 0 <7 <p°®—1.

3. Type 3: C3(0,t, h(z)): (f(x) +uf(x)h(x)); \
where § > t, either h(z) is 0 or h(z) is a unit in R[X]/{(f(X)?P") of the form
L—t—

1
S>> hif(z)" with deg(h;) <1 and hg # 0.
i=0

4. Type 4: C4(0,t, h(z),w): (f(@)° + uf(z) h(z), uf(2)*);
where p* > 6 > L > w > t > 0, either h(xz) is 0 or h(x) is a unit in
R[X]/{f(X)P"). Here, L is the smallest integer satisfying uf(x)* € C3(8,t, h(x)).

Proof. The proof consists of 3 steps:

Step 1: First, we show the general form of ideals of A = R[X]/{(f(X))?").
Let I be an ideal in A; then T = (I +uA)/uA is an ideal in A/uA. Since
AJuA ~ Fpm [X]/(f(X))?") is a principal ideal ring, T = a7 A/uA for some
a, € I. Let x € I; then T = a1.b for some b € A. Namely, z = a1.b+uc for
some ¢ € A. Thus uc = z—ay.b € I. Thereforec € J; ={r € A|ur € I},
so that I = a;.A+wuJ;. By the same logic for J; we get J; = as.A+u.Js for
Jo={reAlure i} ={r e A|u’r€I}. Therefore, I = a;.A+uas.A.

Step 2: Next, we show the generators a;.
We know that R is a special principal ideal ring [3]. Then, every principal
ideal J in R[X] is of the form (u*g), where g is a monic polynomial and
p = v(J) (see [4]). There exist go,g1 € Fpm[X]/(f(X)P") such that
g = go +ugi. For k € {0,1}. Let vy = max{i € {0,...,p%} | f* divide
gr}. Then gy = fUq for some g € Fpm [X]/(f(X)P"). Then ¢ does not
divide f which is irreducible, so the Bézout identity proves that ¢ is a unit
in Fpm [X]/(f(X)P"). Therefore, g = f*+uf’h. If we suppose h is a unit
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and a < b, we get g = f*(1+ uf’~?), and 1 + uf*~?h is a unit because
uf?h is nilpotent. So J = f*A or J = (f* 4+ uf’h)A with a > b.

Step 3: Finally, we have 4 cases:

1. I =(0) or I = A, which is type 1.

2. I is a principal ideal with v(I) = 1. In this case, I = uf7 A, which is
type 2.

3. I is a principal ideal with v(I) = 0. In this case I = (f° + ufth)A
with & >t and h is either unit or zero. This corresponds to type 3.

4. I is not a principal ideal. In this case, I = a1 A+uasA. Since a1 A is a
principal ideal, a1 A = (f° +ufth)A with § > t and h either a unit or
zero. Therefore, I = (f° +ufth)A+ufA. Since uf® € (f° +ufth),
if w>6, weget I =(f+ufth)A+uf“A = (f°+ufth)A, which
is principal, then w < d. Moreover, if t > w, the ideal I could be
written as I = f0A + uf¥A, which is also of type 4 for h = 0.

O

We should now compute the parameter L.

Proposition 3. Let f(z) = 2* +2® + 22 + 2+ 1 and L = min{k € Ns | uf* €

(f°+ufth)}
B if h=0,

L 4,
- in(d,p* —d+1t), if h#0.
Proof. Suppose uf* = (f° + ufth)(ghf% + ug)f9*) with g} is a unit or zero and
go > g1. Then
gofr+ =0,
{ GLfoO + gohfott = fe.
Then go + § > p®. Let ko = go + 6 — p°. We get,
GO 4 goh fr O = e

Since §+g; > w, if h = 0, the equation is impossible. Else, v(g} f0T91+g{hfP —0+kott)
=p® =0+ ko+t=w. It follows that w > p® — § + ¢, while h # 0. O

The classification of cyclic codes of length p® over Fpm 4+ ulF,m was given by Dinh
in [6]:

Theorem 2 (see [6]). Let f'(x) = x — 1. The cyclic codes of length p® over R =
Fpm + ulFpm are:

1. Type 1: Ci: oy ; (1).
2. Type 2: C4(7): (uf'(z)7); where 0 < 17 < p® —1.
3. Type 3: C4(,t,h): (f" +uf'thy;

where § > t, either h is 0 or h is a unit in R[X]/{((f'(X))P") of the form
L—t—1
o hif"" with deg(h;) < 1 and hg # 0.

=0
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4. Type 4: Ci(6,t, h,w): (f'% +uf'th,uf™);
wherep® > 6 >T > w >t >0, either h is 0 or h is a unit in R[X]/{(f'(X))P").
Here T is the smallest integer satisfying uf'" € C4(8,t,h).

Proposition 4. [6] Let f'(z) =z — 1 and T = min{k € Ns | uf’® € (f'° +uf'*h)}

T_ 5, if h =0,
~ | min(d,p* — 0 +1¢), if h £ 0.

4. Dual codes of the 5-cyclotomic codes of length 4p° over F,» +
ulf pm

Let f(x) =2* + 2>+ 224+ 2+ 1 and p = 2 (mod 5) or p = 3 (mod 5), and let
m be odd. According to Theorem 1, we compute the dual code of each type of
5-cyclotomic codes of length 4p® over R = Fpm + ulFpm.

For a 5-cyclotomic code C, its dual is O+ = Ann(C)* = {k* | =0,(Vg € C)},
where k* is the reciprocal polynomial of k defined by k*(x) = k(%)
Remark 1. Remark that f* = f. Indeed, f*(z) = ' (& + 5+ =+ 2 +1) = f(z).

For type 1, it is obvious that (0)* = (1) and (1)* = (0).
Let us now show other types.

Proposition 5. Using the above notations, we have
Cy(T)t = Cu(p® — 7,0,0,0).

Proof. Let g € R[X]/((f(X))?")\{0} such that uf™ x g = 0. There exist ag,a; € N,
ho,h1 € Fpm [X]/((f(X))P") with ho a unit and h; either a unit or zero, verifying
g = ho(f% +uf%hy) and a9 > a1. Then, uf™ x g = uf7T%hg = 0. Therefore,
T+ag > p®, namely ag > p® —7. Thus, g € (fpS_T, u). Conversely, it is obvious that
P T xufT =0 and u x uf” = 0. Therefore, Co(7)t = (fP" 7, u)* = ("7, u) =
Cs(p* —7,0,0,0). O

Proposition 6. Using the above notations, we have

Cs(p® — 6,0,0), if h=0,
Cs(0,t,h)t =< Cs(p® — 0,p° +t—26 +v,—H), if h#0and p* > 25 —t,
C3(6 —t,v,—H), if h£0andp® <26 —t,

with v = max{k € N | f* dividing 2*©0~Yh(1)} and 24C~Yn(1) = fo(z)H(z) for
some H, which is either a unit or zero.

Proof. Let g € R[X]/(f(X)P") \{0} such that (f° + ufth) x g = 0. There exist
ap,a1 € N, ho,hy € Fpm [X]/{(f(X)P") with ho a unit and hy either a unit or zero,
verifying g = ho(f% + uf%h;) and ag > a;. Then, (f° +ufth) x g = ho(fo+% +
u(forahy + ftraoh)) = 0. Therefore,

f6+a0 - Oa
{ Ry + frHaoh = 0,
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By the first equation, there exists kg € N such that ag = p®* — § + kg. Then, the
second equation becomes as follows:

f5+a1 hy = 7ft+ps*5+ko h.

Case 1: If h = 0, we choose t = 0. Then, fot%h; = 0. It follows that h; = 0
or a; = p® — 0 + ky for some ki € N. Therefore, g = ho(fP 0k +
ufps_5+k1h1) with Ay a unit or zero. In particular, when kg = k1 = 0, it
is easy to notice that (f° + ufth) x g = 0. Thus,

63(5a0’0)L = <fps*6>* = <fps*6> = CS(pS - 57070)

Case 2: If h a unit, then we suppose that p* +¢t —§ + kg < p®. Then § + a1 =
t+p* — 0+ ko, and hy = —h. Then, g = ho(fP" ~0Fko — o fp +t=20+kop)
with p® +¢ — 2§ + kg > 0, namely kg > 20 —t — p®. So we put ky =
max{0,20 —t — p°}.

If0>2§ —t—p®, then

s s s s 1
Ca(0,t )" = (f7 =0 —ufP TR = (70— fr TR0 OO R()),
x
Let v = max{k € N | f* divide 2*C=9h(1)}; then 2*C~Yh(1) =
fY(z)H (x) with H either a unit or zero. Thus,
63(57t7 h)J_ = Cd(ps - 5,ps + t— 25 + v, _H)
If 0 <26 —t — p°, then

Co(6. 1) = (£ — uh) = (5 — a5 L)

Let v = max{k € N | f* divide 2*C~9hn(1)}. Then, 24C-Vp(l) =
fY(x)H (x) with H either a unit or zero. Thus,

C3(0,t,h)*t =C3(6 — t,v,—H).

O
Proposition 7. Using the above notations, we have
C4(ps_W70707pS_5)> th:07
Ca(0,t,hw)t =< C3(p* —w,p* +t—6—w+wv,—H),if h#0and p* > +w —t,
C3(6 —t,v,—H), ifh#0andp®* <d+w—t,

with v = max{k € N | f*¥ dividing x4<5*t)h(%)} and x4(67t)h(%) = fY(x)H(x) for
some H which is either a unit or zero.

Proof. Let g € R[X]/(f(X)?")\ {0} such that

{9 x (f(2)° +uf(x)h(z)) =0,
gxuf(xz) =0.

Namely, g € C3(6,t, h)* N Ca(w)*. By the previous proofs done, we distinguish two
cases:



THE CYCLIC CODES OF LENGTH 5p° OVER Fpm + uFpm AND THEIR DUAL CODES 133

Case 1:

Case 2:

If h =0, then g = ho(f? ~+ko £ ufv hy) € (fP %) with ko,v; € N, Iy
either a unit or zero and hg a unit. It follows that

{ps—w+ko >p* =4

> p® — 4.
vy 2p* =9 = ozpt =0

Therefore, g € (fP =%, ufP"~%). Conversely, fP" =% ufP =% € C3(6,t,h)*N
Ca(w)t. Thus,

C4((5,0,0,U])J' = <fp57w7ufp575> = C4(ps - wvoaoaps - 5)

If h # 0, then g = ho(fP"~0tko — g fp"+1=20%kop)y ¢ (fP°= o) with hg a
unit and kg € N. It follows that

p’—0+ky>p°—w & ko >0 —w.

In the proof of Proposition 6, we had ky > max{0,26 —t —p*}. Then, we
get kg > max{d —w, 20 —t — p°}.

If 0 —w>20—t—p° then kg = § —w + Kk’ for some k¥’ € N, as well as
g = ho(fP" K —q POt ) € (fPT7 —ufPTHTOCh). Then,

Cy4(9, ¢, h(:v),o.))l - <fps—w _ ufps+t—5—wh>*
1

_ <fpsfw _ Ufpl§+t767w174(67t)h(7)>.
T

Let v = max{k € N | f* divide 2*®~Yh(1)}. Then 2*C-Vn(L) =
fY(z)H (x) with H either a unit or zero. Thus,

Cy(0,t, hyw)t =Ca(p® —w,p* +t— 6 —w+v, —H).

If 6 —w <26 —t —p%, then kg = 26 — ¢t — p* + k' for some k' € N, as well
as g = ho(fo~* —uf¥h) € (2=t — uh). Then,

Ca(8,t, hyw)t = (5=t —uh)* = (3t — um4(‘5_t)h(%)>.

Let v = max{k € N | f* divide 2*C=9h(1)}. Then 2*C-Dn(L) =
f(z)H (z) with H either a unit or zero. Thus,

Ca(6,t,h,w)t =C3(6 —t,v,—H).

O

Now, for f/(z) = z — 1, we have f* = —f. We will get the same results with
very little difference that some powers of —1 will appear.

Proposition 8. Using the above notations, we have

Cy(r)yt =¢cj(p® —7,0,0,0).
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Proposition 9. Using the above notations, we have

Cé(ps - 57070)’ Z.f h = 07
Ch(,t, )= =< Ch(p® — 6, p° +t—20 + v, (—1)P"HHLH) if h # 0 and p* > 26 —t,
C4(6 —t,v,—H), if h# 0andp® <26 —t,

with v = max{k € N | f** dividing 2°~'h(1)} and z°~*h(2) = f*(z)H(z) for some
H which is either a unit or zero.

Proposition 10. Using the above notations, we have

Cy(8,t, hyw)t =

Ci(p® — w,0,0,p° —6) if h =0,
CLp* — wop 4t — 6w+ v, (1P ) i £ 0 and p* > 64w — 1,
C4(8 —t,v,—H) ifh£0andp® <d+w—t,

with v = max{k € N | f'* dividing °~*h(%)} and 2°~'h(L) = f"*(z)H(z) for some
H which is either a unit or zero.
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