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Abstract. This paper analyzes the sensitivity of artificial viscosity in the defect-deferred
correction method for the non-stationary coupled Stokes/Darcy model. For the defect
step and the deferred-correction step of the defect deferred correction method, we give the
corresponding sensitivity systems related to the change of artificial viscosity. Finite element
schemes are devised for computing numerical solutions to the sensitivity systems. Finally,
we verify the theoretical analysis results through numerical experiments. The paper shows
the effects of artificial viscosity, viscosity/hydraulic conductivity coefficients and spatial
step sizes on sensitivity of numerical solutions to artificial viscosity in the defect step and
the deferred correction step in detail.
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1. Introduction

In recent years, the coupled Stokes/Darcy model and the coupled Navier-Stokes/Da-
rcy model have received more and more attention in science and engineering, espe-
cially in cases where a free flowing fluid moves over a porous medium, such as the soil
pollution problem, oil drilling simulation, filtering surface water and blood motion
in the vessels, etc. [19, 24]. In such regions, compared with the Stokes equations, the
Navier-Stokes equations can more accurately describe the flow of liquids in cavities
and conduits. Since fluids often flow relatively slowly, we can simplify the nonlinear
Navier-Stokes equations into the linear Stokes equations. In this paper, we mainly
focus on the coupled Stokes/Darcy model which consists of the Stokes equations and
Darcy’s law to control the free flow and the porous media flow respectively, and then
couples them together through some interface conditions between two subdomains.
Obviously, it is of great significance to develop some effective numerical methods to
investigate the Stokes/Darcy model.

The Stokes/Darcy model has different governing equations in different regions
and possesses multiple physical quantities which have caused various difficulties and
problems in the numerical simulation of the model. To overcome the complexity
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of this model, many numerical methods for solving the Stokes/Darcy system have
been proposed. For example, aiming at the mathematical difficulties in coupled
multiphysical model simulation for the steady state problem, Cai et al. proposed in
[8] a decoupled and linearized two-grid algorithm. In order to improve the accuracy
of numerical solutions and achieve mass conservation in the finite element method for
non-stationary problem, the rotational form of the pressure-correction method was
presented by Li et al. in [21]. Qin and Hou have added a time filter to the backward
Euler scheme of the Stokes/Darcy model to increase the accuracy of the time from the
first order to the second order [27]. There are also discontinuous Galerkin methods
[29], interface relaxation methods [4] and decoupled methods based on two-grid or
multi-grid finite elements [23, 7, 12], and other works presented in [31, 10, 18, 22]
and the references therein.

The defect-deferred correction method was used by Aggul, Connors, Erkmen, and
Labovsky when solving the problem of fluid-fluid interaction [2]. For this method,
it can deal with the problem with small parameters. The defect step uses a simple
and effective artificial viscosity to increase the viscosity coefficient of the flow. Af-
ter that, a deferred correction step is established and applied to the data-passing
scheme [13, 11] to create an unconditionally stable second-order precision partition
time. Currently, the defect-deferred correction method is successfully tested in the
application to the one-domain Navier-Stokes equations [3] and the two-domain con-
vection dominated convection diffusion problem [13].

In the solution of many fluid problems, very fine meshes are often required, which
results in expensive costs of each calculation. Therefore, the influence of a differ-
ent selection of artificial parameters on the numerical solution of the equation is
very important. On the other hand, studying the sensitivity of physical quantities
to parameters in fluid problems is of great significance for a more comprehensive
analysis of flow behavior and understanding of the reliability of numerical solutions
[1, 5, 14, 26, 32]. The common method for calculating sensitivity is the continuous
sensitivity equation method [6]. Firstly, the sensitivity equations are derived by dif-
ferentiating with a dependent variable or parameter in original continuum equations.
Secondly, after solving the numerical solution of the original equation, the sensitivity
of the numerical solution to the parameters is obtained by solving linear equations
derived from sensitive equations. Since the continuous sensitivity equation method
has the advantage of avoiding a delicate issue of computing mesh sensitivities and the
issue of differentiating computational facilitators, more and more works are focused
on the continuous sensitivity equation method [5, 14, 20, 25, 32]. Li and Huang
have studied sensitivity analysis of the relaxation parameter in the Uzawa algorithm
for the steady natural convection model [20]. Neda et al. have discussed sensitiv-
ity analysis of the grad-div stabilization parameter in finite element simulations of
incompressible flow [25].

In this paper, we use the continuous sensitivity equation method to study the
sensitivity of artificial viscosity of the defect-deferred correction method for the
coupled Stokes/Darcy problem. These sensitivity equations are developed by taking
a derivative of the defect-deferred correction method of the non-stationary coupled
Stokes/Darcy model with respect to artificial viscosity. Besides, the solutions to the
sensitivity equations can be used to estimate the reliability of the non-stationary
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coupled Stokes/Darcy model in terms of artificial viscosity in the defect-deferred
correction method.

2. Coupled Stokes/Darcy model

Let us take into account the model for coupling fluid and porous media flows in
a bound smooth domain Ω ⊂ R2, which consists of two sub-domains Ωf and Ωp.
Interface Γ divides Ω into Ωp and Ωf , i.e. Ω = Ωp ∪ Ωf . Next, boundary Γf =
∂Ωf ∩ ∂Ω, Γp = ∂Ωp ∩ ∂Ω and interface Γ = ∂Ωf ∩ ∂Ωp are introduced. In the rest
of this paper, we always use boldface characters to denote vectors or vector spaces.
np and nf represent the unit outward normal vector of ∂Ωp and the unit outward
normal vector of ∂Ωf , respectively. The motion in fluid region Ωf is governed by
the Stokes equations [27, 28]:

∂uf
∂t
−∇ · (Tν(uf , pf )) = gf , in Ωf ,

∇ · uf = 0, in Ωf ,

uf (x, 0) = u0
f (x), in Ωf ,

(1)

where Tν(uf , pf ) = −pf I+2νD(uf ) is the stress tensor and D(uf ) = 1
2 (∇uf+∇Tuf )

is the deformation rate tensor. I is the identity tensor expressed as:

I =

[
1 0
0 1

]
.

ν is the kinematic viscosity and gf (x, t) is the external force. The motion in porous
medium region Ωp is governed by

S0∂φp
∂t

−∇ ·K∇φp = gp, in Ωp,

φp(x, 0) = φ0
p(x), in Ωp,

(2)

where S0 is the water storage coefficient. K represents the hydraulic conductivity in
Ωp, which is the positive symmetric tensor, allowed to change in space. The gp(x, t)
is a source term with a solvability condition

∫
Ωp
gp(x, t) = 0. The above equations

(1) and (2) are coupled together by the following boundary conditions:

uf = 0, on Γf , φp = 0, on Γp,

and the interface conditions on Γ:

uf · nf −K∇φp · np = 0,

−[Tν(uf , pf ) · nf ] · nf = gφp,

−[Tν(uf , pf ) · nf ] · τ =

√
2αν√

traceΠ
uf · τ ,
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where τ is the orthogonal tangential unit vector along Γ. α is an experimentally
validated parameter and Π represents the permeability. Here g represents the grav-
itational constant. This interface condition is called the Beavers-Joseph-Saffman
interface condition [30, 17, 9, 16].

Then, let us introduce some function spaces:

Xf = {vf ∈ H1(Ωf ) : vf |Γf
= 0}, Xp = {ψp ∈ H1(Ωp) : ψp|Γp = 0},

Qf = L2(Ωf ), U = Xf ×Xp.

We equip the domain D (D = Ωp or Ωf ) with the usual L2-scalar product (·, ·)D
and L2-norm ‖ · ‖D, which is expressed as ‖ · ‖L2 . On the interface Γ, the L2 inner
product is defined as (·, ·)Γ. Besides, spaces Xf and Xp are equipped with the
following norms:

‖vf‖f = ‖∇vf‖L2 =
√

(∇vf ,∇vf )Ωf
, ∀vf ∈ Xf ,

‖ψp‖p = ‖∇ψp‖L2 =
√

(∇ψp,∇ψp)Ωp
, ∀ψp ∈ Xp.

The space U is equipped with the norms: ∀u = (uf , φp)
T ∈ U,

‖u‖0 =
√

(uf ,uf )Ωf
+
√
gS0(φp, φp)Ωp

,

‖u‖U =
√
ν(∇uf ,∇uf )Ωf

+
√
g(K∇φp,∇φp)Ωp

.

For functions v(x, t), we define the norms:

‖v‖L2(0,T ;L2(Ω)) =

(∫ T

0

‖v(·, t)‖2L2dt

) 1
2

, ‖v‖L∞(0,T ;L2(Ω)) = ess sup
(0<t<T )

‖v(·, t)‖L2 .

Then the variational formulation for the time-dependent Stokes/Darcy model
is as follows: For gf ∈ L2(0, T ; L2(Ωf )) and gp ∈ L2(0, T ;L2(Ωp)), find u =
(uf , φp)

T ∈ L2(0, T ; Xf ) ∩ L∞(0, T ; L2(Ωf ))× L2(0, T ;Xp) ∩ L∞(0, T ;L2(Ωp)) and
pf ∈ L2(0, T ;Qf ) such that ∀(v, qf ) ∈ U×Qf satisfying

(ut,v) + a(u,v)− b(v, pf ) + b(u, qf ) = 〈F,v〉U′ ,

u(x, 0) = u0,

where

(ut,v) = (uf,t,vf )Ωf
+ (S0φp,t, ψp)Ωp , a(u,v) = aΩ(υu,v) + aΓ(u,v),

aΩ(υu,v) = aΩf
(νuf ,vf ) + aΩp

(Kφp, ψp), aΩp
(Kφp, ψp) = g(K∇φp,∇ψp)Ωp

,

aΩf
(νuf ,vf ) = 2ν(∇uf ,∇vf )Ωf

+

(
α
√

2√
traceΠ

((uf ,vf )− ((uf ,vf ) · nf )nf )

)
Γ

,

〈F,v〉U′ = (gf ,vf )Ωf
+ g(gp, ψp)Ωp

, aΓ(u,v) = g(φp,vf · nf )Γ − g(ψp,uf · nf )Γ,

b(v, pf ) = (pf ,∇ · vf )Ωf
,
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where U′ is the dual space of U. In particular, υ does not have a specific phys-
ical meaning. It is only used to keep aΩ(υu,v) the same writing structure as
aΩf

(νuf ,vf ) and aΩp
(Kφp, ψp), so as to facilitate subsequent corrections with algo-

rithms. The bilinear forms are continuous and coercive (refer to [10]). ∀u,v ∈ U,

a(u,v) ≤ Ccon‖u‖U‖v‖U, a(u,u) ≥ Ccoe‖u‖2U,
aΓ(u,v) ≤ CΓ‖u‖U‖v‖U, ∀u,v ∈ U,

where Ccon, Ccoe and CΓ are positive constants and not dependent on the data of
the problem. Additionally,

aΓ(u,v) = −aΓ(v,u) and aΓ(u,u) = 0, ∀u,v ∈ U.

For the theoretical analysis, we introduce the trace and Poincaré inequalities.
There exist positive constants Cp and C̃p that depend on the domains Ωf and Ωp
respectively, such that for all vf ∈ Xf and ψp ∈ Xp,

‖vf‖L2 ≤ Cp‖vf‖f , ‖ψp‖L2 ≤ C̃p‖ψp‖p.

3. The defect-deferred correction method and the sensitivity
equation

Firstly, let {tn = n∆t}Nn=0 be the mean of the time interval [0, T ], and the time step
∆t = T

N . Secondly, τfh is constructed as regular triangles of Ωf in a 2D domain with
max diameter hf . Further, for Ωp, we also define τph with max diameter hp. Then
h = max{hf , hp} is set as the maximum diameter of Ω. For simplicity, we assume
that Ωf and Ωp are smooth domains. Let Xfh ⊂ Xf , Qfh ⊂ Qf , and Xph ⊂ Xp

are finite element spaces. Furthermore, the finite element space pair (Xfh, Qfh) is
assumed to satisfy the usual discrete inf-sup condition or the LBB condition for the
stability of the discrete pressure:

inf
qfh∈Qfh

sup
vh∈Xfh

b(vh, qfh)

‖vh‖Xf
‖qfh‖Qf

≥ β > 0,

where β is a constant independent of h. In fact, many finite element space pairs
satisfy the discrete inf-sup condition, such as Taylor-Hood elements (P2-P1, P3-
P2) and the Scott-Vogelius element. In this paper, the theoretical analysis and
numerical experiments are based on the Taylor-Hood element (P2-P1). Then, we
define Uh = (Xfh×Xph) ⊂ (Xf ×Xp). Discretely, divergence-free velocities will be
sought in the test space

Vh =

{
vh ∈ Uh :

∫
Ω

qfh∇ · vhdΩ = 0, ∀qfh ∈ Qfh
}
.

Throughout the remainder of this paper we will use tu := (tuf , tφp) and tpf , ûh :=

(ûf , φ̂p) and p̂f , cuh := (cuf , cφp) and cpf to denote the true solutions, the defect
step approximations and the deferred correction step approximations, respectively.
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For t ∈ [0, T ], ûnh and cunh will denote the discrete approximations to tun

(n = 0, 1, . . . , N). Artificial viscosities Hf and Hp are positive and chosen as ad-
ditional parameters of the Stokes equation and the Darcy equation, respectively.
For the convenience of the theoretical analysis, we let aΩ((υ + H)u,v) = aΩf

((ν +
Hf )uf ,vf ) + aΩp

((K + HpI)φp, ψp), where H is also a symbol, and it is used to
keep aΩ((υ + H)u,v) and aΩf

((ν + Hf )uf ,vf ), aΩp
((K + HpI)φp, ψp) in the same

structure. Moreover, in the subsequent numerical examples, we take Hf = Hp.

After that, we will introduce the defect-deferred correction algorithm: Given
ûnh ∈ Uh, cunh ∈ Uh, find (ûn+1

h , p̂n+1
f ) ∈ (Uh, Qfh), (cun+1

h , cpn+1
f ) ∈ (Uh, Qfh)

with n = 0, 1, 2 · · ·N − 1, for all vh ∈ Uh, satisfying(
ûn+1
h − ûnh

∆t
,vh

)
+ aΩ((υ +H)ûn+1

h ,vh) + aΓ(ûn+1
h ,vh)− b(vh, p̂n+1

f )

= 〈Fn+1,vh〉U′ ,

(3)

and(
cun+1

h − cunh
∆t

,vh

)
+ aΩ((υ +H)cun+1

h ,vh) + aΓ(cun+1
h ,vh)− b(vh, cpn+1

f )

= HaΩ

(
ûn+1
h + ûnh

2
,vh

)
+

〈
Fn+1 + Fn

2
,vh

〉
U′

+ aΓ

(
ûn+1
h − ûnh

2
,vh

)
+ aΩ

(
(υ +H)

ûn+1
h − ûnh

2
,vh

)

+ aΓ

(
ûn+1
h − ûnh

2
,vh

)
− ∆t

2
b

(
vh,

p̂n+1
f − p̂nf

∆t

)
.

(4)

Here (3) is the defect step and (4) is the deferred correction step. The terms
on the right-hand side of (4) are written in a form that hints at the reason for the
increased accuracy of the deferred correction step solution. Note also that the matrix
of the system is identical for (3) and (4) because of the similar structure on the left.

Then we consider the sensitivity of artificial viscosity in the defect-deferred
correction method based on the continuous sensitivity equation method. Define

ξ̂h =
∂ûh

∂H = (
∂ûf

∂Hf
,
φ̂p

∂Hp
), ζ̂f =

∂p̂f
∂Hf

and cξh =
∂cuh

∂H = (
∂cuf

∂Hf
,
∂cφp

∂Hp
), cζf =

∂cpf
∂Hf

. The

derivative of the defect deferred correction method (3) and (4) for the Stokes/Darcy
model with respect to artificial viscosity H results in the following system: Given
ξ̂nh ∈ Uh, ζ̂

n
h ∈ Uh, find (ξ̂n+1

h , ζ̂n+1
f ) ∈ (Uh, Qfh), (cξn+1

h , cζn+1
f ) ∈ (Uh, Qfh) with

n = 0, 1, 2 · · ·N − 1, for all vh ∈ Uh, satisfying(
ξ̂n+1
h − ξ̂nh

∆t
,vh

)
+ aΩ((υ +H)ξ̂n+1

h ,vh) + aΩ(ûn+1
h ,vh) + aΓ(ξ̂n+1

h ,vh)

− b(vh, ζ̂n+1
f ) = 0,

(5)
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and(
cξn+1
h − cξnh

∆t
,vh

)
+ aΩ((υ +H)cξn+1

h ,vh) + aΩ(cun+1
h ,vh) + aΓ(cξn+1

h ,vh)

− b(vh, cζn+1
f ) = aΩ

(
(υ +H)

ξ̂n+1
h − ξ̂nh

2
,vh

)
+ aΩ

(
ûn+1
h − ûnh

2
,vh

)

+ aΩ

(
ûn+1
h + ûnh

2
,vh

)
+HaΩ

(
ξ̂n+1
h + ξ̂nh

2
,vh

)
+ aΓ

(
ξ̂n+1
h − ξ̂nh

2
,vh

)

− ∆t

2
b

(
vh,

ζ̂n+1
f − ζ̂nf

∆t

)
.

(6)

4. Sensitivity analysis

In this section, we mainly establish the estimates of sensitive equations (5) and (6).
At the beginning, let us first state and prove the estimates of (3) and (4).

Theorem 1 (Estimates of defect approximation). Let ûn+1
h with initial data û0

h

satisfy (3) for each n ∈ {0, 1, 2, · · ·, N − 1}. Then we get

‖ûNh ‖20 + ∆t(υ +H)Ccoe

N−1∑
n=0

‖ûn+1
h ‖2U ≤

∆t(C2
p + C̃2

p)

Ccoe(υ +H)

N−1∑
n=0

‖Fn+1‖2L2 + ‖û0
h‖20. (7)

Proof. By setting vh = ûn+1
h ∈ Vh in (3), we can arrive at(

ûn+1
h − ûnh

∆t
, ûn+1

h

)
+ aΩ((υ +H)ûn+1

h , ûn+1
h ) + aΓ(ûn+1

h , ûn+1
h )

= 〈Fn+1, ûn+1
h 〉U′ .

Thanks to the Cauchy-Schwarz and Young’s inequalities, we derive

‖ûn+1
h ‖20 − ‖û

n
h‖20

2∆t
+ (υ +H)Ccoe‖ûn+1

h ‖2U

≤ Ccoe(υ +H)

2
‖ûn+1

h ‖2U +
(C2

p + C̃2
p)

2Ccoe(υ +H)
‖Fn+1‖2L2 .

By multiplying both sides of the last inequality by 2∆t and adding up from n = 0
to N − 1, the required estimate (7) holds.

Theorem 2 (Analysis of the defect step of the sensitive equation). Let ξ̂n+1
h with

initial data ξ̂0
h satisfy (5) for each n ∈ {0, 1, 2, ···, N−1}. Then ∃C > 0 is independent

of h, ∆t and H such that ξ̂n+1
h satisfies

‖ξ̂Nh ‖20 + ∆t(υ +H)Ccoe

N−1∑
n=0

‖ξ̂n+1
h ‖2U ≤ C

{
∆t

(υ +H)3

N−1∑
n=0

‖Fn+1‖2L2 + ‖ξ̂0
h‖20

+
1

(υ +H)2
‖û0

h‖20

}
.

(8)
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Proof. We take vh = ξ̂n+1
h ∈ Vh in (5), and then we obtain(

ξ̂n+1
h − ξ̂nh

∆t
, ξ̂n+1
h

)
+ aΩ((υ +H)ξ̂n+1

h , ξ̂n+1
h ) + aΩ(ûn+1

h , ξ̂n+1
h ) = 0.

With the Cauchy-Schwarz and Young’s inequalities, it is easy to get

‖ξ̂n+1
h ‖20 − ‖ξ̂nh‖20

2∆t
+ (υ +H)Ccoe‖ξ̂n+1

h ‖2U

≤ Ccoe(υ +H)

2
‖ξ̂n+1
h ‖2U +

C2
con

2Ccoe(υ +H)
‖ûn+1

h ‖2U .

We multiply both sides by 2∆t, sum over from n = 0 to N − 1 and combine with
(7). Then we yield

‖ξ̂Nh ‖20 + ∆t(υ +H)Ccoe

N−1∑
n=0

‖ξ̂n+1
h ‖2U ≤

∆tC2
con(C2

p + C̃2
p)

C3
coe(υ +H)3

N−1∑
n=0

‖Fn+1‖2L2

+
C2
con

C2
coe(υ +H)2

‖û0
h‖20 + ‖ξ̂0

h‖20.

The desired result (8) is proved.

It can be obtained from Theorem 2 that the sensitivity of ûh on H is mainly
affected by υ and H, and smaller when υ and H are larger. Moreover, it should
be noted that the values of υ and H are too small at the same time to obtain the
convergence for the numerical solution ξ̂Nh . These provide a reference for selecting
H when solving the Stokes/Darcy model with different viscosity coefficients and
hydraulic conductivity coefficients.

Next, we are ready to derive the estimation of the deferred correction equation
(4) and the analysis of the sensitivity equation of the deferred correction step (6).

Theorem 3 (Estimates of deferred correction approximation). Let cun+1
h with ini-

tial data cu0
h satisfy (4) for each n ∈ {0, 1, 2, ···, N−1}. Then ∃C > 0 is independent

of h, ∆t and H such that cun+1
h satisfies

‖cuNh ‖20 + (υ +H)∆t

N−1∑
n=0

Ccoe‖cun+1
h ‖2U

≤ C

{(
1 +H2

(υ +H)3
+

1

υ +H

)
∆t

N−1∑
n=0

‖Fn+1‖2L2

+

(
1 +H2

(υ +H)2
+ 1

)
‖û0

h‖20 + ‖cu0
h‖20

}
.

(9)
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Proof. Letting vh = cun+1
h ∈ Vh in (4) yields(

cun+1
h − cunh

∆t
, cun+1

h

)
+ aΩ((υ +H)cun+1

h , cun+1
h ) + aΓ(cun+1

h , cun+1
h )

=

〈
Fn+1 + Fn

2
, cun+1

h

〉
U′

+HaΩ

(
ûn+1
h + ûnh

2
, cun+1

h

)

+ aΓ

(
ûn+1
h − ûnh

2
, cun+1

h

)
+ aΩ

(
(υ +H)

ûn+1
h − ûnh

2
, cun+1

h

)
.

(10)

Applying the Cauchy-Schwarz and Young’s inequalities, the terms on the right-hand
side in (10) can be bounded as follows:〈

Fn+1 + Fn

2
, cun+1

h

〉
U′
≤ εCcoe(υ +H)‖cun+1

h ‖2U

+
(C2

p + C̃2
p)

4εCcoe(υ +H)
‖F

n+1 + Fn

2
‖2L2 ,

HaΩ

(
ûn+1
h + ûnh

2
, cun+1

h

)
≤ 2ε(υ +H)Ccoe‖cun+1

h ‖2U

+
H2C2

con

16εCcoe(υ +H)
(‖ûn+1

h ‖2U + ‖ûnh‖2U),

and

aΩ

(
(υ +H)

ûn+1
h − ûnh

2
, cun+1

h

)
≤ 2ε(υ +H)Ccoe‖cun+1

h ‖2U

+
(υ +H)C2

con

16εCcoe
(‖ûn+1

h ‖2U + ‖ûnh‖2U),

aΓ

(
ûn+1
h − ûnh

2
, cun+1

h

)
≤ 2ε(υ +H)Ccoe‖cun+1

h ‖2U

+
C2

Γ

16ε(υ +H)Ccoe
(‖ûn+1

h ‖2U + ‖ûnh‖2U).

By choosing ε = 1
14 , multiplying both sides by 2∆t and combining the above esti-

mates, we have:

‖cun+1
h ‖20 − ‖cunh‖20 + ∆t(υ +H)Ccoe‖cun+1

h ‖2U

≤
7(C2

p + C̃2
p)∆t

Ccoe(υ +H)
‖F

n+1 + Fn

2
‖2L2 +

7H2C2
con∆t

4(υ +H)Ccoe
(‖ûn+1

h ‖2U + ‖ûnh‖2U)

+
7C2

Γ∆t

4(υ+H)Ccoe
(‖ûn+1

h ‖2U+‖ûnh‖2U)+
7(υ +H)C2

con∆t

4Ccoe
(‖ûn+1

h ‖2U+‖ûnh‖2U).

Therefore, adding up from n = 0 to N − 1 and combining with (7) we get (9).
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Theorem 4 (Analysis of the deferred correction step of the sensitive equation). Let
cξn+1
h with initial data cξ0

h satisfy (5) for each n ∈ {0, 1, 2, · · ·, N −1}. Then ∃C > 0
is independent of h, ∆t and H such that cξn+1

h satisfies

‖cξNh ‖20 + (υ +H)∆t

N−1∑
n=0

Ccoe‖cξn+1
h ‖2U

≤ C

{(
1 +H2

(υ +H)5
+

1

(υ +H)3

)
∆t

N−1∑
n=0

‖Fn+1‖2L2

+

(
1

(υ +H)2
+

H2

(υ +H)5
+

1 +H2

(υ +H)4

)
‖û0

h‖20 +

(
1 +

H2

(υ +H)2

)
‖ξ̂0
h‖20

+
1

(υ +H)2
‖cu0

h‖20

}
.

(11)

Proof. Setting vh = cξn+1
h ∈ Vh into (6), we can write it as follows:(

cξn+1
h − cξnh

∆t
, cξn+1

h

)
+ aΩ((υ +H)cξn+1

h , cξn+1
h ) + aΩ(cun+1

h , cξn+1
h )

+aΓ(cξn+1
h , cξn+1

h ) = HaΩ

(
ξ̂n+1
h + ξ̂nh

2
, cξn+1

h

)
+ aΩ

(
ûn+1
h + ûnh

2
, cξn+1

h

)

+aΓ

(
ξ̂n+1
h −ξ̂nh

2
, cξn+1

h

)
+aΩ

(
(υ+H)

ξ̂n+1
h −ξ̂nh

2
, cξn+1

h

)

+aΩ

(
ûn+1
h − ûnh

2
, cξn+1

h

)
.

(12)

We have the following estimates for the terms on the right-hand side in (12) by the
Cauchy-Schwarz and Young’s inequalities:

HaΩ

(
ξ̂n+1
h + ξ̂nh

2
, cξn+1

h

)
≤ 2ε(υ +H)Ccoe‖cξn+1

h ‖2U

+
H2C2

con

16εCcoe(υ +H)
(‖ξ̂n+1

h ‖2U + ‖ξ̂nh‖2U),

aΩ

(
(υ +H)

ξ̂n+1
h − ξ̂nh

2
, cξn+1

h

)
≤ 2ε(υ +H)Ccoe‖cξn+1

h ‖2U

+
(υ +H)C2

con

16εCcoe
(‖ξ̂n+1

h ‖2U + ‖ξ̂nh‖2U),

aΓ

(
ξ̂n+1
h − ξ̂nh

2
, cξn+1

h

)
≤ 2ε(υ +H)Ccoe‖cξn+1

h ‖2U

+
C2

Γ

16ε(υ +H)Ccoe
(‖ξ̂n+1

h ‖2U + ‖ξ̂nh‖2U).
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Besides,

aΩ

(
ûn+1
h + ûnh

2
, cξn+1

h

)
+ aΩ

(
ûn+1
h − ûnh

2
, cξn+1

h

)

≤ 4ε(υ +H)Ccoe‖cξn+1
h ‖2U +

C2
con

8ε(υ +H)Ccoe
(‖ûn+1

h ‖2U + ‖ûnh‖2U),

and

aΩ(cun+1
h , cξn+1

h ) ≤ ε(υ +H)Ccoe‖cξn+1
h ‖2U +

C2
con

4εCcoe(υ +H)
‖cun+1

h ‖2U.

The required estimate (11) now follows by choosing ε = 1
22 , multiplying both sides

by 2∆t, adding up from n = 0 to N − 1, and combining Theorem 1, Theorem 2 and
Theorem 3.

From Theorem 4, we can see that the sensitivity of cuh on H is mainly affected
by υ and H. On the one hand, when H is selected, υ is larger, the sensitivity of
cuh on H is smaller. On the other hand, when υ is selected, the sensitivity of cuh
on H is weaker when H is much greater or smaller than υ compared with taking
three adjacent values. Similarly, υ and H should not be too small here, otherwise
the numerical solution will also be divergent. According to the sensitivity of cuh
on H affected by υ and H, we can choose the appropriate H to solve more effi-
ciently the Stokes/Darcy problems with different viscosity coefficients and hydraulic
conductivity coefficients.

5. Numerical experiments

In this section, some numerical experiments will be carried out to verify theoretical
analysis results obtained in the previous sections on the sensitivity analysis of the
defect-deferred correction method of the non-stationary coupled Stokes/Darcy model
using the continuous sensitivity equation method. Furthermore, we implemented the
code using the software package FreeFEM++ [15].

5.1. An analytical solution problem

In these experiments, for different values of υ, we study the effect of H on the
sensitivity of ûf and φ̂p. All physical parameters ρ, g, α, S are simply set to 1. The
final time is chosen as T = 1. The space step and the time step are taken as 1

50 . We
assume the area as Ωf = [0, 1]× [1, 2], Ωp = [0, 1]× [0, 1], Γ = (0, 1)× {1} and give
the analytical solution:

uf =

(
(x2(y − 1)2 + y)cos(t),−2

3
x(y − 1)3cos(t) + (2− πsin(πx))cos(t)

)
,

pf = (2− πsin(πx))sin(0.5πy)cos(t),

φp = (2− πsin(πx))(1− y − cos(πy))cos(t).
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Hf 1.0E-1 1.0E-2 1.0E-3 1.0E-4 1.0E-5
ν =1.0E-0 3.93E−2 4.78E−2 4.87E−2 4.88E−2 4.89E−2
ν =1.0E-1 1.45E−1 3.71E−1 4.34E−1 4.41E−1 4.42E−1
ν =1.0E-2 7.61E−1 2.69E−0 5.54E−0 6.09E−0 6.15E−0
ν =1.0E-3 9.02E−1 5.07E−0 — — —
ν =1.0E-4 9.17E−1 5.55E−0 — — —
ν =1.0E-5 9.19E−1 5.60E−0 — — —

Table 1: The values of ‖ ∂ûf

∂Hf
‖0 in the sensitive equation of the defect step

Hp 1.0E-1 1.0E-2 1.0E-3 1.0E-4 1.0E-5
K =1.0E-0I 5.59E−1 6.60E−1 6.72E−1 6.73E−1 6.73E−1
K =1.0E-1I 1.98E−0 4.97E−0 5.49E−0 5.55E−0 5.55E−0
K =1.0E-2I 2.82E−0 1.20E+1 1.45E+1 1.48E+1 1.48E+1
K =1.0E-3I 2.99E−0 1.41E+1 — — —
K =1.0E-4I 3.01E−0 1.44E+1 — — —
K =1.0E-5I 3.01E−0 1.45E+1 — — —

Table 2: The values of ‖ ∂φ̂p

∂Hp
‖0 in the sensitive equation of the defect step

Table 1 and Table 2 show the values of ‖ ∂ûf

∂Hf
‖0 at different values of ν and Hf , and

the value of ‖ ∂φ̂p

∂Hp
‖0 at different values of K and Hp in the sensitivity equations of

the defect step (5), respectively. Based on these data, we can observe that the larger
values of ν, K ,Hf and Hp, the smaller the sensitivity of ûh on H and vice versa.
Furthermore, if the values of Hf , Hp, ν and K are all less than 0.01, the equations (5)
cannot be solved, which will result such that the numerical solution of the equations
(3) cannot be obtained. It is obvious that it agrees with the theoretical results.

Hf 1.0E-1 1.0E-2 1.0E-3 1.0E-4 1.0E-5
ν =1.0E-0 7.83E−3 4.93E−4 5.74E−4 6.76E−4 6.86E−4
ν =1.0E-1 1.33E−1 1.03E−1 1.21E−2 1.01E−2 1.02E−2
ν =1.0E-2 7.43E−1 2.19E−0 6.52E−1 1.92E−1 2.08E−1
ν =1.0E-3 8.80E−1 6.66E−0 — — —
ν =1.0E-4 8.95E−1 7.83E−0 — — —
ν =1.0E-5 8.96E−1 7.97E−0 — — —

Table 3: The values of ‖ ∂cuf

∂Hf
‖0 of the sensitive equation of the deferred correction step

From Table 3 and Table 4, on the one hand, we can find that the sensitivity of cuh
on H is weaker when Hf and Hp are taken, and ν and K are larger. Moreover, when
ν and K are taken, the sensitivity of cuh on H is weaker when Hf and Hp is much
greater or smaller than ν and K compared with taking three adjacent values. In
addition, we can also see that if ν, K, Hf and Hp are all less than 0.01, sensitivity
equations (6) cannot be solved which causes that we are unable to calculate the
equations (4). These conclusions above coincide apparently with our theoretical
results.
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Hp 1.0E-1 1.0E-2 1.0E-3 1.0E-4 1.0E-5
K =1.0E-0I 1.06E−1 6.86E−3 6.48E−3 7.85E−3 7.99E−3
K =1.0E-1I 2.03E−0 5.93E−1 4.81E−2 1.79E−2 2.38E−2
K =1.0E-2I 4.50E−0 2.81E−0 4.64E−1 1.48E−1 1.46E−1
K =1.0E-3I 5.03E−0 4.59E−0 — — —
K =1.0E-4I 5.08E−0 4.97E−0 — — —
K =1.0E-5I 5.09E−0 5.02E−0 — — —

Table 4: The values of ‖ ∂cφp

∂Hp
‖0 of the sensitive equation of the deferred correction step

5.2. Other exact solution problem

In order to further verify our conclusion, we additionally select another exact solu-
tion. Physical parameters ρ, g, α, S are simply set to 1. υ and the space step h are
varied. The final time is T = 1. The time step is taken as 1

50 . We assume the area
as Ωf = [0, 1] × [1, 2], Ωp = [0, 1] × [0, 1], Γ = (0, 1) × {1} and give the analytical
solution:

uf =

(
K11

π
sin(2πy)cos(x)et, (−2K22 +

K22

π2
sin2(πy))sin(x)et

)
,

p = 0,

φ = (ey − e−y)sin(x)et.

In this part of the experiment, we study the effects of υ, h, and H on the
sensitivity of ûf , φ̂p, cuf and cφp. Below we will give four groups of figures. Each
group of figures contains three pictures, representing the sensitivity analysis of ûf ,

φ̂p, cuf and cφp under different spatial step sizes h, Hf and Hp, when ν and K take
1, 0.1 and 0.01, respectively.

(a) ν = 1 (b) ν = 0.1 (c) ν = 0.01

Figure 1: The values of ‖ ∂ûf

∂Hf
‖0 under different ν

Figure 1 and Figure 2 indicate that when Hf and Hp are given, the bigger values
of ν and K, the smaller sensitivity of ûh on H. Meanwhile, from (a), (b) and (c) in
Figure 1 and Figure 2, we can observe that when ν and K are selected, the values of
Hf and Hp are large, the sensitivity of ûh on H is weak. Additionally, the selection
of spatial step size has little effect on the sensitivity of ûh on H.
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(a) K = I (b) K = 0.1I (c) K = 0.01I

Figure 2: The values of ‖ ∂φ̂p

∂Hp
‖0 under different K

(a) ν = 1 (b) ν = 0.1 (c) ν = 0.01

Figure 3: The values of ‖ ∂cuf

∂Hf
‖0 under different ν

(a) K = I (b) K = 0.1I (c) K = 0.01I

Figure 4: The values of ‖ ∂cφp

∂Hp
‖0 under different K

From Figure 3 and Figure 4, it can be clearly seen that when Hf and Hp are fixed,
as ν and K enhance, the sensitivity of cuh on H significantly decrease. Looking
transversely at the three graphs in figures 3 and 4, ν and K are given, and the
sensitivity of cuh on H is stronger when Hf , Hp and ν, K have similar values
than them have one dominant side. Specifically, while ν = Hf and K = HpI, the
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sensitivity of cuh on H will reach a peak.
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[29] B. Riviére, Analysis of a discontinuous finite element method for the coupled Stokes
and Darcy problems, J. Sci. Comput. 22-23(2005), 479–500.

[30] P. Saffman, On the boundary condition at the surface of a porous medium, Stud.
Appl. Math 50(1971), 93–101.

[31] B. Santiago, R. Codina, Unified stabilized finite element formulations for the Stokes
and the Darcy problems, SIAM J. Numer. Anal. 47(2009), 1971–2000.

[32] E. Turgeon, D. Pelletier, J. Borggaard, Applications of continuous sensitiv-
ity equations to flows with temperature dependent properties, Numer. Heat Tr. A.
44(2003), 611–624.


