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Abstract. The Hartman-Watson distribution arises in many areas of applied probability.
But its probability density function is difficult to compute. Recently, [14] gave the first two
terms of its asymptotic expansion. Here, we derive the probability density function and a
full asymptotic expansion in computable forms.
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1. Introduction

Let X denote a Hartman-Watson random variable. The probability density function
of X is given by

fr(t) =
θ(r, t)

I0(t)
, t ≥ 0, (1)

where [5, p. 5, Eq. (12)]

Iν(t) =
∑
n≥0

(
t
2

)2n+ν
Γ(n+ ν + 1) n!

denotes the modified Bessel function of the first kind of the order ν and [14, Eq. (1)]

θ(r, t) =
r√

2 π3 t
e
π2

2t

∫ ∞
0

e−
x2

2t −r cosh(x) sinh(x) sin
(πx
t

)
dx (2)

for all r > 0, t ≥ 0; consult the introductory article by Hartman and Watson [8].
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The Hartman-Watson distribution arises in many problems. One important
problem in mathematical finance is the pricing problem of Asian options. The pric-
ing problem involves the computation of the expectation

E
[(
A

(ν)
t −K

)+]
,

where

A
(ν)
t =

∫ t

0

e2(Wh+νh) dh,

and W is a standard Brownian motion, whilst K > 0 is an absolute constant. Section

2.2 of [1] showed that the conditional density of A
(ν)
t , given Wt + νt = x, can be

expressed as

Pr
[
A

(ν)
t ∈ du

∣∣∣Wt + νt = x
]

=

√
2πt

u
exp

[
x2

2t
− 1 + e2x

2u

]
I0

(
ex

u

)
fex/u(t) du,

where the density

fr(t) =
r

I0(r)
√

2π3t
exp

(
π2

2t

)∫ ∞
0

exp

[
−y

2

2t
− r cosh(y)

]
sinh(y) sin

(πy
t

)
dy,

which coincides with (1). Hence, the pricing problem of Asian options involves the
Hartman-Watson distribution.

Many authors have tried to compute (2). We mention [1, 2, 3, 4, 6, 9, 15].
The articles [10, 11] present some new approaches to dealing with the Hartman-
Watson distribution, that is the use of the special function fr(t). [14] gave the first
two terms of its asymptotic expansion as t → 0+ under the constraint that r and
t form a hyperbola rt = ρ (ρ is a fixed absolute constant), that is, r and t are
dependent in an inversely proportional way. In this note, we give a computable
series representation for fr(t) (Section 2), not assuming that r and t are connected
in any way. We also give its asymptotic behavior in full as t → 0+ (Section 3). A
future work is to perform numerical studies to investigate accuracies of the derived
representations.

2. Series expansion of fr(t) in terms of parabolic cylinder func-
tions

Let us notice that the integrand of θ(r, t) consists of a sum of four functions. To
show that we start by expanding the exponential term e−r cosh(x) into Taylor series,
viz,

e−r cosh(x) =
∑
n≥0

(−r)n

n!
coshn(x). (3)

We have to find the power series

cosh(x) =
∑
k≥0

x2k

(2k)!
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raised to the power n ∈ N0. The coefficients bm = bm(n) of the output power series∑
k≥0

akx
2k

n

=
∑
m≥0

bm x2m (4)

are given by the recurrence [7, p. 17, Sect. 0.314]

b0 = an0 , bm =
1

m a0

m∑
j=1

[j(n+ 1)−m] aj bm−j . (5)

As in our case ak = [(2k)!]
−1

, k ∈ N0, the system for bm = bm(n), m ∈ N0 becomes

b0 = 1, bm =
1

m

m∑
j=1

j(n+ 1)−m
(2j)!

bm−j , m ∈ N.

bm = bm(n) are polynomials in n of degree deg (bm) = m. The first few polynomials
are

b0 = 1; b1 =
n

2
; b2 =

n

24
(3n− 2); b3 =

n

720

(
15n2 − 30n+ 16

)
;

b4 =
n

40320

(
420n3 − 1680n2 + 2352n− 1091

)
,

which suggests that the magnitude, for any fixed n and m, behaves like bm ∼ O (nm).
Rewriting recurrence (5) as

bm =
n

2m
bm−1 −

1−m
2m

bm−1 +
1

m

m∑
j=2

j(n+ 1)−m
(2j)!

bm−j ,

we see that the leading coefficient of the polynomial bm(n) equals

[nm] bm(n) =
1

2m−2 ·m!
m ≥ 4, (6)

where [nm] is the operator which extracts the coefficient of nm in the polynomial
bm = bm(n). Relation (3) transforms into

e−r cosh(x) =
∑
n≥0

(−r)n

n!

1 +
∑
m≥1

m∑
j=1

j(n+ 1)−m
m (2j)!

bm−j x
2m


= e−r +

∑
n≥0

∑
m≥1

(−r)n

n! m

m∑
j=1

j(n+ 1)−m
(2j)!

bm−j x
2m.

Now, we insert this series into the integrand of θ(r, t). Firstly, the reversion of the
order of integration and summation is legitimate since the radius of convergence of
power series (4), by virtue of (6), equals

ρ−1 = lim sup
m→∞

m
√
bm = lim sup

m→∞

e

2m
= 0.
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In turn, this means that inside the interval of convergence term by term integration
is enabled for the considered expansion.

Next, expressing the hyperbolic sine as the difference of exponentials, we obtain
the following linear combination which contains four integrals, viz.

θ(r, t) =
r e

π2

2t −r√
(2π)3 t

[∫ ∞
0

e−
x2

2t +x sin
(πx
t

)
dx−

∫ ∞
0

e−
x2

2t −x sin
(πx
t

)
dx

]
(7)

+
r e

π2

2t√
(2 π)3 t

∑
n≥0

∑
m≥1

m∑
j=1

(−r)n

n! m

j(n+ 1)−m
(2j)!

bm−j

×
[∫ ∞

0

x2m e−
x2

2t +x sin
(πx
t

)
dx−

∫ ∞
0

x2me−
x2

2t −x sin
(πx
t

)
dx

]
. (8)

To proceed, we express the integrals involved in terms of the parabolic cylinder
functions U(a, z), V (a, z) which are the principal solutions of the Weber differential
equation [16, p. 149]

d2w

dz2
−
(
1
4 z

2 + a
)
w = 0.

Whittaker’s notation of the first standard solution Dν(z) = U
(
−ν − 1

2 , z
)

is also
frequent in use. We remark that U(a,−z), V (a,−z) are also solutions of Weber’s
differential equation. The inter-connection formula between the standard solutions
reads [16, p. 150,Eq. (11.1.5)]:

sin(aπ) U(a, z) + U(a,−z) =
π

Γ
(
a+ 1

2

) V (a, z). (9)

Now, recall the Laplace transform [7, p. 498, Eq. 3.953.1] or [5, p. 153, Eq. (25)]:∫ ∞
0

xµ−1e−βx
2−γx sin(ax) dx =

i Γ(µ) e
γ2−a2

8β

2
√

(2β)µ

[
e

iaγ
4β D−µ

(
γ + ia√

2β

)

− e−
iaγ
4β D−µ

(
γ − ia√

2β

)]
,

where <(µ) > −1, <(β) > 0, a > 0 and i =
√
−1. Obviously, this integral covers

all four integrals in θ(r, t), compare (7) and (8). Setting µ = 2m + 1, m ∈ N0,
β = (2t)−1, γ = ∓1 and a = πt−1, we infer that

I ±m :=

∫ ∞
0

x2me−
x2

2t ∓x sin
(πx
t

)
dx

= ∓1

2
(2m)! tm+ 1

2 e
t2−π2

4t

[
D−2m−1

(
±t− iπ√

t

)
+D−2m−1

(
±t+ iπ√

t

)]
.

Accordingly, introducing the shorthand

τ =
√
t+

i π√
t
, t > 0,
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and adapting relation (9) to our case:

D−2m−1(τ) +D−2m−1(−τ) =
π

(2m)!
V
(
2m+ 1

2 , τ
)
,

we see that

I −m −I +
m =

(2m)!

2e
π2−t2

4t

tm+ 1
2

[
D−2m−1(−τ) +D−2m−1 (−τ∗)

+D−2m−1 (τ∗) +D−2m−1(τ)
]

=
π

2
e
t2−π2

4t tm+ 1
2

[
V
(
2m+ 1

2 , τ
)

+ V
(
2m+ 1

2 , τ
∗)]

= π e
t2−π2

4t tm+ 1
2 <

[
V
(
2m+ 1

2 , τ
)]
, m ∈ N0,

where the last equality holds by the mirror symmetry property of U (a, z∗) = U∗(a, z)
and V (a, z∗) = V ∗(a, z) using (9), considering real a, where ζ∗ denotes the complex
conjugate of ζ.

The case m = 0 corresponds to (7), while (8) is covered by I −m −I +
m for positive

integer m ∈ N; therefore, the following expression is deduced:

θ(r, t) =
r e

π2+t2

4t −r

2
√

2 π
<
[
V
(
1
2 , τ
)

+ er
∑
n≥0

∑
m≥1

m∑
j=1

(−r)n

n!

j(n+ 1)−m
m (2j)!

× bm−j tm V
(
2m+ 1

2 , τ
) ]
.

We have the following theorem.

Theorem 1. For all r > 0 and t ≥ 0, the probability density function of a Hartman-
Watson distributed random variable can be expressed as

fr(t) =
r e

|τ|2
4

2
√

2 π I0(t)

∑
n≥0

∑
m≥0

(−r)n

n!
bm <

[
V
(
2m+ 1

2 , τ
)]

tm, (10)

where τ = (t+ iπ) /
√
t and the coefficients bm = bm(n) are solutions of the recursive

system

b0 = 1, bm =
1

m

m∑
j=1

j(n+ 1)−m
(2j)!

bm−j , m ∈ N

for any fixed nonnegative integer n.

One important conclusion which follows from Theorem 1 is that the parameter
r affects the behavior of fr(t) independently of t. We point out once again that
Pirjol [14] and other authors take r, t to be inversely proportional, while considering
the asymptotic behaviour of (2), that is, the Hartman-Watson probability density
function fr(t). This has not been our approach.
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3. Asymptotic of fr(t) for vanishing t

Consider the function θ(r, t) expressed in Theorem 1, equation (10) as a double
series. Since τ is located in the first quadrant near to the imaginary axis as t→ 0+,
that is, tan [arg(τ)] = π

t ∈
(
π
4 ,

π
2

)
, we have to use the formula for V (a, z) as |z| → ∞

for the sector −π4 +δ ≤ arg(z) ≤ 3π
4 +δ. That formula reads [13, p. 309, Eq. 12.9.4]:

V (a, z) ∼
√

2

π
e
z2

4 za−
1
2

∑
k≥0

(
1
2 − a

)
2k

k! (2z2)
k

+
i z−(a+

1
2 ) e−

z2

4

Γ
(
1
2 − a

) ∑
k≥0

(−1)k
(
1
2 + a

)
2k

k! (2z2)
k

.

(11)
For all m ∈ N0, by virtue of the Legendre duplication formula and as the second
addend term in (11) vanishes by gamma function singularities at the non-positive
integer values of a = 2m+ 1

2 in the denominator,

V
(
2m+ 1

2 , τ
)
∼ i

√
2

π
e
t2−π2

4t

m∑
k=0

2k
(−m)k

(
−m+ 1

2

)
k

k!

(
t− π2

t
+ 2πi

)m−k
,

which can be presented as a weighted 2F0-hypergeometric polynomial, viz.

V
(
2m+ 1

2 , τ
)
∼ i

√
2

π
e
t2−π2

4t

(
t− π2

t
+ 2πi

)m
2F0

(
−m,−m+ 1

2 ;−;
2t

(t+ iπ)
2

)
.

Letting here t→ 0+, keeping in mind that 2F0[0] = 1, we obtain

<
[
V
(
2m+ 1

2 , τ
) ]∣∣∣

t→0+
∼
√

2

π
e
−π2

4t πm
m∑
k=0

(
m

k

)(
−π
t

)m−k
2kcos

[π
2

(k + 1)
]
, (12)

so we have the following result.

Theorem 2. For all r > 0, as t→ 0+, we have

fr(t) ∼
r

2π

e−r +
∑
n≥0

(−r)n

n!

∑
m≥1

(
−π2

)m
bm

m∑
k=0

(
m

k

)(
−2t

π

)k
cos
[π

2
(k + 1)

] .

Proof. Letting t→ 0+ in (10) and using (12), we obtain

fr(t) ∼
r

2 π

∑
n≥0

(−r)n

n!

∑
m≥0

bm
(
t2 − π2

)m m∑
k=0

(
m

k

) (
−2t

π

)k
cos
[π

2
(k + 1)

]
, (13)

as I0(0) = 1. Since b0 = 1, the right-hand side of (13) corresponding to m = 0 gives
the exponential term e−r. When t → 0+ in the remaining part of the right-hand
side expression of (13), we arrive at the statement.
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