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Abstract. The objective of this paper is to present a novel method to design a suboptimal
controller for nonlinear control affine systems. The proposed method is a combination of
a successive approximation method (SAM) and a Legendre pseudospectral method, used
for solving the extreme conditions derived from Pontryagin’s maximum principle (PMP).
The convergence theorem and the superlinear rate of convergence are presented in this
method. Some numerical examples are included to demonstrate the accuracy, efficiency,
and reliability of the proposed method.
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1. Introduction

The theory of optimal control encompasses a wide range of applications in a variety of
areas, including biology, engineering, social sciences, agriculture, and so on. Lenhart
et al. examined optimal control of biological systems, such as infectious diseases,
cancer, prey-predator models, etc. [9]. The applications of optimal control in aircraft
systems [6], robotics, etc. have also been thoroughly investigated by researchers. The
spread of the rumor on social networks has also been studied recently [20, 21, 10].
Modeling of virus propagation among plants and its optimal control by organic
pesticides has been investigated in [3].

Methods of solving optimal control problems are generally divided into two cat-
egories: direct and indirect methods. Direct methods apply parameterizing or dis-
cretizing the state and control variables, which turn the problem into a nonlinear
programming problem. The most popular methodologies are pseudospectral meth-
ods, where the states and controls are parametrized by some basis polynomials,
such as Legendre, Chebyshev, and Jacobi polynomials, and then collocated at some
particular points, known as collocation nodes [17]. For instance, the Legendre pseu-
dospectral method is used to derive an optimal strategy for active magnetic bearing
systems [14], or it is used to control the spread of tuberculosis, by vaccination and
treatment, along with the Chebyshev pseudospectral method [15]. Some other di-
rect methods are the hybrid parametrization approach [1], the radial basis function
(RBF) collocation method [12], etc.
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On the other hand, in indirect methods, which are the main subject of this study,
we must first write the optimality conditions and then solve them to obtain the opti-
mal states and controls. The optimality conditions come from Pontryagins maximum
principle or dynamic programming. In this paper, we consider the following affine
in control nonlinear dynamical system:

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), t ∈ [0, tF ]
x(0) = x0,

(1)

where x(t) and u(t) are the state and control variables which have n and m com-
ponents, respectively. In addition, f(t, x(t)) and g(t, x(t)) are two continuously
differentiable functions in all their arguments. Our goal is to minimize the objective
functional:

J [x, u] =
1

2

∫ tF

0

(Q(x(t)) + uT (t)Ru(t))dt,

subject to dynamical system (1), for Q(x(t)) a positive semi-definite real function
and R ∈ Rm×m a positive definite matrix.

According to Pontryagin’s Maximum Principle (PMP), the optimal conditions
for the above optimal control problem are [16]:

ẋ = f(t, x) + g(t, x)[−R−1gT (t, x)λ]

λ̇ = −

(
1

2
∇Q(x) + (

∂f(t, x)

∂x
)Tλ+

n∑
i=1

λi[−R−1gT (t, x)λ]T
∂gi(t, x)

∂x

)
x(0) = x0, λ(tF ) = 0,

(2)

where λ(t) is an n-element co-state vector and the optimal control law is given by:

u∗ = −R−1gT (t, x)λ.

In general, (2) has no analytical solutions, thus some numerical methods should
be applied. Shirazian et al. [16] solved this problem with the variational iteration
method (VIM), which does not need any parametrizations and discretizations, but
it suffers from time consuming analytical integrations. In [7], Jafari et al. made
comparisons between the Adomian decomposition method (ADM), the homotopy
perturbation method (HPM) and the VIM for solving this problem and showed that
these methods yield similar solutions. Along with these semi-analytical approaches,
a good idea of accelerating these methods by using pseudospectral routines was first
introduced by Saberi et al. [13], where they combined the homotopy analysis method
(HAM) with a Chebyshev pseudospectral method, which dramatically increased the
convergence speed of the HAM [13]. Recently, Wang et al. have converted the
nonlinear system (1) to a bilinear system, and then successively solve the modified
optimality conditions, by the state-dependent Riccati equation method, taking the
advantage of the Legendre pseudospectral method [18, 19].

Motivated by [13, 19], in this paper, we combine the SAM with the Legendre
pseudospectral method, which preserves the convergence and speed advantage of
pseudospectral methods in addition to solving a linear system of equations rather
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than a nonlinear one. Strictly speaking, the pseudospectral procedure converts (2) to
a system of nonlinear algebraic equations, which should be solved by some numerical
methods such as the Newton method, as in [11], but our method only needs solving
a linear system of algebraic equations. In comparison with the SAM, the VIM, the
HAM, and their available modifications, our method does not need any integrations
and this drastically reduces the CPU time. Finally, as an indirect method, our
method benefits error control, in comparison with other direct methods, which is
illustrated in numerical simulations.

Accordingly, the paper is organized as follows. In the first section, we review the
SAM method for solving optimal conditions (2). Section 3 presents the proposed
pseudospectral SAM. In Section 4, we prove the convergence of the method and
analyze its error, and finally, in Section 5, we present the numerical simulations for
some illustrative examples.

2. Pseudospectral SAM

For convenience, let us consider X(t) = [X1, X2, . . . , Xn+m] := [x(t);λ(t)] and define
the right-hand side of optimality conditions (2) as:

Ψ(t, x, λ) :=

 f(t, x) + g(t, x)[−R−1gT (t, x)λ]

−
(

1
2∇Q(x)+(∂f(t,x)∂x )Tλ+

∑n
i=1 λi[−R−1gT (t, x)λ]T ∂gi(t,x)∂x

).
Thus the TPBVP in (2) changes to the following compact form:

Ẋ(t) = Ψ(t,X(t)),

X1:n(0) = x0, Xn+1:n+m(tF ) = 0.

We rewrite this equation in operator form as:

Lr[X(t)] +Nr[X(t)] = 0, r = 1, 2, . . . , n+m,

X1:n(0) = x0, Xn+1:n+m(tF ) = 0,
(3)

where Lr and Nr are the linear and nonlinear parts of (2) defined as:

Lr[X(t)] = Ẋr(t) +
∑n+m
i=1 pr,i(t)Xi(t),

Nr[X(t)] = −
∑n+m
i=1 pr,i(t)Xi(t)−Ψr(t,X(t)),

(4)

where Ψr(t,X(t)) is the rth component of Ψ(t,X(t)). Now, we construct a sequence
of solutions for solving (3), as follows:

Lr[Xk+1(t)] = −Nr[Xk(t)], r = 1, 2, . . . , n+m, (5)

for which k ≥ 0, the first n entries of Xk+1(t) at t = 0 are x0 and its last n entries
at t = tF are 0.

We explain the pseudospectral procedure for t ∈ [0, tF ]. Let Li(t) be the shifted
Legendre polynomials generated by the recurrence relation:

Li+1(t) =
2i+ 1

i+ 1
(

2t

tF
− 1)Li(t)−

i

i+ 1
Li−1(t), i = 1, 2, . . .
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where L0(t) = 1 and L1(t) = 2t
tF
− 1.

We denote by tNj , 0 ≤ j ≤ N , Legendre-Gauss-Lobatto (LGL) points, which are

defined by tN0 = 0, tNN = tF and for 1 ≤ j ≤ N − 1, tNj the zeros of L̇N (t), the
derivative of the shifted Legendre polynomial of degree N .

Let Xr,k(t) ∈ R be the rth component of the unknown vector function Xk(t).
Then Xr,k(t) can be approximated by means of the Legendre basis polynomials up
to order N ,

Xr,k(t) ≈ XN
r,k(t) =

N∑
j=0

Lj(t)X
N,j
r,k ,

where XN,j
r,k is the unknown coefficient of the Legendre polynomial of degree j, Lj(t).

To approximate the derivatives of the unknown function Xr,k(t) at the collocation
points, we use the Legendre spectral differentiation matrix D as the matrix vector
product

Ẋr,k(tNj ) ≈ ẊN
r,k(tNj ) =

N∑
i=0

DjiX
N,j
r,k , j = 0, 1, . . . , N,

or

Ẋr,k(tN ) ≈ ẊN
r,k(tN ) = DYN

r,k,

where tN = [tN0 , t
N
1 , . . . , t

N
N ]T , and YN

r,k = [XN,0
r,k , X

N,1
r,k , . . . , X

N,N
r,k ]T is the vector of

function Xr,k(t) values at the collocation points and D = 2D/tF , where D is an
(N + 1)× (N + 1) matrix whose entries are defined as [2]:

Dji =


−N(N+1)

4 , if i = j = 0,
N(N+1)

4 , if i = j = N,
LN (tNj )

LN (tNi )
tF

2(tNj −tNi )
, if i 6= j,

0, otherwise.

Note that, in general, D(l) is not equal to the differentiation matrix of order l.
Now, we substitute the approximate solution, XN

r,k(t), into (5) and require that it
satisfies the equations at the LGL nodes. This requirement generates the following
pseudospectral SAM (PSAM):

AWN
k+1 = −N[WN

k ], k ≥ 0, (6)

WN
k+1,1:n(tN0 ) = x0, WN

k+1,n+1:n+m(tNN ) = 0, (7)

where

N[WN
k ] = [N1[WN

k ]; N2[WN
k ]; . . . ; Nn+m[WN

k ]]

is an (N + 1)(n + m) column vector whose Nr[W
N
k ] corresponds to Nr[Xr,k(t)]

when evaluated at the collocation points for any r = 1, 2, . . . , N , and WN
k =

[YN
1,k; YN

2,k; . . . ; YN
n+m,k].

The matrix A is an ((N + 1)(n+m))2 square block matrix derived from trans-
forming the linear operators Lr,r = 1, . . . , n + m, at LGL collocation nodes, which
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is defined as A = (Ar,i),

Ar,i =

{
D + pr,i(t

N )T I, r = i,

pr,i(t
N )T I, r 6= i,

where I is an identity matrix of order N + 1.
To implement the boundary conditions (7), we replace the (N + 1)rth rows of

Ar,i and N[WN
k ], respectively, by the (N + 1)th row of I and x0r, for r = 1, 2, . . . , n,

and rth rows of Ar,i and N[WN
k ] by the first row of I and 0, respectively, for

r = n + 1, n + 2, . . . , n + m. Then, at each step, the PSAM is related to solving a
system of linear equations (6) to determine the unknown vector WN

k+1.

Remark 1. In the dynamical system (1), if x(tF ) = xF , then the boundary condi-
tions in (3) become

X1:n(0) = x0, X1:n(tF ) = xF .

In this case, the PSAM boundary conditions (7) become

WN
k+1,1:n(tN0 ) = x0, WN

k+1,1:n(tNN ) = xF .

Therefore, to implement these boundary conditions, we should replace the (N+1)rth
rows of Ar,i and N[WN

k ], respectively, by the (N + 1)th row of I and x0r, and rth

rows of Ar,i and N[WN
k ] by the first row of I and the rth element of xF , respectively,

for r = 1, 2, . . . , n.

3. Convergence analysis

First, we recall the main steps of the proposed PSAM. To this end, we restate SAM
(5) as:

L[Xk+1] = −N [Xk],

Xk+1,1:n(0) = x0, Xk+1,n+1:n+m(tF ) = 0,

where Xr,k, Lr and Nr in (5) are the rth components of Xk and operators L and
N , respectively. Choose L[X] = d

dtX(t) + P (t)X(t) and N [X], the other remaining
nonlinear components of (2) as in Section 2. Hence, the SAM can be rewritten as:

d

dt
Xk+1(t) + P (t)Xk+1(t) = −N [Xk(t)],

Xk+1,1:n(0) = x0, Xk+1,n+1:n+m(0) = λ0, (8)

where λ0 ∈ Rm is the root of XN
K+1,n+1:n+m(tF , λ

0) = 0, after some sufficient
iterations of SAM (8), say K.

Approximating Xk(t) by XN
k (t) ∈ (PN+1(0, tF ))

n+m
and using the Legendre

collocation method at any LGL point, tNj , results in PSAM formulation:

d

dt
XN
k+1(tNj ) + P (tNj )XN

k+1(tNj ) = −N [XN
k (tNj )], ∀j = 1, . . . , N,

XN
k+1(tN0 ) =

[
x0;λ0

]
, (9)
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where λ0 ∈ Rm is the root of XN
K+1,n+1:n+m(tNN , λ

0) = 0, after some sufficient
iterations of PSAM (9), K.

In this section, we will use this formulation which is equivalent to (6) because of
its straightforward convergence analysis.

Definition 1. Let (u, v)tF and ‖v‖tF be the inner product and the norm of space(
L2(0, tF )

)n+m
, respectively. We define the following discrete inner product and

norm,

(u, v)tF ,N =

N∑
j=0

uT (tNj )v(tNj )ωNj , ‖v‖tF ,N = (v, v)
1
2

tF ,N
,

where ωNj are the Christoffel numbers corresponding to the LGL points tNj , 0 ≤ j ≤
N .

Two important properties of Legendre Guass-Lobatto quadratures are:

1. For any Lψ ∈ P2N+1(0, tF ),

(L,ψ)tF = (L,ψ)tF ,N .

2. The norm and the discrete norm are equivalent, i.e.

‖L‖tF ≤ ‖L‖tF ,N ≤
√

2 +
1

N
‖L‖tF . (10)

Theorem 1. Assume that for any j = 0, 1, . . . , N , Xj = {XN
k+1(tNj ), k = 0, 1, . . . }

is the PSAM sequence produced by (9). Furthermore, assume

α = max{‖P (tNj )‖, j = 0, 1, . . . , N},

and
‖Ψ(., XN

k )−Ψ(., XN
k−1)‖tF ,N ≤M‖XN

k −XN
k−1‖tF ,N ,

for some constant M > 0. Then for any initial n-vector XN
0 (tNj ), Xj converges to

some X̂(tNj ) which is the exact solution of (3) at any LGL point, tNj , if

4tF

√
2 + 1

N (α+M)

1− 4αtF

√
2 + 1

N

≤ β < 1. (11)

Moreover, X̂N (t) :=
∑N
j=0 φj(t)X̂(tNj ) is an analytic approximate solution of (3),

which gives the exact solutions at any LGL point tNj , j = 0, 1, . . . , N .

Proof. We assume that k ≥ 1 and 1 ≤ r ≤ n + m, throughout the proof. Define
X̃N
k+1 := XN

k+1 −XN
k . By (9), we have

d

dt
X̃N
k+1(tNj ) + P (tNj )X̃N

k+1(tNj ) = P (tNj )X̃N
k (tNj )

+Ψ(tNj , X
N
k (tNj ))−Ψ(tNj , X

N
k−1(tNj )),
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which results in

d

dt
X̃N
k+1(tNj ) = −P (tNj )

(
X̃N
k+1(tNj )− X̃N

k (tNj )
)

+Ψ(tNj , X
N
k (tNj ))−Ψ(tNj , X

N
k−1(tNj )). (12)

Obviously, X̃N
k+1(0) = 0 and

X̃N
k+1(tF )T X̃N

k+1(tF ) = 2

(
X̃N
k+1,

d

dt
X̃N
k+1

)
tF

≤ 2‖X̃N
k+1‖tF ‖

d

dt
X̃N
k+1‖tF . (13)

Moreover, for any t ∈ [0, tF ],

X̃N
k+1(t)T X̃N

k+1(t) = X̃N
k+1(tF )T X̃N

k+1(tF )−
∫ tF

t

d

ds

(
X̃N
k+1(s)T X̃N

k+1(s)
)
ds

≤ X̃N
k+1(tF )T X̃N

k+1(tF ) + 2‖X̃N
k+1‖tF ‖

d

dt
X̃N
k+1‖tF .

Then integrating with respect to t yields

‖X̃N
k+1‖2tF ≤ tF X̃

N
k+1(tF )T X̃N

k+1(tF ) + 2tF ‖X̃N
k+1‖tF ‖

d

dt
X̃N
k+1‖tF ,

from where

X̃N
k+1(tF )T X̃N

k+1(tF ) ≥ 1

tF
X̃N
k+1(tF )T X̃N

k+1(tF )− 2tF ‖X̃N
k+1‖tF ‖

d

dt
X̃N
k+1‖tF . (14)

Using (13) and (14), we get

‖X̃N
k+1‖tF ≤ 4tF ‖

d

dt
X̃N
k+1‖tF . (15)

On the other hand, by the definition of α and applying (12), we can write

‖ d
dt
X̃N
k+1‖tF ≤ ‖

d

dt
X̃N
k+1‖tF ,N

≤ ‖P (tNj )‖
(
‖X̃N

k+1‖tF ,N + ‖X̃N
k ‖tF ,N

)
+M‖X̃N

k ‖tF ,N

≤ α‖X̃N
k+1‖tF ,N + (α+M)‖X̃N

k ‖tF ,N , (16)

By property (10), inequalities (15) and (16) yield

‖X̃N
k+1‖tF ≤ 4tF ‖

d

dt
X̃N
k+1‖tF

≤ 4tF

√
2 +

1

N

{
α‖X̃N

k+1‖tF + (α+M)‖X̃N
k ‖tF

}
.

Therefore

‖X̃N
k+1‖tF ≤

4tF

√
2 + 1

N (α+M)

1− 4αtF

√
2 + 1

N

‖X̃N
k ‖tF ≤ β‖X̃N

k ‖tF .
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Hence, we have

‖X̃N
k+1‖tF ≤ β‖X̃N

k ‖tF ≤ · · · ≤ βk‖X̃N
1 ‖tF

Then for any k′ ≥ k ≥ 1,

‖XN
k′ −XN

k ‖tF ≤
k′−1∑
i=k

‖X̃N
i+1‖tF ≤

k′−1∑
i=k

βi‖X̃N
1 ‖tF

≤
∞∑
i=k

βi‖X̃N
1 ‖tF ≤

βk

1− β
‖X̃N

1 ‖tF .

Since β ∈ [0, 1), ‖XN
k′ −XN

k ‖tF → 0 as k, k′ → ∞. Thus Xj is a Cauchy sequence,

and since Rn is a Banach space, Xj has a limit X̂(tNj ). Taking limit k → ∞ in (9)
yields

d

dt
X̂(tNj ) + P (tNj )X̂(tNj ) = −N [X̂(tNj )], ∀j = 1, . . . , N,

X̂(tN0 ) =
[
x0;λ0

]
.

Thus, X̂(tNj ) is the exact solution of (3) at any LGL point tNj . In addition, due to

the definition of X̂N (t), it is easy to verify that X̂N (tNj ) = X̂(tNj ) and the proof is
complete.

Corollary 1. If ‖X̃N
1 ‖tF ≤ δ, then PSAM needs k ≥

[
log(ε/δ)
log β

]
+ 1 iterations to

reach a given tolerance limit ε > 0.

Corollary 2. The PSAM convergence criterion (11) is equivalent to

α ≤ β−4tFM
√

2+ 1
N

4tF
√

2+ 1
N (1+β)

, where β < 1. One can use this equivalence to check the appro-

priacy of choosing P (t).

Corollary 3. Assume that β1, β2 ∈ [0, 1) are two convergence constants in (11),
for different choices of P (t), say P1(t) and P2(t). Then β1 < β2 implies that the
convergence rate of the first PSAM is more than the second one.

Theorem 2. Under the assumptions of Theorem 1, the sequences {uNk (tNj ), k =

0, 1, . . .} and {JNk (tNj ), k = 0, 1, . . .} defined by

uNk,j = −R−1gT (tNj , X
N
k,1:n(tNj ))XN

k,n+1:n+m(tNj ) (17)

JNk =
T

4

N∑
j=0

wj
{
Q
(
XN
k,1:n(tNj )

)
+ (uNk,j)

TRuNk,j
}

(18)

converges to optimal control values at LGL points, say ûNj , and optimal objective

value, ĴN . Accordingly, the optimal control law is obtained by ûN (t) =
∑N
j=0 Lj(t)û

N
j .
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Proof. First, note that [XN
k,1:n;XN

k,n+1:n+m] = XN
k . According to Theorem 1, the

convergence of {XN
k (tNj ), k = 0, 1, . . .} results in the convergence of {XN

k,1:n(tNj ), k =

0, 1, . . .} and {XN
k,n+1:n+m(tNj ), k = 0, 1, . . .} to some vectors X̂N

1:n(tNj ) and

X̂N
n+1:n+m(tNj ). By taking the limit from (17), the continuity assumption of g(t, x)

gives

ûNj := lim
k→∞

uNk,j = −R−1gT (tNj , lim
k→∞

XN
k,1:n(tNj ))( lim

k→∞
XN
k,n+1:n+m(tNj ))

= −R−1gT (tNj , X̂
N
1:n(tNj ))X̂N

n+1:n+m(tNj ),

which is the optimal control law since X̂N
1:n(tNj ) and X̂N

n+1:n+m(tNj ) are the optimal
state and costate vectors. Hence, taking the limit from (18), as k → ∞, since N is
a finite constant and Q(.) is a continuous function, we have that

ĴN := lim
k→∞

JNk =
T

4

N∑
j=0

wj

{
Q

(
lim
k→∞

XN
k,1:n(tNj )

)
+ ( lim

k→∞
uNk,j)

TR lim
k→∞

uNk,j

}

=
T

4

N∑
j=0

wj

{
Q
(
X̂N

1:n(tNj )
)

+ (ûNj )TRûNj

}
,

and this ends the proof, as X̂N
1:n(tNj ) and ûNj are the optimal state and control

vectors.

4. Illustrative example

In this section, three examples are given to illustrate the simplicity and efficiency of
the proposed method. The codes are developed using computation software MAT-
LAB 7.12.0, and the calculations are implemented on a machine with Intel Core 2
Due Processor 2.53 Ghz with 4 GB of RAM.

Example 1. Consider a two-dimensional nonlinear composite system described by

ẋ1 = x1 − x31 + x22 + u1

ẋ2 = −x2 + x2(x1 + x22) + u2

x1(0) = 0, x2(0) = 0.8.

The quadratic cost functional to be minimized is given by:

J =
1

2

∫ 1

0

(x21 + x22 + u21 + u22)dt.

The optimality conditions are

ẋ1 = x1 − x31 + x22 − λ1
ẋ2 = −x2 + x2(x1 + x22)− λ2
λ̇1 = −(x1 + λ1(1− 3x21) + λ2x2)

λ̇2 = −(x2 + 2λ1x2 + λ2(−1 + x1 + 3x22))

x1(0) = 0, x2(0) = 0.8, λ1(1) = 0, λ2(1) = 0,
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and the optimal control laws are given by u∗1 = −λ1 and u∗2 = −λ2.
In view of (4), consider the linear operator L[X] = Ẋ(t) + P (t)X(t), and the

nonlinear operator N [X] as follows:

P (t) =


−1 0 1 0
0 1 0 1
1 0 1 0
0 −1 0 −1

 , N [X] =


−x31 + x22
x2(x1 + x22)

3λ1x
2
1 − λ2x2

−(2λ1x2 + λ2(x1 + 3x22))

 ,
where X = [x1, x2, λ1, λ2]T .

k CPU time Max error CPU time Max error CPU time Max error
(sec.) PSAM (sec.) VIM (sec.) HAM

2 0.00079 6.4322e-2 0.047 5.1463e-1 0.34972 6.5807e-2
3 0.00119 1.8859e-2 0.094 1.7670e-1 1.19685 6.0841e-2
4 0.00311 4.1203e-3 0.109 1.3528e-1 3.05910 5.2627e-2
5 0.00335 9.5764e-4 0.281 5.6512e-2 7.99916 4.0040e-2
6 0.00367 1.5836e-4 1.918 1.1235e-2 18.64958 2.7282e-2

Table 1: The maximum error of PSAM for x1(t) with N = 20, compared to VIM [16] and HAM [5]

Method Objective value CPU time (sec.)
PSAM (k = 6, N = 20) 0.18887 0.00367
bvp4c 0.18890 0.10655
VIM (k = 6 ) 0.18817 1.918
HAM (k = 6, h = −0.45) 0.18832 18.64958

Table 2: Comparison of objective value, J, for PSAM and other methods, Example 1

Implementing PSAM (6)-(7), the suboptimal solutions are obtained for N = 20.
To analyze the accuracy and efficiency of the proposed method, we have also solved
the problem by two methods, VIM [16] and HAM [5]. Table 1 shows better accuracy
of the PSAM while preserving the CPU time. Precisely, as the number of iteration
k increases, the maximum errors of the PSAM vanish more faster and in less CPU
time compared to the VIM and the HAM.

Moreover, according to Table 2, the suboptimal objective value of the proposed
PSAM is more consistent with the MATLAB built-in function, bvp4c [8], which
ensures better accuracy of our obtained solution compared to VIM [16] and HAM
[5].

The suboptimal states and controls of the PSAM, the VIM and the HAM for
k = 6 and bvp4c are depicted in figures 1-2.
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Figure 1: Suboptimal states, Example 1
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Figure 2: Suboptimal controls, Example 1

Example 2. Consider the following optimal control problem for the Van Der Pol
oscillator [4]:

minimize J =
1

2

∫ 1

0

(x21 + x22 + u2)dt

subject to: ẋ1 = x2

ẋ2 = −x1 + x2(1− x21) + u

x1(0) = 1, x2(0) = 0.

The extreme conditions will be:

ẋ1 = x2

ẋ2 = −x1 + x2(1− x21)− λ2
λ̇1 = −x1 + λ2(1 + 2x1x2)

λ̇2 = −x2 − λ1 − λ2(1− x21)

x1(0) = 1, x2(0) = 0, λ1(1) = λ2(1) = 0.

The optimal control law is also given by

u∗(t) = −λ2(t), t ∈ [0, 1].
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k CPU time Max error CPU time Max error CPU time Max error
(sec.) PSAM (sec.) SHAM (Legendre) (sec.) DTM

8 0.0170 2.1962e-4 0.101 6.7082e-3 7.802 3.2102e-4
10 0.0189 6.4172e-5 0.118 8.3837e-3 14.648 3.9828e-4
14 0.0252 8.9001e-7 0.177 1.9506e-3 47.815 4.4387e-4
15 0.0280 8.8769e-7 0.200 4.2749e-4 87.745 4.4380e-4

Table 3: The maximum error of the PSAM for x1(t) with N = 50 compared to SHAM [13] and
DTM [4], Example 2

Method Objective value CPU time (sec.)
PSAM (k=15, N=50) 1.047806908 0.0279
bvp4c 1.047806895 0.0649
SHAM Legendre (k=15, N=50, h=−0.5) 1.0472 0.188
DTM (k = 15) 1.0478 87.745

Table 4: Comparison of objective function value, J, for the PSAM and other methods, Example 2

In view of (4), consider the linear operator L[X] = Ẋ(t), and the other terms as
the nonlinear operator N [X], where X = [x1, x2, λ1, λ2]T . Using PSAM (6)-(7), we
have obtained the suboptimal solutions for N = 50.

For analyzing the accuracy and efficiency of our proposed method, we compare
the PSAM with two recent methods, SHAM [13] and DTM [4]. The maximum errors
of the PSAM, the SHAM and the DTM are summarized in Table 3. It verifies better
accuracy of the PSAM, while maintaining the CPU time. In addition, as the number
of iteration k increases, the maximum errors of the PSAM vanish rapidly, in less
than 0.03 seconds, while the SHAM and the DTM do not.

Furthermore, Table 4 presents a comparison of objective values of the PSAM,
bvp4c, the SHAM and the DTM, which ensures better accuracy of the proposed
PSAM.

Figures 3 and 4 show suboptimal states and control for k = 15 iterations of the
PSAM, compared to the SHAM and MATLAB built-in function bvp4c.
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Figure 3: Suboptimal states, Example 2
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Figure 4: Suboptimal control, Example 2

Example 3. Consider the optimal maneuvers of a rigid asymmetric spacecraft [13].
The Euler equations for the angular velocities of the spacecraft are given by:

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

− I3−I2I1
x2(t)x3(t)

− I1−I3I2
x1(t)x3(t)

− I2−I1I3
x1(t)x2(t)

+

 1
I1

0 0

0 1
I2

0

0 0 1
I3

u1(t)
u2(t)
u3(t)

 ,
where x1, x2, and x3 are angular velocities of the spacecraft, u1, u2, and u3 are
control torques, I1 = 86.24, I2 = 85.07, and I3 = 113.59 kg m2 are the spacecraft
principle inertia.
The quadratic cost functional to be minimized is given by:

J [x, u] =
1

2

∫ 100

0

(xT (t)Qx(t) + uT (t)Ru(t))dt,

where Q =

0 0 0
0 0 0
0 0 0

, R =

1 0 0
0 1 0
0 0 1

 .
In addition, the following boundary conditions should be satisfied:{

x1(0) = 0.01 r/s, x2(0) = 0.005 r/s, x3(0) = 0.001 r/s,

x1(100) = x2(100) = x3(100) = 0 r/s.

According to the PMP, the extreme conditions form the following nonlinear TPBVP:

ẋ1(t) = −λ1(t)

I21
− I3 − I2

I1
x2(t)x3(t),

ẋ2(t) = −λ2(t)

I22
− I1 − I3

I2
x1(t)x3(t),

ẋ3(t) = −λ3(t)

I23
− I2 − I1

I3
x1(t)x2(t),

λ̇1(t) =
I1 − I3
I2

x3(t)λ2(t) +
I2 − I1
I3

x2(t)λ3(t),

λ̇2(t) =
I3 − I2
I1

x3(t)λ1(t) +
I2 − I1
I3

x1(t)λ3(t),
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λ̇3(t) =
I3 − I2
I1

x2(t)λ1(t) +
I1 − I3
I2

x1(t)λ2(t),

x1(0) = 0.01 r/s, x2(0) = 0.005 r/s, x3(0) = 0.001 r/s,

x1(100) = x2(100) = x3(100) = 0 r/s,

and the optimal control laws are given by:

u∗1(t) = −λ1(t)

I1
, t ∈ [0, 100],

u∗2(t) = −λ2(t)

I2
, t ∈ [0, 100],

u∗3(t) = −λ3(t)

I3
, t ∈ [0, 100].

In order to apply PSAM (6), we should apply boundary conditions (8) discussed in
Remark (1). Let X = [x1, x2, x3, λ1, λ2, λ3]T , and

p14(t) =
1

I21
, p25(t) =

1

I22
, p36 =

1

I23
,

and pi,j(t) = 0, otherwise. For this choice of P (t), the convergence constant in (11)
is β = 0.1514 ∈ [0, 1), which indicates the convergence of the PSAM. Table 5 shows
good accuracy and better CPU times of our proposed method, in contrast to SHAM
[13] and DTM [4]. In addition, Table 6 verifies the better accuracy of the PSAM
suboptimal objective value, compared to the SHAM and the HAM [5].

Suboptimal states and controls are depicted in figures 5-7 for k = 6 iterations of
the PSAM, in comparison with the SHAM and bvp4c.

Our final discussion is about the choice of the linear operator L[X(t)] = Ẋ(t) +
P (t)X(t), or equivalently, the choice of P (t). For this example, a trivial alternative
choice of P (t) is the zero constant matrix, for which β = 0.1510 ∈ [0, 1). This
guarantees the convergence of P (t) by Theorem 1. We have compared the results
of these two choices of P (t) in Table 7. One can easily see better accuracy of the
first case in contrast with the second one. The CPU times of these two cases of the
PSAM are less than 0.035 second, which shows excellent speeds for both cases.

k CPU time Max error CPU time Max error CPU time Max error
(sec.) PSAM (sec.) SHAM (Legendre) (sec.) DTM

2 0.0126 2.1471e-6 0.079 1.0206e-6 7.328 7.3102e-5
3 0.0169 9.9853e-9 0.118 1.8130e-7 12.542 9.2612e-6
4 0.0197 5.6034e-8 0.155 3.2309e-8 18.664 1.9301e-6
5 0.0230 6.8025e-9 0.198 5.7802e-9 36.729 2.2560e-7
6 0.0273 6.3763e-9 0.224 1.0589e-9 46.401 3.1420e-8

Table 5: The maximum error of the PSAM for x1(t) with N = 50, compared to SHAM [13] and
DTM [4], Example 3
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Method Objective value CPU time (sec.)
PSAM (k=6, N=50) 0.004687796532 0.0265
bvp4c 0.004687799751 0.0389
SHAM Legendre (k=6, N=50, h=-1.2) 0.004687794463 0.227
HAM (k=3, h=-1) 0.004687795533 10.821

Table 6: Comparison of objective function value, J, for the PSAM and other methods, Example 3

k CPU time Max error CPU time Max error
(sec.) PSAM (case I) (sec.) PSAM (case II)

1 0.00366 4.99220e-3 0.00397 1.16410e-2
2 0.00884 3.33250e-4 0.00751 3.16210e-3
3 0.01247 1.32100e-4 0.01252 2.09870e-3
4 0.01596 1.02420e-5 0.01622 1.99420e-4
5 0.01929 4.30480e-6 0.01993 1.60540e-4
6 0.02370 1.81510e-6 0.02343 7.06480e-5
7 0.02722 1.68970e-6 0.02701 2.66670e-5
8 0.03055 1.69100e-6 0.03046 3.11730e-6
9 0.03386 1.68850e-6 0.03405 7.18870e-7
10 0.03717 1.68860e-6 0.03754 1.68950e-6

Table 7: The maximum error of the PSAM for two different choices of P (t) for N = 50, Example 3
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Figure 5: Suboptimal control and state x1(t) and u1(t), Example 3
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Figure 6: Suboptimal control and state x2(t) and u2(t), Example 3
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Figure 7: Suboptimal control and state x3(t) and u3(t), Example 3

5. Conclusions

In this paper, a pseudospectral successive approximation method is proposed for
solving a broad class of optimal control problems. This method can solve the TP-
BVP obtained from PMP in a recursive manner. The proposed PSAM does not
need any complex computations in comparison with semi-analytical methods, such
as the VIM and the HPM. In comparison with recent direct pseudospectral methods,
it benefits solving a sequence of linear algebraic equations instead of the nonlinear
system. It also preserves fast convergence of pseudospectral methods. The conver-
gence of the proposed PSAM is proved and two illustrative examples demonstrated
the effectiveness and good results in short CPU time.
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