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Abstract. In 1827, L. Olivier proved a result about the speed of convergence to zero of
the terms of convergent positive series with nonincreasing terms, the so-called Olivier’s
theorem (see [17]). T. Šalát and V.Toma in [20] made the remark that the monotonicity
condition in Olivier’s theorem can be dropped if the convergence of the sequence (nan) is
weakened by means of the notion of I-convergence for an appropriate ideal I. Results of
this type are called a modified Olivier’s theorem.
In connection with this, we will study the properties of summable ideals Ih, where h : R+ →
R+ is a function such that

∑
n∈N h(n) = +∞ and Ih =

{
A ( N :

∑
n∈A h(n) < +∞

}
.

We show that Ih-convergence and Ih∗-convergence are equivalent. This is not valid in
general.
Further, we also show that a modified Olivier’s theorem is not valid for summable ideals
Ih in general. We find sufficient conditions for a real function h : R+ → R+ such that a
modified Olivier’s theorem remains valid for the ideal Ih.
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1. Introduction

We recall the basic definitions and connections that will be used throughout this
paper. Let N be the set of all positive integers, N0 = N ∪ {0}, and R+ the set of all
positive real numbers. A system I, ∅ ̸= I ⊆ 2N is called an ideal, provided that I is
additive (A,B ∈ I implies A∪B ∈ I) and hereditary (A ∈ I, B ⊂ A implies B ∈ I).
The ideal is called nontrivial if I ̸= 2N. If I is a nontrivial ideal, then I is called
admissible if it contains the singletons ({n} ∈ I for every n ∈ N). The fundamental
notation shall be used is I-convergence introduced in the paper [14] (see also [5],
where I-convergence is defined by means of the dual notion to the ideal so-called
filter). The notion of I-convergence corresponds to the natural generalization of the
notion of statistical convergence (see [8, 19]).
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Definition 1. Let (xn) be a sequence of real (complex) numbers. We say that the
sequence I-converges to a number L, and write I − limxn = L, if for each ε > 0 the
set Aε = {n : |xn − L| ≥ ε} belongs to the ideal I.

In what follows, we assume that I is an admissible ideal. Then for every sequence
(xn) we immediately have that limn→∞ xn = L (classic limit) implies that (xn) also
I-converges to a number L, but the opposite is not true. In other words, for an
admissible ideal I we have Ifin ⊆ I, where Ifin is the ideal of all finite subsets of
N and Ifin-convergence coincides with the usual convergence.

Let Id = {A ⊆ N : d(A) = 0}, where d(A) is the asymptotic density of A ⊆ N
(d(A) = limn→∞

#{a≤n : a∈A}
n , where #M denotes the cardinality of the set M).

The usual Id-convergence is called statistical convergence. For 0 < q ≤ 1, the

ideal I(q)
c =

{
A ⊂ N :

∑
a∈A a−q < ∞

}
is an admissible ideal. The ideal I(1)

c ={
A ⊂ N :

∑
a∈A

1
a < ∞

}
is usually denoted by Ic.

I-convergence satisfies usual axioms of convergence i.e., the uniqueness of the
limit, the arithmetical properties, etc. The class of all I-convergent sequences is a
linear space (see [14]).

The claim in the following proposition is a trivial fact about preservation of the
limit.

Proposition 1 (see [14]). Let I1, I2 be admissible ideals such that I1 ⊆ I2. If
I1 − limxn = L, then I2 − limxn = L.

Whenever 0 < q < q′ < 1, we get

Ifin  I(q)
c  I(q′)

c ⊆ Ic ⊆ Id. (1)

For a function h : R+ → R+, such that
∑

n∈N h(n) = ∞ and
∑

n∈∅ h(n) = 0,

an ideal Ih =
{
A ⊂ N :

∑
n∈A h(n) < ∞

}
is called a summable ideal. For any

function h, the ideal Ih is admissible, so Ifin ⊆ Ih.

Another type of convergence related to an ideal I, the so-called I*-convergence,
was defined in papers [13] and [14].

Definition 2. Let I be an admissible ideal on N. A sequence (xn) of real (complex)
numbers is said to be I∗-convergent to L if there exists a set H ∈ I such that for
M = N \H = {m1 < m2 < · · · } we have limk→∞ xmk

= L, where the limit is in the
usual sense.

It is easy to see that for an admissible ideal I we have that I∗-convergence
implies I-convergence. The converse is not true (see [14], where the authors give
a characterization of ideals I, for which I- and I∗-convergence are equivalent by
means of the property (AP)).

Definition 3. An ideal (not necessarily admissible) I ⊂ 2N is said to satisfy the
condition (AP) if for every countable family of mutually disjoint sets {A1, A2, . . . }
belonging to I there exists a countable family of sets {B1, B2, . . . } such that the
symmetric difference Aj△Bj is finite for j ∈ N and B =

∪∞
j=1 Bj ∈ I.
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The property (AP) is similar to the property (APO) (see [6, 9] and [18]). All
ideals in (1) have the property (AP). There exist many examples of an ideal that
does not have the property (AP) (see e.g. [3, 14]).

Proposition 2 (see [14]). The statement I∗−limxn = L follows from I−limxn = L
if and only if I satisfies the property (AP).

An ideal I (not necessarily admissible) is called a P-ideal if for each sequence
(An) of sets belonging to I there exists a set A∞ ∈ I such that An \A∞ is finite for
all n ∈ N.

The notions of P-ideal and ideal with the (AP) property coincide (see [4]).

In [17], Olivier proved the so-called Olivier’s Theorem about the speed of con-
vergence to zero of the terms of convergent positive series with nonincreasing terms.
Specifically, if (an) is a nonincreasing positive sequence and

∑∞
n=1 an < ∞, then

limn→∞ nan = 0 (see also [1, 12]). In [20], authors made a remark that the
monotonicity condition in Olivier’s theorem can be dropped if the convergence of
the sequence (nan) is weakened by means of the notion of I-convergence. They
proved that for every positive real sequence (an) such that

∑∞
n=1 an < ∞, we have

Ic − limnan = 0.

In [11], there is a similar result for the ideals I(q)
c (0 < q ≤ 1). For every positive

real sequence (an) such that
∑∞

n=1 a
q
n < ∞ for 0 < q ≤ 1, we have I(q)

c −limnan = 0.
The stronger condition of convergence of positive series also results in the stronger
convergence property of the summands.

Results of this type are called a modified Olivier’s theorem. In [2, 7, 15] and
[16], there is an extension of the results in [20]. Moreover, in [16], there is a nice
historical context of the object of our research.

In connection with the above results, we will study the properties of summable
ideals Ih for a function h : R+ → R+ such that

∑
n∈N h(n) = ∞. We will show

that the notions Ih- and Ih∗-convergence are equivalent. It is clear that a modified
Olivier’s theorem is in general not valid for summable ideals.

If we limit ourselves to a large class of ideals Ig
c for a function g : R+ → R+ such

that
∑

n∈N
1

g(n) = ∞ and Ig
c =

{
A ⊂ N :

∑
a∈A

1
g(a) < ∞

}
we will find sufficient

conditions for the real function g for the modified Olivier’s Theorem to remain valid.

2. Olivier’s theorem for ideals Ig
c

First of all, we prove some properties of summable ideals. Let h : R+ → R+ be a
function with the following properties:∑

n∈N

h(n) = ∞ and
∑
n∈∅

h(n) = 0.

Then the system

Ih =

{
A ⊂ N :

∑
a∈A

h(a) < ∞

}
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is an admissible ideal, so Ifin ⊆ Ih. The ideal Ih is called a summable ideal. It is
easy to see that for a constant function h(x) = c, x ∈ R+ we have Ifin = Ih, and
we also obtain the same for function h(x) = x, x ∈ R+.

More interesting for our purposes are the admissible ideals Ih such that Ih ̸=
Ifin, i.e., they contain an infinite subset of N.

The following theorem gives a characterization of such ideals.

Theorem 1. Ih ̸= Ifin if and only if lim infn→∞ h(n) = 0.

Proof. Suppose Ih ̸= Ifin. Then there exists an infinite set M = {m1 < m2 <
· · · }  N such that

∞∑
k=1

h(mk) < ∞.

From this we see that limk→∞ h(mk) = 0; since h is positive, we have
lim infn→∞ h(n) = 0.

Suppose that lim infn→∞ h(n) = 0. Then there exists a set M = {m1 < m2 <
· · · } ⊂ N such that limk→∞ h(mk) = 0. It means that we can construct an infinite
set M ′ = {mk1 < mk2 < · · · } ⊆ M with property h(mki) < 1

2i for every i ∈ N.
Consequently, we have ∑

mki
∈M ′

h(mki
) <

∞∑
i=1

1

2i
,

therefore, the infinite set M ′ belongs to Ih and so Ih ̸= Ifin.

There exist positive functions g, h : R+ → R+ such that g ̸= h and Ig = Ih. The
following theorem gives sufficient conditions for functions g, h : R+ → R+ to valid
Ig = Ih.

Theorem 2. Let g, h : R+ → R+ such that
∑∞

n=1 g(n) =
∑∞

n=1 h(n) = ∞. If

0 < lim inf
n→∞

g(n)

h(n)
≤ lim sup

n→∞

g(n)

h(n)
< ∞,

then Ig = Ih.

Proof. The condition

0 < lim sup
n→∞

g(n)

h(n)
< ∞

implies that there exists such real number K > 0 that for every n ∈ N we have

0 <
g(n)

h(n)
≤ K,

therefore, g(n) ≤ Kh(n). Let M ∈ Ih. Then
∑

n∈M h(n) < ∞. Immediately, we
have ∑

n∈M

g(n) ≤ K
∑
n∈M

h(n) < ∞,
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therefore, M ∈ Ig and so Ih ⊆ Ig.
Analogously using the condition

0 < lim inf
n→∞

g(n)

h(n)
< ∞,

we obtain Ig ⊆ Ih.

Problem 1. It would also be interesting to have the necessary conditions for the
functions g, h : R+ → R+ such that Ig = Ih.

The next theorem shows that Ih- and Ih∗-convergence are equivalent. See also
[10], where it is proved that each summable ideal is P-ideal, thus it has the property
(AP) that is a sufficient and necessary condition for Ih- and Ih∗-convergence to be
equivalent.

Theorem 3. Let h : R+ → R+ be a real function. Then Ih- and Ih∗-convergence
coincide.

Proof. It sufficies to show that for any sequence (xn) of real numbers such that
Ih− limxn = L, there exists a set M = {m1 < m2 < · · · } ⊆ N such that N\M ∈ Ih

and limk→∞ xmk
= L. Without loss of generality, we can assume that (xn) is not

convergent in the usual sense, but it is Ih-convergent. For any positive integer k,
let εk = 1

2k
and

Ak =

{
n ∈ N : |xn − L| ≥ 1

2k

}
.

It is clear that A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · , and there exists n0 ∈ N such that An0 is
an infinite set. As Ih − limxn = L, we have Ak ∈ Ih, i.e.,

∑
n∈Ak

h(n) < ∞.
Therefore, there exists an infinite sequence n1 < n2 < · · · < nk < · · · of positive

integers such that for every k = 1, 2, . . . we have∑
n>nk
n∈Ak

h(n) <
1

2k
.

Put

H =

∞∪
n=1

[(nk, nk+1⟩ ∩Ak] .

Then ∑
n∈H

h(n) ≤
∑
n>n1
n∈A1

h(n) +
∑
n>n2
n∈A2

h(n) + · · ·+
∑
n>nk
n∈Ak

h(n) + · · ·

<
1

2
+

1

22
+ · · ·+ 1

2k
+ · · ·

< ∞.

Thus, H ∈ Ih. Put M = N \H = {m1 < m2 < · · · < mk < · · · } and we show that
limk→∞ xmk

= L.
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Let ε > 0. Choose k0 ∈ N such that 1
2k0

< ε. Let mk > mk0
. Then mk belongs

to some interval (nj , nj+1⟩ where j ≥ k0, and does not belong to N \ Aj (j ≥ k0).
Hence mk belongs to N \ Aj and then |xmk

− L| < ε for every mk > mk0 , thus
limk→∞ xmk

= L.

Corollary 1. Ideals Ih for a real function h : R+ → R+ have the property (AP).

The next proposition shows that all bounded real sequences are not Ih-conver-
gent.

Proposition 3. Let h : R+ → R+. Then there exists a bounded real sequence (xn)
that is not Ih-convergent.

Proof. Since
∑

n∈N h(n) = ∞, there exists a decomposition of N into two sets N1

and N2 such that ∑
n∈N1

h(n) =
∑
n∈N2

h(n) = ∞.

For instance, let (ni) be a sequence of nonnegative integers such that

h(ni−1 + 1) + h(ni−1 + 2) + · · ·+ h(ni) > 1.

Define

N1 =
∪
i∈N0

i is odd

{n : ni−1 < n ≤ ni},

N2 =
∪
i∈N0

i is even

{n : ni−1 < n ≤ ni}.

It is clear that N1, N2 /∈ Ih.
Define a sequence (xn) as follows:

xn =

{
0 if n ∈ N1,

1 if n ∈ N2.

The sequence (xn) is real bounded sequence which is not Ih-convergent.

Corollary 2. An ideal Ih for any real function h : R+ → R+ is not a maximal
ideal.

Proof. It follows from Theorem 2.2 in [13] that an admissible ideal I is the maximal
ideal if and only if each bounded real sequence (xn) is I-convergent. On the basis
of the previous proposition, we have a contradiction.

It is a natural question whether summable ideals Ih for a function h : R+ → R+

can be used in a modified Olivier’s theorem in the following way:
If
∑

n∈N h(an) is a convergent positive series for a function h : R+ → R+ and for

a positive sequence (an), then Ih − limnan = 0.



Ih-convergence and convergence of positive series 7

It is easy to see that such modified Olivier’s theorem is not fulfilled in general.
Consider a function h : R+ → R+, h(x) = x2 and the sequence (an), an = 1

n for
n ∈ N.

Let g : R+ → R+ be a function such that∑
n∈N

1

g(n)
= ∞ and

∑
n∈∅

1

g(n)
= 0. (2)

Then the system of subsets of N, which denotes Ig
c =

{
A ⊂ N :

∑
n∈A

1
g(n) < ∞

}
is again an admissible ideal. Ideals Ig

c seem to be more convenient for a modified
Olivier’s theorem.

If we put a function g : R+ → R+, g(x) = x, we have the same result as in [20]
for a function g(x) = xq for 0 < q ≤ 1 we obtain the same result as in [11].

The following example shows that a modified Olivier’s theorem is not valid in
general for an arbitrary function g : R+ → R+ and an associated ideal Ig

c with the
function g having properties (2).

Example 1. Put g : R+ → R+, g(x) = log2(x+1). It is easy to see that the function
g is an increasing function such that

∞∑
n=1

1

log2(n+ 1)
= ∞ and lim inf

n→∞

1

log2(n+ 1)
= 0.

We show only that
∑∞

n=1
1

log2(n+1) = ∞. It is easy to see that for all x > 1 we

have log2(x + 1) < x, and so 1
x < 1

log2(x+1) . Using integrals for the last inequality,

we obtain

∞ =

∫ ∞

1

1

x
dx <

∫ ∞

1

1

log2(x+ 1)
dx.

Hence
∑∞

n=1
1

log2(n+1) = ∞. The ideal

I log2(x+1)
c =

{
A ⊂ N :

∑
a∈A

1

log2(a+ 1)
< ∞

}
is the admissible ideal, for which a modified Olivier’s theorem is not valid. It sufficies

to find a positive sequence (an) such that
∑∞

n=1 log2(an + 1) < ∞, but I log2(x+1)
c −

limnan ̸= 0. Take the set B =
{
2k − 1 : k ∈ N

}
and consider the following positive

sequence (an):

an =

{
1
n if n ∈ B,
1
2n if n ∈ N \B.

Let us count
∞∑

n=1

log2(n+ 1) =
∑
n∈B

log2(n+ 1) +
∑

n∈N\B

log2(n+ 1)

=

∞∑
k=1

log2

(
1

2k − 1
+ 1

)
+

∑
n∈N\B

log2

(
1

2n
+ 1

)
.
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First, we show that the series
∑∞

k=1 log2

(
1

2k−1
+ 1

)
is convergent. From the in-

equality
0 < log2(x+ 1) < 2x,

for all x ∈ R+ we have

log2

(
1

2k − 1
+ 1

)
<

2

2k − 1
.

Since the series
∑∞

k=1
1

2k−1
is convergent, we also see that the series∑∞

k=1 log2

(
1

2k−1
+ 1

)
is convergent.

In the same way, we also show convergence of the series
∑

n∈N\B log2
(

1
2n + 1

)
.

We will show that I log2(x+1)
c − limnan ̸= 0. By using Definition 1 for any ideal I,

we have that a real sequence (xn) is I-convergent to zero if for each ε > 0 the set
Aε = {n ∈ N : |xn| ≥ ε} belongs to the ideal I. In our case, it means that for ε = 1

and the sequence (nan) the set Aε=1 = {n ∈ N : nan ≥ 1} belongs to I log2(x+1)
c . It

sufficies to realize that Aε=1 ⊇ B and B /∈ I log2(x+1)
c . Count∑

n∈B

1

log2(x+ 1)
=

∞∑
k=1

1

log2(2
k − 1 + 1)

=

∞∑
k=1

1

log2 2
k
=

∞∑
k=1

1

k
= ∞.

The next theorem gives a sufficient condition for a real function g : R+ → R+

such that a modified Olivier’s theorem is true for an associated ideal Ig
c with the

function g.

Theorem 4. Let a function g : R+ → R+ have the following properties:

(i) g is nondecreasing,

(ii) g(nt) ≤ g(n)g(t) for all n ∈ N and t ∈ R+.

If
∑∞

n=1 g(an) is a convergent series for a positive sequence (an), then Ig
c −limnan =

0.

Proof. We proceed by contradiction. Then there exists a positive sequence (an)
with

∑∞
n=1 g(an) < ∞ such that the equality Ig

c − limnan = 0 does not hold. Then
there exists ε0 > 0 for which Aε0 = {n ∈ N : nan ≥ ε0} /∈ Ig

c . Hence from the
definition of ideal Ig

c we get
∑

n∈Aε0

1
g(n) = ∞. For n ∈ Aε0 we have nan ≥ ε0.

Using properties (i) and (ii) we have

0 < g(ε0) ≤ g(nan) ≤ g(n)g(an),

g(ε0)
1

g(n)
≤ g(an) for every n ∈ Aε0 .

Therefore,

∞ = g(ε0)
∑

n∈Aε0

1

g(n)
≤

∑
n∈Aε0

g(an).

Therefore, it must also be
∑∞

n=1 g(an) = ∞, and this is a contradiction.
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Problem 2. To find the necessary condition for a function g : R+ → R+ such that
a modified Olivier’s theorem is true for an associated ideal Ig

c with the function g.
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