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A curvature obstruction to integrability
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Abstract. The classical theory of G-structures, which include almost-complex structures,
explains the relationship between the curvature of compatible connections and integrability.
This note is an effort to understand how the curvature of Riemannian metrics can obstruct
the integrability of almost-complex structures. It is shown that certain special complex
structures cannot coexist with non-flat constant curvature metrics, and a formal variational
realization of these structures is provided. The approach followed here is direct, meaning
that it bypasses the classical theory. The idea is to find obstruction equations for the
integrability of almost-complex structures by way of Nijenhuis tensor derivatives. These
new equations involve the curvature of a torsion-free connection, and reveal the interplay
between almost-complex and Riemannian geometries. Curvature scalars to detect non-
complexity in the compact case then arise in a natural way.
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1. Introduction

The motivating question of this note is

Question 1. Do (compact) almost-complex but not complex manifolds of real di-
mension at least 6 exist?

Here it will be shown that in high dimensions, non-flat, constant curvature Rie-
mannian metrics obstruct the existence of certain special complex structures (The-
orem 1).

Question 1 is a differentio-geometrical obstruction theory problem. The classi-
cal obstruction theory for G-structures, of which almost-complex structures are an
example, explains the link between integrability and the curvature of certain linear
connections. This will be outlined below, and most of the details can be found in
[1] and [2]. However, the approach used in the present note was developed com-
pletely independently of this theory. Let G ≤ GLn(R) be a Lie group. Recall that

a G-structure on a manifold Mn is a G-invariant submanifold P ⊆ Fr(M)
π
−→ M of

the frame bundle of M such that π|P : P → M is a principal G-bundle. P is inte-
grable if it is locally isomorphic, in the G-structural sense, to the flat G-structure
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Rn × G on Rn. In a nutshell, the intrinsic torsions T k
intr(P ), for k ≥ 1 an inte-

ger, are Spencer cohomology classes obstructing the integrability of P. Let ∇ be a
linear connection on M that is compatible with P. Namely, the associated connec-
tion 1-form ω∇ ∈ Ω1

(
Fr(M), gln(R)

)
satisfies ω∇|P ∈ Ω1

(
P, g

)
, where g is the Lie

algebra of G. The first 2 intrinsic torsions have the following geometrical interpre-
tation: T 1

intr(P ) = [T∇] and T 2
intr(P ) = [R∇], i.e., the Spencer classes T i

intr(P ),
1 ≤ i ≤ 2, are represented by the torsion and the curvature of the connection ∇, re-
spectively. For example, an almost-complex structure onM2n is a GLn(C)-structure,
and the torsion of any compatible connection coincides with the Nijenhuis tensor
(see Section 3 for its defining formula). Analogously, a G-structure P equipped with
the connection 1-form of any compatible connection ∇, (π : P → Mn, ω∇), can
be viewed as a Cartan geometry of type (Rn

⋊ G,G). The Cartan connection is
Ωω∇ := θ + ω∇ ∈ Ω1

(
P,Rn ⊕ g

)
, where θ ∈ Ω1

(
P,Rn

)
is the soldering form of P.

The curvature form dΩω∇ + 1
2 [Ωω∇ ,Ωω∇ ] of the Cartan connection contains both

the torsion and curvature forms of ω∇. The latter two correspond to the torsion and
curvature of the linear connection ∇.

The almost-complex and Riemannian geometries of a manifold exist indepen-
dently of each another, and are essentially different kinds of geometries. But they
can be seen to interact. For instance, twistor spaces have been used as an extrinsic
tool for understanding how local conformal flatness relates to orthogonal complex
structures (see [6], and the sources cited therein). The goal of this note is to probe
the almost-complex geometry with Riemannian metrics of prescribed curvature. The
metrics in focus are the non-zero constant sectional curvature ones. It should be pos-
sible to unify this point of view with the G-structure perspective. But that will be
subject of future research.

Theorem 1 gives rise to a more tractable version of Question 1: can a compact,
almost-complex Riemannian manifold of positive constant sectional curvature be
complex? A study of this question can result in insights into the (non-)integrability
of almost-complex structures on the six-sphere S6. A negative answer would seem to
imply that a high dimensional, compact, complex manifold admitting a Riemannian
metric of everywhere positive sectional curvature must be ridged, in the sense that
the curvature of any such metric must have some undulation, even if ever so slight.
If S6 were non-complex, one could then try to imagine its ridged dual, a ridged
sphere, a compact, complex correlate manifold that is curvature-wise the closest one
to the standard sphere.

The methodology of this note is to set up a calculus of vector bundle valued dif-
ferential forms that allows for an intrinsic study of the (almost-)complex geometry
of manifolds in general. The second section covers the algebraic structures on spaces
of bundle forms needed for this calculus. The third section explains how Nijenhuis
derivatives interface the metric and (almost-)complex geometries. The curvature
obstruction equations (see Proposition 1 and Remark 2) are well-suited for ruling
out complex structures that satisfy additional algebraic relations, such as the previ-
ously mentioned special complex structures. They seem to provide only point-wise
constraints. The global picture must take into account the topology of the manifold,
and can be captured with numerical obstructions obtained from Nijenhuis tensor
derivatives (curvature scalars). The last two sections show how special hypothetical



A curvature obstruction to integrability 31

complex structures interact with sectional curvature, how to variationally realize
them, and how non-existence of a complex structure could, in principle, be detected
via curvature scalars (Proposition 3).

2. Algebraic tools

The calculus of vector bundle valued forms that appears starting from the next
section stands on an algebraic foundation expanded here.

Let M be a smooth manifold, and Ω•(M,TM ) =
⊕n

k=0 Ω
k(M,TM ) the space of

tangent bundle valued differential forms. Equip the spaces

Ω•
(
M,EndR(TM )

)
=

n⊕

k=0

Ωk
(
M,EndR(TM )

)
, and Ω•

(
M,

•∧
TM

)

=

2n⊕

k=0

⊕

p+q=k

Ωp
(
M,

q∧
TM

)

of endomorphism, respectively polyvector valued forms with operations defined as
follows.

Consider the action

· : EndR(TM )× T ∗
M ⊗ TM →T ∗

M ⊗ TM ,

(S, f ⊗ e) 7→S · (f ⊗ e) := f ⊗ S(e).

The product in Ω•
(
M,EndR(TM )

)
is given as follows: for any α∈Ωk

(
M,EndR(TM )

)
,

β ∈ Ωl
(
M,EndR(TM )

)
, α ∧ β ∈ Ωk+l

(
M,EndR(TM )

)
, and

(α ∧ β)(X1, . . . , Xk+l)

=
1

k!l!

∑

σ∈Sk+l

sign(σ)α(Xσ(1), . . . , Xσ(k)) · β(Xσ(k+1), . . . , Xσ(k+l)),

where indeed

α(Xσ(1), . . . , Xσ(k)), β(Xσ(k+1), . . . , Xσ(k+l)) ∈ EndR(TM ).

The product in Ω•
(
M,

∧•
TM

)
is defined with a normalization factor but without

any twisting. Namely, for any γ ∈ Ωi
(
M,

∧j
TM

)
, θ ∈ Ωk

(
M,

∧l
TM

)
, γ ∧ θ ∈

Ωi+k
(
M,

∧j+l
TM

)
, and

(γ ∧ θ)(X1, . . . , Xi+k)

=
1

2

1

i!k!

∑

σ∈Si+k

sign(σ)γ(Xσ(1), . . . , Xσ(i)) ∧ θ(Xσ(i+1), . . . , Xσ(i+k)),

where

γ(Xσ(1), . . . , Xσ(i)) ∈

j∧
TM , and θ(Xσ(i+1), . . . , Xσ(i+k)) ∈

l∧
TM .



32 G. Clemente

Thus, Ω•
(
M,EndR(TM )

)
, and Ω•

(
M,

∧•
TM

)
can be regarded as graded algebras

with these products.
Note that if γ ∈ Ωi(M,TM ), and θ ∈ Ωk(M,TM ), then γ ∧ θ = (−1)ik+1θ ∧ γ, so

that γ, θ anti-commute iff one of i and k is even.
The tangent bundle forms Ω•(M,TM ) are acted on the left by Ω•

(
M,EndR(TM )

)
,

and on the right by Ω•
(
M,

∧•
TM

)
. The left action combines the evaluation map

EndR(TM )× TM → TM , (S, y) 7→ S(y),

with the wedge product of forms: for any ρ∈Ωs(M,TM ), and α∈Ωk
(
M,EndR(TM )

)
,

α ∧ ρ ∈ Ωk+s(M,TM ), and

(α ∧ ρ)(X1, . . . , Xk+s)

=
1

k!s!

∑

σ∈Sk+s

sign(σ)α(Xσ(1), . . . , Xσ(k))
(
ρ(Xσ(k+1), . . . , Xσ(k+s))

)
,

where

α(Xσ(1), . . . , Xσ(k)) ∈ EndR(TM ), and ρ(Xσ(k+1), . . . , Xσ(k+s)) ∈ TM .

The right action makes use of the isomorphism

HomR

( j∧
TM , TM

)
≃

j∧
T ∗
M ⊗ TM ,

the evaluation map

HomR

( j∧
TM , TM

)
×

j∧
TM → TM ,

(C := c⊗ z, x) 7→ C(x) = (c⊗ z)(x) = c(x)z,

and the wedge product of Ω•(M).

Indeed, if γ ∈ Ωi
(
M,

∧j
TM

)
, and s ≥ j, set

(ρ ∧ γ)(X1, . . . , Xs−j+i)

=
1

(s− j)!i!

∑

σ∈Ss−j+i

sign(σ)ρ(Xσ(1), . . . , Xσ(s−j), ·, . . . , ·)

×
(
γ(Xσ(s−j+1), . . . , Xσ(s−j+i))

)
,

where

ρ(Xσ(1), . . . , Xσ(s−j), ·, . . . , ·) ∈ HomR

( j∧
TM , TM

)
,

and

γ(Xσ(s−j+1), . . . , Xσ(s−j+i)) ∈

j∧
TM .

If s < j, declare ρ ∧ γ = 0.
For simplicity, the same notation is used to express all products at play here.

However, parentheses and context do away with ambiguities.
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Example 1. If s ≥ j = 2, γ = γi−a ∧ γa for 0 ≤ a ≤ i, then

(ρ ∧ γ)(X1, . . . , Xs−2+i)

=
1

(s− 2)!i!

∑

σ∈Ss−2+i

sign(σ)ρ(Xσ(1), . . . , Xσ(s−2), ·, . . . , ·)

×
(
(γi−a ∧ γa)(Xσ(s−1), . . . , Xσ(s−2+i))

)

=
1

2(s− 2)!i!(i− a)!a!

∑

σ∈Ss−2+i

∑

θ∈Si

sign(σ)sign(θ)

× ρ
(
Xσ(1), . . . , Xσ(s−2), γi−a(Xθ(σ(s−1)), . . . , Xθ(σ(s−2+i−a))),

γa(Xθ(σ(s−1+i−a)), . . . , Xθ(σ(s−2+i)))
)

Particularly, for α ∈ Ω1(M,TM ), β ∈ Ω2(M,TM ),

(
β ∧ (α ∧ α)

)
(X1, X2) = β

(
α(X1), α(X2)

)
.

The computation in full detail:

(
β ∧ (α ∧ α)

)
(X1, X2) =

1

2

∑

σ∈S2

sign(σ)β
(
(α ∧ α)(Xσ(1), Xσ(2))

)
,

where

(α ∧ α)(Xσ(1), Xσ(2)) =
1

2

∑

σ′∈S2

sign(σ′)α(Xσ′(σ(1))) ∧ α(Xσ′(σ(2)))

=
1

2

(
α(Xσ(1)) ∧ α(Xσ(2))− α(Xσ(2)) ∧ α(Xσ(1))

)

=
1

2

(
2α(Xσ(1)) ∧ α(Xσ(2))

)

= α(Xσ(1)) ∧ α(Xσ(2)),

so

(
β ∧ (α ∧ α)

)
(X1, X2) =

1

2

∑

σ∈S2

sign(σ)β
(
α(Xσ(1)) ∧ α(Xσ(2))

)

=
1

2

∑

σ∈S2

sign(σ)β(α(Xσ(1)), α(Xσ(2)))

=
1

2
[β(α(X1), α(X2))− β(α(X2), α(X1))]

= β(α(X1), α(X2)).

3. Curvature and integrability

Let
AC(M) := {A ∈ Ω1(M,TM ) | A ◦A = −Id}
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be the space of almost-complex structures on M. Unless otherwise stated, M will
be assumed to be an almost-complex manifold (AC(M) 6= ∅) of real even dimension
n ≥ 2. Recall that M is complex if it carries an A ∈ AC(M) such that the Nijenhuis
tensor of A,

NA(ζ, η) = [A(ζ), A(η)] −A([A(ζ), η] + [ζ, A(η)]) − [ζ, η],

vanishes for all vector fields ζ, η ∈ X(M) [5]. In this case, A is called an integrable
almost-complex structure or a complex structure. Let

C(M) = {A ∈ AC(M) | NA = 0}

be the space of complex structures on M.

From this point on, ∇ is a symmetric connection on TM , and d∇ is the covariant
exterior derivative associated to it, which at degree k, is the map d∇ : Ωk(M,TM ) →
Ωk+1(M,TM ),

(d∇α)(ζ0, . . . , ζk) =

k∑

i=0

(−1)i∇ζiα(ζ0, . . . , ζ̂i, . . . , ζk)

+
∑

0≤i<j≤k

(−1)i+jα([ζi, ζj ], . . . , ζ̂i, . . . , ζ̂j , . . . , ζk)

=
k∑

i=0

(−1)i(∇ζiα)(ζ0, . . . , ζ̂i, . . . , ζk).

Furthermore, R∇ will denote here the curvature of the connection ∇, for anyX,Y, Z,

W ∈ X(M),
R∇(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The bundle form language of the previous section has the capacity to articulate the
integrability condition for almost-complex structures.

Lemma 1. Let A ∈ AC(M). Then, A is integrable iff

d∇A ∧ (A ∧ A)− d∇A = 0.

Proof. The Nijenhuis tensor of A can be rewritten in terms of d∇, using the condi-
tion A ◦A = −Id:

A ◦
(
d∇A(A(ζ), A(η)) − d∇A(ζ, η)

)

= A ◦
[(
(∇A(ζ)A)(A(η)) − (∇A(η)A)(A(ζ))

)
−
(
(∇ζA)(η) − (∇ηA)(ζ)

)]

= A ◦
[
−A

(
∇A(ζ)A(η)−∇A(η)A(ζ)

)
−
((

∇A(ζ)η −∇ηA(ζ)
)

+
(
∇ζA(η) −∇A(η)ζ

))
+A(∇ζη −∇ηζ)

]

= [A(ζ), A(η)] −A
(
[A(ζ), η] + [ζ, A(η)]

)
− [ζ, η]

= NA(ζ, η).

(1)
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So (cf. Example 1 with β = d∇A, α = A), A is integrable iff

(
d∇A ∧ (A ∧ A)

)
(ζ, η)− d∇A(ζ, η) = d∇A(A(ζ), A(η)) − d∇A(ζ, η)

= 0.

An expression similar to formula 1 above was obtained in [8] (cf. the proof of
Proposition 2.4). However, there is a mistake in the calculation (or at least in the
English version, which is available as a preprint). This error seems to have been cor-
rected in [7] (cf. the proof of Proposition 3.2). The main distinction between Lemma
1 and the calculations from [7, 8] is that in these articles, the Levi-Civita connection
was chosen in advance, while the computations here are valid for any torsion-free
connection. The rewriting of 1 using the algebraic language of the previous section
does not appear in [7, 8], and is essentially new. The rewriting part is key as it allows
the proper covariant differentiation of the integrability form, d∇A∧ (A∧A)− d∇A,

which will lead to curvature obstruction equations and curvature scalars as explained
in the sequel.

Intuitively, since the integrability form lives in Ω2(M,TM ), the correct notion of
covariant differentiation is supplied by the covariant exterior derivative. In a basic
way, since the integrability form is a function ofA and d∇A, its first covariant exterior
derivative will be a function of A, d∇A, and (d∇)2A = R∇ ∧ A. The same thinking
makes it evident that the k-th covariant exterior derivative of the integrability form
will depend on

A, d∇A, (d∇)2A = R∇ ∧ A, . . . , (d∇)k+1A.

A formula for the last term is found in Lemma 4. The rest of this section will cover
each step needed to derive the curvature obstruction equations.

Observe

Lemma 2 (Lemma 2, [3]). If α ∈ Ωk(M,TM ), β ∈ Ωl(M,TM ), and if ∇′ denotes

the connection on
∧2

TM induced by the torsion-free connection ∇ on TM , then

d∇
′

(α ∧ β) = d∇α ∧ β + (−1)kα ∧ d∇β.

Higher derivatives of the integrability form d∇A ∧ (A ∧ A)− d∇A ∈ Ω2(M,TM )
will require a generalization of the above formula. But the first such derivative
can already be computed, and it is included here as it serves as a guide for more
complicated cases.

Remark 1. Let α ∈ Ω1(M,TM ), and put I∇α := d∇α ∧ (α ∧ α)− d∇α. Then,

d∇I∇α = (R∇ ∧ α) ∧ (α ∧ α)−R∇ ∧ α+ 2d∇α ∧ (d∇α ∧ α).

To see this, let ∇′ be the induced connection on
∧2

TM . By Lemma 2 and the com-
muting rules for polyvector differential forms,

d∇I∇α =
(
(d∇)2α

)
∧ (α ∧ α) + d∇α ∧

(
d∇

′

(α ∧ α)
)
− (d∇)2α

=
(
(d∇)2α

)
∧ (α ∧ α)− (d∇)2α+ d∇α ∧

(
d∇α ∧ α− α ∧ d∇α

)

= (R∇ ∧ α) ∧ (α ∧ α)−R∇ ∧ α+ 2d∇α ∧ (d∇α ∧ α).
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The generalized formula for the j-th covariant exterior derivative w.r.t. the in-
duced on

∧2
TM connection ∇′ will certainly be of the form

(d∇
′

)j(A ∧ A) =

j∑

l=0

(−1)lcjl
(
(d∇)j−lA

)
∧
(
(d∇)lA

)
,

for some c
j
l ∈ R. From a direct computation of the first 10 such derivatives emerges

a pattern of generation of the unknown coefficients:

d∇
′

(A ∧ A) = d∇ ∧ A−A ∧ d∇A =⇒ c10 = c11 = 1,

(d∇
′

)2(A ∧ A) =
(
(d∇)2A

)
∧ A+ d∇A ∧ d∇A− d∇A ∧ d∇A+A ∧

(
(d∇)2A

)

=⇒ c20 = 1, c21 = 0, c22 = 1,

(d∇
′

)3(A ∧ A) =
(
(d∇)3A

)
∧ A−

(
(d∇)2A

)
∧ d∇A+ d∇A ∧

(
(d∇)2A

)

−A ∧
(
(d∇)3A

)
=⇒ c30 = c31 = c32 = c33 = 1,

(d∇
′

)4(A ∧ A) =
(
(d∇)4A

)
∧ A+ 2

(
(d∇)2A

)
∧
(
(d∇)2A

)
+A ∧

(
(d∇)4A

)

=⇒ c40 = 1, c41 = 0, c42 = 2, c43 = 0, c44 = 1,

(d∇
′

)5(A ∧ A) =
(
(d∇)5A

)
∧ A−

(
(d∇)4A

)
∧ d∇A+ 2

(
(d∇)3A

)
∧
(
(d∇)2A

)

− 2
(
(d∇)2A

)
∧
(
(d∇)3A

)
+ d∇A ∧

(
(d∇)4A

)
−A ∧

(
(d∇)5A

)

=⇒ c50 = 1, c51 = 1, c52 = 2, c53 = 2, c54 = 1, c55 = 1,

(d∇
′

)6(A ∧ A) =
(
(d∇)6A

)
∧ A+ 3

(
(d∇)4A

)
∧
(
(d∇)2A

)
+ 3

(
(d∇)2A

)
∧
(
(d∇)4A

)

+A ∧
(
(d∇)6A

)

=⇒ c60 = 1, c61 = 0, c62 = 3, c63 = 0, c64 = 3, c65 = 0, c66 = 1,

(d∇
′

)7(A ∧ A) =
(
(d∇)7A

)
∧ A−

(
(d∇)6A

)
∧ d∇A+ 3

(
(d∇)5A

)
∧
(
(d∇)2A

)

− 3
(
(d∇)4A

)
∧
(
(d∇)3A

)
+ 3

(
(d∇)3A

)
∧
(
(d∇)4A

)
− 3

(
(d∇)2A

)
∧
(
(d∇)5A

)
+

d∇A ∧
(
(d∇)6A

)
−A ∧

(
(d∇)7A

)

=⇒ c70 = 1, c71 = 1, c72 = 3, c73 = 3, c74 = 3, c75 = 3, c76 = 1, c77 = 1,

(d∇
′

)8(A ∧ A) =
(
(d∇)8A

)
∧ A+ 4

(
(d∇)6A

)
∧
(
(d∇)2A

)
+ 6

(
(d∇)4A

)
∧
(
(d∇)4A

)

+ 4
(
(d∇)2A

)
∧
(
(d∇)6A

)
+A ∧

(
(d∇)8A

)

=⇒ c80 = 1, c81 = 0, c82 = 4, c83 = 0, c84 = 6, c85 = 0, c86 = 4, c87 = 0, c88 = 1,

(d∇
′

)9(A ∧ A) =
(
(d∇)9A

)
∧ A−

(
(d∇)8A

)
∧ d∇A+ 4

(
(d∇)7A

)
∧
(
(d∇)2A

)

− 4
(
(d∇)6A

)
∧
(
(d∇)3A

)
+ 6

(
(d∇)5A

)
∧
(
(d∇)4A

)
− 6

(
(d∇)4A

)
∧
(
(d∇)5A

)

+ 4
(
(d∇)3A

)
∧
(
(d∇)6A

)
− 4

(
(d∇)2A

)
∧
(
(d∇)7A

)
+ d∇A ∧

(
(d∇)8A

)

−A ∧
(
(d∇)9A

)

=⇒ c90 = 1, c91 = 1, c92 = 4, c93 = 4, c94 = 6, c95 = 6, c96 = 4, c97 = 4, c98 = 1, c99 = 1,
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j = 0 1
j = 1 1 1
j = 2 1 0 1
j = 3 1 1 1 1
j = 4 1 0 2 0 1
j = 5 1 1 2 2 1 1
j = 6 1 0 3 0 3 0 1
j = 7 1 1 3 3 3 3 1 1
j = 8 1 0 4 0 6 0 4 0 1
j = 9 1 1 4 4 6 6 4 4 1 1
j = 10 1 0 5 0 10 0 10 0 5 0 1

Figure 1: c
j

l
coefficients

(d∇
′

)10(A ∧ A) =
(
(d∇)10A

)
∧ A+ 5

(
(d∇)8A

)
∧
(
(d∇)2A

)

+ 10
(
(d∇)6A

)
∧
(
(d∇)4A

)
+ 10

(
(d∇)4A

)
∧
(
(d∇)6A

)

+ 5
(
(d∇)2A

)
∧
(
(d∇)8A

)
+A ∧

(
(d∇)10A

)

=⇒ c100 = 1, c101 = 0, c102 = 5, c103 = 0, c104 = 10, c105 = 0, c106 = 10, c107 = 0,

c108 = 5, c109 = 0, c1010 = 1.

One trivially has that

(d∇
′

)0(A ∧ A) = A ∧ A =⇒ c00 = 1.

So one way to describe this pattern of coefficients is by saying that if j is even,
then

c
j
l =

{(j/2
l/2

)
l is even

0 l is odd,

while if j is odd, the corresponding coefficients are recursively given by c
j
l = c

j−1
l−1 +

c
j−1
l . These numerical data can be visually arranged in a pyramidal fashion akin to
a hybrid of the Pascal and Sierpinski triangles as illustrated in Figure 3.

Lemma 3. (A general Leibniz rule) For j ≥ 1,

(d∇
′

)j(A ∧ A) =

j∑

l=0

1

2
(−1)j+1

2

( (−1)j + 1

2
+ (−1)l

)(⌊ j
2⌋

⌊ l
2⌋

)(
(d∇)j−lA

)
∧
(
(d∇)lA

)
,

where ⌊·⌋ is the floor function. More explicitly, for m ≥ 0,

(d∇
′

)2m(A ∧ A) =

m∑

l=0

(
m

l

)(
(d∇)2m−2lA

)
∧
(
(d∇)2lA

)
, (2)

and

(d∇
′

)2m+1(A ∧ A) =

m∑

l=0

(
m

l

)[(
(d∇)2m+1−2lA

)
∧
(
(d∇)2lA

)

−
(
(d∇)2m−2lA

)
∧
(
(d∇)2l+1A

)]
.

(3)
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Proof. The proof is by induction. But first, observe that assuming the validity of
the main equation claimed, formulas 2 and 3 follow at once by taking j = 2m, and
j = 2m+ 1.

When j = 1,

d∇
′

(A ∧ A) =

1∑

l=0

(−1)l
(

0

⌊ l
2⌋

)(
(d∇)1−lA

)
∧
(
(d∇)lA

)

= d∇A ∧A−A ∧ d∇A,

consistent with Lemma 2.
For the induction hypothesis, assume that formulas 2 and 3 are true form. Notice

that

(d∇
′

)2m+1(A ∧ A)

= (d∇
′

)
(
(d∇

′

)2m(A ∧ A)
)

= (d∇
′

)
[ m∑

l=0

(
m

l

)(
(d∇)2m−2lA

)
∧
(
(d∇)2lA

)]

=
m∑

l=0

(
m

l

)[(
(d∇)2m+1−2lA

)
∧
(
(d∇)2lA

)
−
(
(d∇)2m−2lA

)
∧
(
(d∇)2l+1A

)]
,

where the last line follows from Lemma 2, and

(d∇
′

)2m+2

= d∇
′(
(d∇

′

)2m+1(A ∧ A)
)

= d∇
′
{ m∑

l=0

(
m

l

)[(
(d∇)2m+1−2lA

)
∧
(
(d∇)2lA

)
−
(
(d∇)2m−2lA

)
∧
(
(d∇)2l+1A

)]}

=

m∑

l=0

(
m

l

)[(
(d∇)2m+2−2lA

)
∧
(
(d∇)2lA

)
+
(
(d∇)2m+1−2lA

)
∧
(
(d∇)2l+1A

)

−
(
(d∇)2m−2l+1A

)
∧
(
(d∇)2l+1A

)
+
(
(d∇)2m−2lA

)
∧
(
(d∇)2l+2A

)]

=

m∑

l=0

[(
(d∇)2m+2−2lA

)
∧
(
(d∇)2lA

)
+
(
(d∇)2m−2lA

)
∧
(
(d∇)2l+2A

)]

=

m∑

l=0

(
m

l

)(
(d∇)2m+2−2lA

)
∧
(
(d∇)2lA

)
+

m+1∑

l=1

(
m

l − 1

)(
(d∇)2m−2l+2A

)
∧
(
(d∇)2lA

)

=

m+1∑

l=0

[(m
l

)
+

(
m

l − 1

)](
(d∇)2m+2−2lA

)
∧
(
(d∇)2lA

)

=

m+1∑

l=0

(
m+ 1

l

)(
(d∇)2m+2−2lA

)
∧
(
(d∇)2lA

)
,

so the proof is complete.
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The k-th exterior covariant derivative of the integrability form is geometrically
meaningful, and this will start becoming apparent in Lemma 4.

Lemma 4. For any A ∈ Ω1(M,TM ),

(d∇)2mA = (R∇)m ∧ A, and (d∇)2m+1A = (R∇)m ∧ d∇A,

where

(
(R∇)m ∧ A

)
(X1, . . . , X2m+1)

=
1

(2m)!

∑

σ∈S2m+1

sign(σ)(R∇)m(Xσ(1), . . . , Xσ(2m))
(
A(Xσ(2m+1))

)
,

and
(
(R∇)m ∧ d∇A

)
(X1, . . . , X2m+2)

=
1

2(2m)!

∑

σ∈S2m+2

sign(σ)(R∇)m(Xσ(1), . . . , Xσ(2m))
(
d∇A(Xσ(2m+1), Xσ(2m+2))

)
.

Proof. By induction: the even base case (d∇)2A = R∇ ∧ A can be verified using
the definition of d∇; indeed,

(
(d∇)2A

)
(X,Y, Z) = R∇(X,Y )(A(Z)) +R∇(Y, Z)(A(X)) +R∇(Z,X)(A(Y ))

=
(
R∇ ∧A

)
(X,Y, Z).

Let ∇′ be the induced connection on EndR(TM ), and recall that d∇
′

R∇ = 0. By
the above,

(d∇)3A = d∇(R∇ ∧ A)

= R∇ ∧ d∇A,

establishing the odd case.
Now, if (d∇)2kA = (R∇)k ∧ A, then

(d∇)2k+2A = (d∇)2
(
(R∇)k ∧ A

)

= (R∇)k ∧
(
(d∇)2A

)

= (R∇)k+1 ∧ A.

For the odd case, assuming that (d∇)2k+1A = (R∇)k ∧ d∇A, the above even case
implies that

(d∇)2k+3A = d∇
(
(d∇)2k+2A

)

= d∇
(
(R∇)k+1 ∧ A

)

= (R∇)k+1 ∧ d∇A,

as desired.
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Lemma 5. For any m ≥ 0,

(d∇)2m
(
d∇A ∧ (A ∧ A)

)

=

m∑

j=0

j∑

l=0

[(2m
2j

)(
j

l

)(
(d∇)2(m−j)+1A

)
∧
((

(d∇)2(j−l)A
)
∧
(
(d∇)2lA

))

+

(
2m

2j + 1

)(
j

l

)(
(d∇)2(m−j)A

)
∧
((

(d∇)2(j−l)+1A
)
∧
(
(d∇)2lA

))

−

(
2m

2j + 1

)(
j

l

)(
(d∇)2(m−j)A

)
∧
((

(d∇)2(j−l)A
)
∧
(
(d∇)2l+1A

))]
,

and

(d∇)2m+1
(
d∇A ∧ (A ∧ A)

)

=

m∑

j=0

j∑

l=0

[(2m+ 1

2j

)(
j

l

)(
(d∇)2(m−j+1)A

)
∧
((

(d∇)2(j−l)A
)
∧
(
(d∇)2lA

))

+

(
2m+ 1

2j + 1

)(
j

l

)(
(d∇)2(m−j)+1A

)
∧
((

(d∇)2(j−l)+1A
)
∧
(
(d∇)2lA

))

−

(
2m+ 1

2j + 1

)(
j

l

)(
(d∇)2(m−j)+1A

)
∧
((

(d∇)2(j−l)A
)
∧
(
(d∇)2l+1A

))]
,

Proof. Observe that

(d∇)k
(
d∇A ∧ (A ∧ A)

)
=

k∑

j=0

(
k

j

)(
(d∇)k+1−jA

)
∧
(
(d∇

′

)j(A ∧A)
)
.

The calculations follow from organizing the terms in each sum according to parity,
and the application of Lemma 3.

The integrability of an almost-complex structure constrains the curvature of any
torsion-free connection ∇ on TM in the following sense.

Proposition 1. Suppose that A ∈ AC(M) is integrable. Then, for m ≥ 0,

m∑

j=0

j∑

l=0

[(2m
2j

)(
j

l

)(
(R∇)m−j ∧ d∇A

)
∧
((

(R∇)j−l ∧ A
)
∧
(
(R∇)l ∧ A

))

+

(
2m

2j + 1

)(
j

l

)(
(R∇)m−j ∧ A

)
∧
((

(R∇)j−l ∧ d∇A
)
∧
(
(R∇)l ∧ A

))

−

(
2m

2j + 1

)(
j

l

)(
(R∇)m−j ∧ A

)
∧
((

(R∇)j−l ∧ A
)
∧
(
(R∇)l ∧ d∇A

))]

− (R∇)m ∧ d∇A = 0,

(4)
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and

m∑

j=0

j∑

l=0

[(2m+ 1

2j

)(
j

l

)(
(R∇)m−j+1 ∧ A

)
∧
((

(R∇)j−l ∧ A
)
∧
(
(R∇)l ∧ A

))

+

(
2m+ 1

2j + 1

)(
j

l

)(
(R∇)m−j ∧ d∇A

)
∧
((

(R∇)j−l ∧ d∇A
)
∧
(
(R∇)l ∧A

))

−

(
2m+ 1

2j + 1

)(
j

l

)(
(R∇)m−j ∧ d∇A

)
∧
((

(R∇)j−l ∧A
)
∧
(
(R∇)l ∧ d∇A

))]

− (R∇)m+1 ∧A = 0.

(5)

Proof. By Lemma 1, if A is integrable, then any covariant exterior derivative of the
form d∇A ∧ (A ∧A)− d∇A must vanish. The left-hand side of equation 4 is

(d∇)2m
(
d∇A ∧ (A ∧ A)− d∇A

)
,

but rewritten using lemmas 4 and 5. The same reasoning works for verifying equation
5 whose left-hand side is instead

(d∇)2m+1
(
d∇A ∧ (A ∧ A)− d∇A

)
.

Remark 2. The first 4 curvature obstruction equations are:

(R∇ ∧ A) ∧ (A ∧A) + 2d∇A ∧ (d∇A ∧ A)−R∇ ∧A = 0,

(R∇ ∧ d∇A) ∧ (A ∧ A) + 4(R∇ ∧ A) ∧ (d∇A ∧ A) + 2d∇A ∧
(
(R∇ ∧ A) ∧ A

)

−R∇ ∧ d∇A = 0,
(
(R∇)2 ∧A

)
∧ (A ∧ A) + 6(R∇ ∧ d∇A) ∧ (d∇A ∧A) + 6(R∇ ∧ A) ∧

(
(R∇ ∧A) ∧ A

)

+ 2d∇A ∧
(
(R∇ ∧ d∇A) ∧ A

)
− 2d∇A ∧

(
(R∇ ∧A) ∧ d∇A

)
− (R∇)2 ∧ A = 0,

and
(
(R∇)2 ∧ d∇A

)
∧ (A ∧ A) + 8

(
(R∇)2 ∧ A

)
∧ (d∇A ∧A)

+ 12(R∇ ∧ d∇A) ∧
(
(R∇ ∧A) ∧ A

)
+ 8(R∇ ∧A) ∧

(
(R∇ ∧ d∇A) ∧ A

)

− 8(R∇ ∧A) ∧
(
(R∇ ∧ A) ∧ d∇A

)
+ 2d∇A ∧

((
(R∇)2 ∧A

)
∧ A

)

+ 2d∇A ∧
(
(R∇ ∧ A) ∧ (R∇ ∧A)

)
− (R∇)2 ∧ d∇A = 0.

Proof. The computation of (d∇
′

)j(A.∧A), j = 1, . . . , 4, further simplifies by means
of the appropriate commuting laws:

d∇
′

(A ∧ A) =2d∇A ∧ A,

(d∇
′

)2(A ∧ A) =2
(
(d∇)2A

)
∧ A,

(d∇
′

)3(A ∧ A) =2
(
(d∇)3A

)
∧ A− 2

(
(d∇)2A

)
∧ d∇A,

(d∇
′

)4(A ∧ A) =2
(
(d∇)4A

)
∧ A+ 2

(
(d∇)2A

)
∧
(
(d∇)2A

)
.
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These computations come into play when taking covariant exterior derivatives of
the integrability form d∇A∧(A∧A)−d∇A, and thereby lead to curvature obstruction
equations through Lemma 4 as shown below.

The first such derivative is

d∇
(
d∇A ∧ (A ∧ A)− d∇A

)

=
1∑

j=0

(
1

j

)(
(d∇)2−jA

)
∧
(
(d∇

′

)j(A ∧ A
)
−
(
(d∇)2A

)

=
(
(d∇)2A

)
∧ (A ∧A) + 2d∇A ∧ (d∇A ∧ A)−

(
(d∇)2A

)

= (R∇ ∧ A) ∧ (A ∧ A) + 2d∇A ∧ (d∇A ∧ A)−R∇ ∧ A,

and the second one is

(d∇)2
(
d∇A ∧ (A ∧ A)− d∇A

)

=
(
(d∇)3A

)
∧ (A ∧ A) + 4

(
(d∇)2A

)
∧ (d∇A ∧A)

+ 2d∇A ∧
((

(d∇)2A
)
∧A

)
−
(
(d∇)3A

)

= (R∇ ∧ d∇A) ∧ (A ∧ A) + 4(R∇ ∧A) ∧ (d∇A ∧ A)

+ 2d∇A ∧
(
(R∇ ∧A) ∧ A

)
−R∇ ∧ d∇A.

Hence, the first two curvature obstruction equations are

(R∇ ∧ A) ∧ (A ∧ A) + 2d∇A ∧ (d∇A ∧ A)−R∇ ∧ A = 0,

and

(R∇ ∧ d∇A) ∧ (A ∧ A) + 4(R∇ ∧ A) ∧ (d∇A ∧ A)

+ 2d∇A ∧
(
(R∇ ∧ A) ∧A

)
−R∇ ∧ d∇A = 0.

The order k, for 3 ≤ k ≤ 4, derivatives of the integrability form can be computed in
the same way, leading to the remaining obstruction equations.

By choosing to work with the Levi-Civita connection, one may distill the Rie-
mann, Ricci, sectional, and scalar curvature, versions of these obstruction equations,
among others. It could be interesting to investigate those equations and their appli-
cations to the complex structure existence (CSE) problem. The contracted obstruc-
tion equations could be helpful in studying the CSE problem for almost-complex
manifolds admitting metrics with bounded curvature.

4. Constant curvature

Attention will now be placed on a distinguished family of complex structures, those
A ∈ C(M) such that d∇A = 0, for a specific symmetric connection ∇ on TM .

Similar structures have been studied in, for example, [4]. These special complex
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structures hold space to reflect on the relationship between the Riemannian and
(almost-)complex geometries of M.

Recall that if ∇ is the Levi-Civita connection of a Riemannian metric g on M,

then the Riemann curvature tensor Rm is given as

Rm(X,Y, Z,W ) = g
(
R∇(X,Y )Z,W

)
.

For any p ∈ M, 2-plane Πp ⊂ TM,p, and basis (X,Y ) of Πp,

K(Πp) = K(X,Y ) :=
Rm(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2

is the sectional curvature at p with respect to Πp. Then, (M, g) is said to have
constant sectional curvature c0 if K(Πp) = c0 for all p ∈ M, and all 2-planes Πp ⊂
TM,p.

The Kulkarni-Nomizu product of two (0, 2) symmetric tensors h and k is defined
as

h ? k(X,Y, Z,W ) :=h(X,Z)k(Y,W ) + h(Y,W )k(X,Z)− h(X,W )k(Y, Z)

− h(Y, Z)k(X,W ).

The Riemann curvature tensor of a metric g of constant sectional curvature c0 is of
the form

Rm = −
c0

2
g ? g.

Lemma 6. Let X,Y, Z,W ∈ X(M), and A ∈ Ω1(M,TM ) be such that d∇A = 0.
Then

1. R∇(X,Y )(A(Z)) +R∇(Y, Z)(A(X)) +R∇(Z,X)(A(Y )) = 0, and

2. in the special case when ∇ is the Levi-Civita connection of a Riemannian
metric on M,

Rm(X,Y,A(Z),W ) +Rm(Y, Z,A(X),W ) +Rm(Z,X,A(Y ),W ) = 0.

Proof. The first claim is immediate from 0 = (d∇)2A = R∇ ∧ A, and the second
claim follows from the definition of Rm and 1.

Theorem 1. Let (M, g) be a Riemannian manifold of real dimension at least 4.
If g has non-zero constant sectional curvature, then M does not admit a complex
structure A ∈ C(M) satisfying d∇A = 0, where ∇ is the Levi-Civita connection.

Proof. Suppose that g has constant sectional curvature c0 6= 0. In contrast, assume
that there exists A ∈ AC(M) that satisfies d∇A = 0 for the Levi-Civita connection
∇ on TM . Note that A is then automatically integrable (cf. Lemma 1).

Let p ∈ M and (Ei)
n
i=1 be an orthonormal basis of TM,p. Since Rm = − c0

2 g ? g,

Rijkl := Rm(Ei, Ej , Ek, El) = c0(δilδjk − δikδjl),
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and so, if i 6= j, Rijji = −Rijij = c0, all other components of Rm are equal to zero.
Lemma 6, 2. with X = W says that

Rm(X,Y,A(Z), X) +Rm(Y, Z,A(X), X) +Rm(Z,X,A(Y ), X) = 0. (6)

At p, with Xp = Ei, Yp = Ej , Zp = Ek, so that A(Ea) =
∑n

b=1 A
b
aEb, equation 6

becomes

n∑

b=1

[
Ab

kRijbi +Ab
iRjkbi +Ab

jRkibi

]
= 0.

Now, impose the requirement that i, j, k are distinct integers between 1 and n

(this is why n is assumed to be 4 or greater in the hypothesis). Then

0 =
n∑

b=1

[
Ab

kRijbi +Ab
iRjkbi +Ab

jRkibi

]

= A
j
kRijji +Ak

jRkiki

= c0(A
j
k −Ak

j ).

This is a contradiction because an almost-complex structure A ∈ AC(M) at a point p
cannot be symmetric – the spectral theorem would imply that A has real eigenvalues.

Let

AC(M)g := {A ∈ AC(M) | g(Aζ,Aη) = g(ζ, η), ∀ζ, η ∈ X(M)}

be the space of almost-complex structures that are compatible with a Riemannian
metric g. Recall that a Kähler manifold is a triple (M,A, g) of a complex manifold
(M,A) with A ∈ C(M) ∩ AC(M)g, where g is a Riemannian metric for which
the fundamental form ΩA := g(A·, ·) is closed. Equivalently, (M,A, g) with A ∈
AC(M)g (i.e., almost-hermitian) is a Kähler iff ∇A = 0, where ∇ is the Levi-Civita
connection of g.

Certainly, for any torsion-free connection∇ on TM , and A ∈ Ω1(M,TM ), ∇A = 0
implies that d∇A = 0. The converse is true for almost-hermitian (M,A, g), and the
Levi-Civita connection. As a result, the almost-hermitian manifold (M,A, g) is a
Kähler iff d∇A = 0, where ∇ is the Levi-Civita connection. In view of Theorem 1,

Remark 3. The underlying Riemannian metric of a Kähler manifold (M,A, g) of
real dimension at least 4 cannot have non-zero constant sectional curvature.

5. Functionals and numerical obstructions

The material presented in the first part of this section is closely related to [3]. Let g
be a Riemannian metric on M, and (xi)

n
i=1 local coordinates, giving the associated

local frame
(

∂
∂xi

)n
i=1

of TM . Any element ρ ∈ Ωk(M,TM ) can be locally expressed as
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ρ =
∑n

i=1 pi ⊗
∂

∂xi
. There is a natural L2-inner product on Ω•(M,TM ) that comes

from a natural extension of the Hodge star operator to Ω•(M,TM ). Indeed, if

∧g : Ωk(M,TM )⊗ Ωl(M,TM ) → Ωk+l(M)

is a bilinear map

α ∧g β =

n∑

i,j=1

ai ∧ bjg
( ∂

∂xi
,

∂

∂xj

)
,

and
〈·, ·〉g : Ωk(M,TM )⊗ Ωk(M,TM ) → R

is a pairing

〈α, α′〉g =

n∑

i,j=1

〈ai, a
′
j〉g

( ∂

∂xi
,

∂

∂xj

)
,

the induced Hodge star operator

⋆g : Ωk(M,TM ) → Ωn−k(M,TM )

is defined by the rule
α ∧g ⋆gα

′ = 〈α, α′〉gvolg.

Then the L2-product is

〈〈·, ·〉〉 : Ω•(M,TM )⊗ Ω•(M,TM ) → R,

〈〈A,B〉〉 :=
∑

k

〈Ak, Bk〉k,

where

〈Ak, Bk〉k :=

∫

M

Ak ∧g ⋆gBk,

and where A =
∑

k Ak, B =
∑

k Bk, Ak, Bk ∈ Ωk(M,TM ). Let δ∇ be the formal
adjoint of d∇ w.r.t. this inner product.

Proposition 2. Let M be a real manifold, and ∇ a symmetric connection on TM .

There exist functionals, denoted here by C∇[1] and C∇[1, 3], whose sets of criti-
cal points, when projected onto the degree 1 piece of Ω•(M,TM ), coincide with
ker

(
d∇

∣∣
Ω1(M,TM )

)
.

Proof. Let pk : Ω•(M,TM ) → Ωk(M,TM ) be the projection mapping pk(γ) = γk.

Adjust the covariant exterior derivative associated with the chosen connection by
setting

d∇[1] :=

n−1∑

i=0

(1− δi0)d
∇
∣∣
Ωi(M,TM )

.

This new operator coincides with d∇ on each degree i piece of Ω•(M,TM ), except for
i = 0, when it is zero. The formal adjoint, δ∇[1], then agrees with δ∇ on Ωi(M,TM ),
for all i 6= 1, and is zero for i = 1.
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Put
Ω̃1(M,TM ) := {γ ∈ Ω•(M,TM ) | δ∇γ3 = 0}.

Consider the functional

C∇[1] : Ω̃1(M,TM ) → R, C∇[1](γ) := 〈〈d∇[1]γ, γ〉〉.

The first variation of this functional is

d

dt

∣∣∣
t=0

C∇[1](γ + tβ) = 〈〈β, (δ∇[1] + d∇[1])γ〉〉,

so the set of critical points is

S = {γ ∈ Ω̃1(M,TM ) | δ∇[1]γk+1 + d∇[1]γk−1 = 0, ∀k 6= 2, and d∇γ1 = 0}.

Thus, p1(S) = ker
(
d∇

∣∣
Ω1(M,TM )

)
.

Alternatively, (re-)define the covariant exterior derivative as

d∇[1, 3] :=

n−1∑

i=0

(1 − δi0 − δi2)d
∇
∣∣
Ωi(M,TM )

.

Now consider the functional

C∇[1, 3] : Ω•(M,TM ) → R, C∇[1, 3](γ) := 〈〈d∇[1, 3]γ, γ〉〉.

The first variation is

d

dt

∣∣∣
t=0

C∇[1, 3](γ + tβ) = 〈〈β, (δ∇[1, 3] + d∇[1, 3])γ〉〉.

The critical point set is

S ′ = {γ ∈ Ω•(M,TM ) | δ∇[1, 3]γk+1 + d∇[1, 3]γk−1 = 0, ∀k 6= 2, and d∇γ1 = 0},

so p1(S ′) = ker
(
d∇

∣∣
Ω1(M,TM )

)
as well.

Corollary 1. Let C̃(M) := {γ ∈ Ω•(M,TM ) | γ1 ∈ C(M)}. Special complex struc-
tures A ∈ C(M) with the added property that d∇A = 0 (cf. Theorem 1) can be
variationally realized via the restricted functionals

C∇[1]
∣∣∣
Ω̃1(M,TM )∩C̃(M)

, respectively C∇[1, 3]
∣∣∣
C̃(M)

.

Moreover, if (M, g) is a Riemannian manifold with Levi-Civita connection ∇, then
based on the discussion at the end of section 4, if

ÃC(M)g := {γ ∈ Ω•(M,TM ) | γ1 ∈ AC(M)g},

then
C∇[1]

∣∣∣
Ω̃1(M,TM )∩ÃC(M)g

and C∇[1, 3]
∣∣∣
ÃC(M)g

realize the Kähler for g complex structures.
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‖ ·‖ denotes the norm w.r.t. the inner product 〈〈·, ·〉〉 that was introduced earlier.
In addition, a top degree form α ∈ Ωn(M,TM ), which can always be expressed in
local coordinates (xi)

n
i=1 as α =

∑n
i=1 ai ⊗

∂
∂xi

can be integrated by the rule

∫

M

α :=
n∑

i=1

∫

M

aig
( ∂

∂xi
,

∂

∂xi

)
.

The same method applies to integrating polyvector bundle top forms in Ωn
(
M,∧p

TM

)
, but g should be replaced by the inner product that it induces on

∧p
TM .

The formulas from Section 3 have the following fact as an immediate consequence.

Proposition 3. Let (M, g) be a compact Riemannian manifold of dimension at least
4 with Levi-Civita connection ∇. For all 0 ≤ k ≤ n− 2, set

J (k,∇)(A) :=‖(d∇)k
(
d∇A ∧ (A ∧ A)− d∇A

)
‖2

=|(d∇)k
(
d∇A ∧ (A ∧ A)− d∇A

)
|2k+2.

Then
J (k,∇) = inf

A∈AC(M)
J (k,∇)(A)

is a global numerical obstruction to M being a complex manifold. Moreover, if

r(∇)(A) :=
∣∣∣
∫

M

(d∇)n−2
(
d∇A ∧ (A ∧A)− d∇A

)∣∣∣,

then so is

r(∇) = inf
A∈AC(M)

r(∇)(A).

For example, if dimR M = 6, then

r(∇) = inf
A∈AC(M)

∣∣∣
∫

M

(
(R∇)2 ∧ d∇A

)
∧ (A ∧A) + 8

(
(R∇)2 ∧ A

)
∧ (d∇A ∧A)

+ 12(R∇ ∧ d∇A) ∧
(
(R∇ ∧ A) ∧ A

)
+ 8(R∇ ∧ A) ∧

(
(R∇ ∧ d∇A) ∧ A

)

− 8(R∇ ∧ A) ∧
(
(R∇ ∧ A) ∧ d∇A

)
+ 2d∇A ∧

((
(R∇)2 ∧ A

)
∧A

)

+ 2d∇A ∧
(
(R∇ ∧A) ∧ (R∇ ∧ A)

)
− (R∇)2 ∧ d∇A

∣∣∣.

Proof. Compactness is tacitly at play in the integrals. The first two numerical
obstructions employ Lemma 1, and they can certainly be expanded further using
Proposition 1. The last obstruction employs the 4th covariant exterior derivative of
the intergability form (cf. Remark 2). Indeed, if J (k,∇) > 0, then M cannot be
complex, and the same conclusion can be drawn for r(∇).

One might ask what the advantage of this is over working with, for example,
the infimum of

∫
M

‖NA‖2gvolg. The answer is that the curvature scalars J (k,∇)
and r(∇) involve mainly the curvature of (M, g), a quantity that is overall better
understood than the Nijenhuis tensor. Consider, for instance, the round 6-sphere S6.
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