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Abstract. Let GR be a real, semisimple, linear and connected Lie group. Let K denote
the complexification of a maximal compact group of GR. Assume that GR has a compact
Cartan subgroup. We prove a formula which computes the Liouville measure on a real
nilpotent Richardson orbit obtained by the Sekiguchi correspondence from a K-nilpotent
Richardson orbit as a limit of differentiated measures on regular elliptic orbits.
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1. Introduction

Let G be a complex, semisimple, linear group, and let GR a real form of G. Denote
by KR a maximal compact subgroup, and by K its complexification. In a series
of papers [11, 12, 13], Schmid and Vilonen studied microlocal properties of equiv-
ariant sheaves on the flag variety. They proved that the natural correspondence
between K-equivariant and GR-eqivariant sheaves, called the Matsuki correspon-
dence for sheaves, descends to the nilpotent cone, where it induces the Sekiguchi
correspondence between nilpotent K and GR-orbits. This correspondence identifies
two important invariants of an irreducible representation: the associated cycle and
the wave front cycle. Sometimes it is easier to compute one of the invariants, and
then obtain the other through the Sekiguchi correspondence. For example, one can
use this approach to determine the wave front cycle of a Vogan-Zuckerman module.

In this paper we would like to apply these ideas to study asymptotic properties
of invariant eigendistributions on the Lie algebra of GR. In more detail, let X be
the flag variety of G, let Y be a generalized flag variety, and let π : X −→ Y be
the natural projection. The main motivation for the present paper is to transfer
the limit formula for invariant measures on singular elliptic orbits obtained in [2]
to a limit formula for invariant measures on regular elliptic orbits. To prove such a
formula we have to work in the setting of a flag variety, while in loc.cit. the limit
formula was proved in the setting of a generalized flag variety. The lift of the limit
formula from Y to X is accomplished by comparing the Matsuki correspondence for
sheaves on Y and X, computing the pull-back under π of the characteristic cycle of
a standard sheaf on an open GR-orbit on Y and using the identity for characteristic
cycles from [5]. This identity corresponds to a character identity which relates the
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character of a Vogan-Zuckerman module and the signed average of a discrete series
character over the Weyl group of a Levi factor of a θ-stable parabolic subgroup of
G. We use the theory of Schmid and Vilonen to describe the leading term of the
asymptotic expansion of the invariant eigendistribution on the Lie algebra of GR
associated with the characteristic cycle CC(j!Cπ−1Z), where Z ⊂ Y is an open GR-
orbit, and j : π−1Z → X is the embedding. We prove that the Fourier transform of
the leading term is supported on a single nilpotent GR-orbit O which we identify as a
Richardson orbit for the group GR [14]. The limit formula for the computation of the
canonical measure on O by differentiation of canonical measures on regular elliptic
orbits is proved by the method from [10], [4], which relies on Rossmann theory of
Weyl group representations.

2. Preliminaries

Suppose GR is a real, connected, linear, semisimple Lie group. We embed GR into
the complexification G, and denote by τ : G −→ G a conjugation on G having GR
as the set of fixed points. Next, we choose a Cartan involution θ : GR −→ GR, and
denote by KR the set of fixed points. Extend θ to G so that it commutes with τ , and
denote by K the set of fixed points. We denote by UR the set of fixed points of θτ
on G. Write g, k, gR, kR, uR for the Lie algebras of G, K, GR, KR, UR, respectively,
and denote the involutions on g induced by θ, τ by the same letters. In addition, let

gR = kR + pR , g = k+ p

be the Cartan decompositions defined by θ. We shall assume that GR has a compact
Cartan subgroup

TR ⊂ KR.

Denote the Lie algebra of TR by
tR ⊂ kR.

Next, we introduce the notation related to the geometry of the flag variety. Write
X for the flag variety of Borel subalgebras of g. Let n = dimC X. Given x ∈ X,
we denote by bx the corresponding Borel subalgebra, by nx = [bx, bx] the nilpotent
radical, and by Bx ⊂ G the Borel subgroup, which stabilizes x via the adjoint
action. All the quotients bx/nx can be identified canonically, hence we can define
the universal Cartan algebra by the condition

h ' bx/nx for any x ∈ X.

Let c ⊂ bx be a Cartan subalgebra. Then we have a canonical isomorphism τx :
c → bx/nx ' h. We denote by τ∗x : h∗ → c∗ the dual isomorphism. Then
∆ = τ∗−1

x (∆(g, c)) is independent on the choice of the pair (c, x), and is called
the universal root system. Set ∆+

x = ∆(g/bx, c). A positive root system in ∆ is
defined by the condition

∆+ = τ∗−1
x (∆+

x ).

The triple (h∗,∆,∆+) is called the universal Cartan triple. Given λ ∈ ∆, and a
pair (c, x) as above, we write λx = τ∗x (λ). The universal Weyl group W is defined
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as the Weyl group of the root system ∆. Denote by ρ ∈ h∗ half the sum of positive
roots, and by h′∗ the set of regular elements. Note that h∗ comes equipped with the
W -invariant symmetric bilinear form (·, ·) whose specialization at x ∈ X coincides
with the Killing form.

Let us recall the definition of the moment map and of the twisted moment map.
Denote by T ∗X the cotangent bundle of the variety X. Given x ∈ X, denote by
b⊥x ⊂ g∗ the space of linear forms vanishing on bx. We use the identification

T ∗X ∼=
{
(x, ξ) : x ∈ X, ξ ∈ b⊥x

}
to consider T ∗X as a submanifold of X × g∗. The moment map is defined by

µ : T ∗X −→ g∗, µ(x, ξ) = ξ.

Denote by N ∗ the cone of nilpotent elements in g∗. Note that µ(T ∗X) = N ∗.
The definition of the twisted moment map is due to Rossmann [10]. Note that any
x ∈ X is fixed by a unique maximal torus CR ⊂ UR. We can use the decomposition
g = c+[c, g] to view c∗ as a subspace of g∗. Now we define the twisted moment map
by

µλ : T ∗X −→ g∗, µλ(x, ξ) = λx + µ(x, ξ), ξ ∈ b⊥x .

If λ is regular, one can show that µλ is a UR-equivariant, real algebraic isomorphism
of T ∗X with complex coadjoint orbit Ad∗(G)λx. Note that Ad∗(G)λx is independent
of x ∈ X. We shall write G · λ = Ad∗(G)λx.

Let V be a coadjoint G-orbit in g∗ or a coadjoint GR-orbit in ig∗R. To treat both
cases simultaneously write M = G or M = GR and denote by m the Lie algebra of
M . The space

m · ξ = {ad∗(x)(ξ) : x ∈ m}

identifies with tangent space TξV of V at ξ, and we define an M -equivariant 2-form
σV on V by the formula

σV,ξ(x · ξ, y · ξ) = ξ[x, y] , x, y ∈ m.

In case M = GR, the form −iσV is real valued and we use the form

(−iσV)
k , 2k = dimR V

to orient V. In this case we define the measure mV by the formula

dmV =
1

(2πi)kk!
σk
V ,

and call it the Liouville measure. When V = M ·λ, λ ∈ c∗, c ⊂ g a Cartan subalgebra,
we shall write σV = σλ and mV = mλ.

Let λ ∈ h∗. Then a UR-equivariant 2-form τλ on X is defined at x by

τλ(ax, bx) = τ∗x (λ)([a, b]).

Here ax and bx denote the tangent vectors induced by a, b ∈ uR by differentiation
of the UR-action.
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Denote by πX : T ∗X −→ X the natural projection, and by σ the canonical
symplectic form on T ∗X. Following [12], we shall relate invariant distributions on
the Lie algebra and integrals of certain differential forms over the semi-algebraic
cycles in T ∗X. The Fourier transform of a test function ϕ ∈ C∞

c (gR) will be defined
by

ϕ̂(ξ) =

∫
gR

eξ(x)ϕ(x)dx , ξ ∈ g∗,

without the usual i in the exponential. Here dx denotes a suitably normalized
Lebesgue measure on gR. Let us denote by T ∗

GR
X the union of conormal bundles to

the GR-orbits on X. One can prove that for a test function ϕ ∈ C∞
c (gR) and λ ∈ h∗

the integral

Θ(Γ, λ)(ϕ) =

∫
Γ

µ∗
λ(ϕ̂)(−σ + π∗

Xτλ)
n

converges and depends holomorphically on λ. Moreover, Θ(Γ, λ) is a GR-invariant
distribution on gR.

Denote by N the set of nilpotent elements in g. There exists a natural bijec-
tion between the sets of K-orbits in N ∩ p and GR-orbits in N ∩ igR, called the
Sekiguchi correspondence. We remark that our parametrization of the Sekiguchi
correspondence will be identical to [13], 6.7.

Let us choose h0 ∈ itR, and define the parabolic subalgebra q with Levi decom-
position q = l+ u, where l and u are specified by the conditions

∆(l, t) = {α ∈ ∆(g, t) : α(h0) = 0} , ∆(u, t) = {α ∈ ∆(g, t) : α(h0) > 0} .

Then we have
g = l+ u+ τu, θu = u, and l = q ∩ τq.

In particular, l is the complexification of a reductive, θ-stable subalgebra lR ⊂ gR.
Let Q ⊂ G be the parabolic subgroup corresponding to q. Set Y = G/τQ, and
denote by y0 ∈ Y the point determined by τQ. Let

S = GR · y0 ⊂ Y and Z = K · y0.

A short computation shows that dimR(gR/lR) = dimR(g/τq), hence the orbit S is
open in Y . On the other hand, the orbit Z is associated with S by the Matsuki
correspondence [8] on Y and it is closed. Let us choose a positive root system
∆+(l, t) and define x0 ∈ X by the condition

∆(bx0
, t) = −∆+(l, t) ∪∆(u, t). (1)

We remark that the orbit
S0 = GR · x0

is open in X.
Now we shall review several results related to Rossmann’s construction of Weyl

group representations on the homology groups of conormal varieties for the action
of GR (K) on the flag variety X [10]. These results will be used in the proof of the
main theorem.
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Let A = K or A = GR and let a be the Lie algebra of A. When

U = a⊥ ∩N ∗, U = O, U = O, U = {ν} ,

Rossmann defines W -module structure on homology groups

H∗(µ
−1(U),C).

Here O is an A-orbit and ν ∈ N ∗. In the first case we have

µ−1(a⊥ ∩N ∗) = T ∗
AX .

Denote by
CG(ν) resp. CA(ν)

the group of connected components of the centralizer of ν in G resp. A. Let

d = d(ν) = dimC µ−1(ν).

Then we have natural homommorphisms of W -modules

H2n(µ
−1(O),C) −→ H2n(µ

−1(O),C)
' H2d(µ

−1(ν),C)CA(ν)

−→ H2d(µ
−1(ν),C)CG(ν)

Recall that the W -module H2d(µ
−1(ν),C)CG(ν) is irreducible. This is the Springer

representation associated with orbit G · ν, and the corresponding character will be
denoted by χν .

Denote by Hd(h
∗) (Hd(h)) the space of harmonic polynomials on h∗ (h) of degree

d. The map

H2d(X,C) −→ Hd(h
∗) , γ 7→ b(γ) =

1

(2πi)dd!

∫
γ

τdλ

is an isomorphism of W -modules called the Borel isomorphism. Here the W -action
on H2d(X,C) is induced by the natural W -action on X. On the other hand, we have
a natural homomorphism

H2d(µ
−1(ν),C) −→ H2d(X,C),

defined by the embedding µ−1(ν) −→ X × {ν}. Rossmann shows this is a nonzero
W -module homomorphism which factors through the projection

H2d(µ
−1(ν),C) −→ H2d(µ

−1(ν),C)CG(ν).

It is known that χν appears exactly once in Hd(h
∗). We denote the corresponding

subspace by Hd(h
∗)ν . Now we compose previous mappings to obtain a surjective

homomorphism of W -modules

H2n(µ
−1(O),C) −→ Hd(h

∗)ν , Γ 7→ pΓ. (2)
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Rossmann’s definition ofW -action onH2n(T
∗
GR

X,C) implies the followingW -equiva-
riance formula for distributions Θ(Γ, λ):

Θ(wΓ, λ) = Θ(Γ, w−1λ) , w ∈W, λ ∈ h∗.

Our goal is to study the asymptotic behaviour of distributions Θ(Γ, λ) when
λ ∈ h∗ approaches zero. We recall additional facts needed for this analysis. Denote
by ΘO the Fourier transform of the Liouville measure mO. In more detail,

ΘO(ϕ) =
1

(2πi)kk!

∫
O
ϕ̂σk

O , 2k = dimRO, ϕ ∈ C∞
c (gR).

Let Γ ∈ H2n(µ
−1(O),C). Rossmann proves [10] the following formula relating dis-

tributions Θ(Γ, λ) and ΘO:

Θ(Γ, λ) = pΓ(λ)ΘO + o(λn−k).

The term o(λn−k) can be described as follows. For any ϕ ∈ C∞
c (gR), o(λ

n−k)(ϕ) is
a holomorphic function of λ and

lim
t→0

o((tλ)n−k)(ϕ)

tn−k
= 0.

Finally, we shall mention two results from [4] that will be used in the proof of
the main theorem. Denote by C[h] resp. C[h∗] the algebra of polynomial functions
on h resp. h∗ and by D(h∗) the algebra of differential operators on h∗ with constant
coefficients. Then we have a natural isomorphism of algebras

C[h] ∼= D(h∗), p 7→ p(∂), p ∈ C[h].

Let r ∈ Hd(h
∗)ν . By [4], Lemma 3.2 we can find p ∈ Hd(h)ν such that

p(∂)r 6= 0. (3)

Furthermore, if Γ ∈ H2n(T
∗
RX,C), λ ∈ h∗, p ∈ C[h] and w ∈ W , then by [4],

Lemma 3.3 we have:

lim
λ→0

p(∂)Θ(Γ, λ) (4)

exists as a distribution on gR, and

lim
λ→0

w−1p(∂)Θ(Γ, λ) = lim
λ→0

p(∂)Θ(wΓ, λ). (5)

3. A limit formula

Following [13], we shall recall the construction of the eqiuvalence of categories of
K-equivariant and of GR-equivariant sheaves on the flag variety. We shall explain
that in an analogous way we can obtain an equivalence of categories of K-equivariant
and of GR-equivariant sheaves on the generalized flag variety Y .
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Let Z = X or Z = Y . Define maps

Z
aZ←−− GR × Z

qZ−−→ GR/KR × Z
pZ−−→ Z

by aZ(g, z) = g−1z, qZ(g, z) = (gKR, z) and pZ(gKR, z) = z. These maps are
GR × KR-equivariant for the following actions: (g, k) · z = k · z, (g, k) · (g′, z) =
(gg′k−1, z), (g, k) · (g′KR, z) = (gg′KR, g · z) and (g, k) · z = g · z. The action of GR
on Z is trivial, hence we may regard an object F from Db

K(Z) (after applying the
functor ForKKR)

) as an object from Db
GR×KR

(Z). On the other hand, the action of KR

on GR × Z is free, hence there exists a unique object F ′ in Db
GR

(GR/KR × Z) such

that a∗Z(F) ' q∗Z(F ′). We remark that in loc.cit. the condition a!Z(F) ' q!Z(F ′) is
used to pick F ′. These two conditions are equivalent if we orient Z as a complex
manifold and GR/KR ' pR as a differentiable manifold [13], 4.2. Finally, we define

γZ : Db
K(Z) −→ Db

GR
(Z), γZ(F) = RpZ!(F ′).

Proposition 1. The following diagram is commutative:

Db
K(Y )

γY−−−−→ Db
GR

(Y )

π∗

y yπ∗

Db
K(X)

γX−−−−→ Db
GR

(X).

Proof. We cosider a sequence of Cartesian squares:

X
aX←−−−− GR ×X

qX−−−−→ GR/KR ×X
pX−−−−→ X

π

y id×π

y id×π

y yπ

Y
aY←−−−− GR × Y

qY−−−−→ GR/KR × Y
pY−−−−→ Y,

and pick an object F in Db
K(Y ). Let F ′ be an object in Db

GR
(GR/KR×Y ) such that

a∗Y (F) ' q∗Y (F ′). The commutativity of the the first and second diagram from left
to right implies

q∗X((id× π)∗(F ′)) ' a∗X(π∗(F)).

Now we apply the base change formula to the third diagram to deduce

γX(π∗F) = RpX!((id× π)∗F ′) = π∗RpY !(F ′).

The proposition follows.

Let us recall that the orbit Z = K ·y0 is closed, and the orbit S = GR ·y0 is open
in the generalized flag variety Y . Let

i′ : Z −→ Y, j′ : S −→ Y, i : π−1(Z) −→ X and j : π−1(S) −→ X

denote the embeddings. Our goal is to relate sheaves i∗(Cγ−1(Z)) and
j!(Cγ−1(S)). We begin by comparing standard sheaves on Z and S.
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Lemma 1. The action of γY on i′∗(CZ) is given by the formula

γY (i
′
∗(CZ)) = j′!(CS)[2codimCZ].

Proof. In the setting of a flag variety the formula is proved in [9]. For a generalized
flag variety there is also a geometric interpretation of the Matsuki duality between
K and GR-orbits which is derived from the properties of the gradient flow defined
by squared norm of the moment map [7]. Formulas for the action of γY on standard
sheaves can be deduced analogously as in the setting of the flag variety [9] using the
properties of the gradient flow on the generalized flag variety.

Proposition 2. The action of γX on i∗(Cγ−1(Z)) is given by the following formula:

γX(i∗(Cγ−1(Z))) = j!(Cγ−1(S))[2codimCZ].

Proof. First, we remark that i′ and i are closed embeddings, hence i′∗ = i′! and
i∗ = i!. Now we apply the base change formula to the Cartesian diagram

π−1(Z)
i−−−−→ X

π

y yπ

Z
i′−−−−→ Y

to deduce i∗(Cπ−1(Z)) = π∗i′!(CZ). Using this formula and the Cartesian square

π−1(S)
j−−−−→ X

π

y yπ

S
j′−−−−→ Y

we obtain

γX(i∗(Cγ−1(Z))) = γX(π∗i′!(CZ))

= π∗γY (i
′
!(CZ))

= π∗j′!(CS)[2codimCZ]

= j!(Cγ−1(S))[2codimCZ].

Schmid and Vilonen define a homomorphism [13], 3.7,

Φ : H2n(T
∗
KX,C) −→ H2n(T

∗
GR

X,C),

which makes the following diagram commutative:

DK(X)
γ−−−−→ DGR(X)

CC

y yCC

H2n(T
∗
KX,C) Φ−−−−→ H2n(T

∗
GR

X,C).
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Put Nk = ∪{G · x : x ∈ N , dimC G · x = 2k} and N k = ∪l≤kNl. The map Φ de-
scends to the nilpotent cone by integrating cycles over the fibres of the moment map.
At this point we shall use the identification g∗ ∼= g defined by the Killing form. In
particular, we view the moment map as the map

µ : T ∗X −→ g.

Let V ′ ⊂ Nk ∩ p be a K-orbit, and O′ ⊂ N ∩ igR a GR-orbit. We orient V ′ by
the complex structure, and O′ by the Liouville form. We denote the corresponding
cycles by [V ′] and [O′]. Schmid and Vilonen introduce the maps

(grµ∗)K,λ : H2n(T
∗
KX,C) −→

⊕
k≥0

H2k(Nk ∩ p,C),

(grµ∗)GR,λ : H2n(T
∗
GR

X,C) −→
⊕
k≥0

H2k(Nk ∩ igR,C),

and define a homomorphism [13], 5.10,

ϕ :
⊕
k≥0

H2k(Nk ∩ p,C) −→
⊕
k≥0

H2k(Nk ∩ igR,C) ,

such that
(grµ∗)GR,λ ◦ Φ = ϕ ◦ (grµ∗)K,λ.

Moreover, they compute ϕ on the invariant part of the homology [13], 6.3, and show
that

ϕ([V ′]) = [O′],

if a K-orbit V ′ and a GR-orbit O′ are related by the Sekiguchi correspondence.
The next theorem describes multiplicities of the orbits in the cycles obtained by

descent of C ∈ H2n(T
∗
KX,C) and Φ(C) ∈ H2n(T

∗
GR

X,C) to the nilpotent cone. The
theorem was explained in more detail in [6].

Theorem 1. Let C ∈ H2n(T
∗
KX,C), and let k = k(C) be the minimal integer such

that C ∈ H2n(T
∗
KX ∩ µ−1(N k),C). Let us write

Nk ∩ p = V1 ∪ · · · ∪ Vl,

where V1, · · · ,Vl are K-orbits. Let us denote by Oi the GR-orbit related to the
orbit Vi by the Sekiguchi correspondence. Let us consider the restriction C0 =
C|T∗

KX∩µ−1(Nk). Then we have

C0 =

l∑
j=1

CVi
, CVi

∈ H2n(µ
−1Vi,C).

Now we draw attention to (6) and denote by p(C,Vi) the polynomial in
H(n−k)(h

⋆) associated with cycle CVi
. Then

(grµ∗)K,λ(C) =

l∑
i=1

p(C,Vi)(λ)[Vi] and



286 M.Božičević

Θ(Φ(C), λ) =

l∑
i=1

p(C,Vi)(λ)ΘOi
+ o(λn−k).

We shall apply this theorem to the sheaves i∗(Cπ−1(Z)) and j!(Cπ−1(S))). Let
V ⊂ N ∩ p be the K-orbit such that

V = K · (u ∩ p). (6)

Let

O ⊂ igR ∩N (7)

be the GR-orbit related to O by the Sekiguchi correspondence. To simplify notation
set

CZ = CC(i∗(Cπ−1(Z))) and CS = CC(j!(Cπ−1(S)))).

Theorem 2. Let λ ∈ h∗ and let k = dimC K · (u ∩ p)). Then

Θ(CS , λ) = p(CZ ,V)(λ)ΘO + o(λn−k),

where p(CZ ,V) 6= 0.

Proof. We remark that π−1Z is closed in X, hence CZ = [T ∗
π−1(Z)X], where the

conormal bundle is oriented by its complex structure. Descending to the nilpotent
cone we obtain µ(T ∗

π−1(Z)X) = K ·(u∩p)). The definition of V and Theorem 1 imply
now the formula

Θ(CS , λ) = p(CZ ,V)(λ)ΘO + o(λn−k).

It remains to show p(CZ ,V) 6= 0. To prove this statement we have to work with
D-modules. Define DX = Dρ-moduleM = i+(Oπ−1(Z)). Here O denotes the sheaf
of regular functions and i+ the direct image functor in the category of D-modules.
Let M = Γ(X,M). Then M is a (g,K)-module with trivial infinitesimal character.
Moreover, M is an irreducible (g,K)-module, sinceM is irreducible as a Dρ-module.
Denote by Ass(M) the associated cycle of M . Then [13], 7.5 implies

(grµ∗)ρ(CZ) = Ass(M).

Now the irreducibility of M and Theorem 3.4 imply p(CZ ,V)(ρ) 6= 0.

Recall that λx0
∈ it∗R is dominant if

(λx0
, α) > 0 for any α ∈ ∆(g/bx0

, t).

Set p = dimC n ∩ p. The next theorem is a variant of Rossmann’s character formula
for a standard sheaf associated with an open GR-orbit on X proved by Schmid and
Vilonen [12]. In loc.cit. the formula stated in the theorem below was proved for
standard sheaves defined by the direct image functor for an open embedding. An
analogous formula for the proper direct image functor was discussed in [3]. In fact,
using the result about orientation of CC(Rj0!CS0

) from loc.cit., and an analogous
argument as in [12], §7, §8, we can prove the following theorem.
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Theorem 3. Let GR be a connected, linear, semisimple Lie group. Consider the
Borel subalgebra bx0 defined in (4) and the open orbit S0 = Ad(GR) · x0. Let ϕ ∈
C∞

c (gR). Denote by ϕ̂ the Fourier transform of ϕ. Then for λ ∈ h∗′ such that λx0

is dominant we have∫
CC(Rj0!CS0

)

µ∗
λ(ϕ̂σ

m
λ ) = (−1)p

∫
GR·λx0

ϕ̂σm
λ .

Theorem 4. Let bx0 be the Borel subalgebra defined in (4), and let C ⊂ itR be the
corresponding positive chamber. Let V be the K-orbit defined in (13) and O the GR-
orbit defined in (14). Let k = dimC V. Denote by χν the Springer character defined
by the complex orbit G · V. Then there is a harmonic polynomial p ∈ Hn−k(h

∗)ν and
a non-zero constant κ such that the following formula holds:

lim
λ→0(C)

∑
w∈W (LR,TR)

(−1)l(w)wp(∂)mλ = κmO.

Proof. We begin by recalling the identity for CC(j!(Cπ−1(S))) from [5] :

|W (LR, TR)|CC(j!(Cπ−1(S))) =
∑

w∈W (LR,TR)

(−1)l(w)w · CC(jS0!CS0
).

This implies further the identity between invariant eigendistributions on gR:

|W (LR, TR)|Θ(CC(j!(Cπ−1(S)), λ) =
∑

w∈W (LR,TR)

(−1)l(w)Θ(w · CC(jS0!CS0), λ).

To simplify notation denote r(λ) = p(CZ ,V)(λ). By Theorem 2 we can write:

|W (LR, TR)|r(λ)ΘO + o(λn−k) =
∑

w∈W (LR,TR)

(−1)l(w)Θ(w · CC(jS0!CS0
), λ).

By (9) we can find a harmonic polynomial p ∈ Hn−k(h)ν , ν ∈ G · V, such that
∂(p)r 6= 0. We act on the previous identity by ∂(p), and apply (10) and (11) to
conclude

lim
λ→0(Cx0

)

∑
w∈W (LR,TR)

(−1)l(w)wp(∂)Θ(CC(jS0!CS0), λ) = |W (LR, TR)|ηΘO,

where η 6= 0. To complete the proof it will suffice to use Theorem 3, and take the
inverse Fourier transform.
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[2] M.Božičević, A limit formula for elliptic orbital integrals, Duke Math. J. 113(2002),
331–353.



288 M.Božičević
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