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Abstract. By analogy with the classical case, noncommutative differential calculus on a
quantum superspace can be extended to the Cartan calculus by introducing inner deriva-
tions and Lie derivatives. So, to give the Cartan calculus on the algebra of functions on
quantum (2+1)-superspace C2|1

q , we first introduce two left-covariant differential calculi

over O(C2|1
q ) and extend one of these calculi by adding inner derivations and Lie deriva-

tives to the calculus. We also introduce tensor product realization of the wedge product of
forms.
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1. Introduction

Noncommutative geometry continues to play an important role in different fields of
mathematics and mathematical physics. The goal of this geometry is a differential
calculus on an associative algebra. In the approach of Woronowicz [16], the quan-
tum group is taken as noncommutative space, and the differential calculus on the
group is derived from the properties of the group. Differential calculi on certain
classes of quantum homogeneous spaces are described in [1, 2, 12]. The quantum
plane and superplane are the simplest samples of noncommutative spaces. Following
Woronowicz’s approach, noncommutative differential calculi on some lower dimen-
sional superspaces are presented in [3, 4].

In another approach initiated by Wess and Zumino [15], differential forms are
defined by the differential and algebraic properties of quantum coordinates and quan-
tum groups acting on them. The natural extension of their scheme to superspace
[11] was introduced by many authors (for example, [5, 10, 14]).

Using the approach in [13], the extended calculus on the quantum plane was
introduced in [9]. The extended calculus on the quantum superplane was introduced
in [6].

In this paper, we investigate the noncommutative geometry of the algebra of

functions on the quantum (2 + 1)-superspace denoted by O(C2|1
q ). In Section 4,
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we set up two left-covariant differential calculi, covariant under GLq(2|1), on the

quantum superalgebra O(C2|1
q ). In Section 5, we extend one of these calculi by

adding inner derivations and Lie derivatives to the calculus. In Section 6, we re-
formulate the results we got in the previous sections with an R-matrix and introduce
the tensor product realization of the wedge product.

2. Preliminaries

In this section, we will briefly talk about some of the known basic concepts as
necessary. Throughout the paper, we will fix a base field C, the set of complex
numbers. We write Z2 = Z/2Z = {0, 1}.

A super vector space V over C is a Z2-graded vector space over C and we write
V = V0 ⊕ V1, where V0 and V1 are even and odd subspaces of V , respectively. The
elements of V0 and V1 are called even and odd, respectively. The elements of V0∪V1

will be called homogeneous. For a homogeneous element v we write p(v) for the
parity or degree; if v ∈ V0 (resp. V1) we have p(v) = 0 (resp. 1).

A superalgebra (or Z2-graded algebra) A over C is a super vector space over C
with a map A×A −→ A such that Ai ·Aj ⊂ Ai+j for i, j = 0, 1. If A and B are two
Z2-graded algebras, then the tensor product A⊗ B exists. The following definition
gives the product rule for the tensor product of Z2-graded algebras.

Definition 1. If A and B are two Z2-graded algebras, their tensor product rule is
defined by

(a1 ⊗ a2)(b1 ⊗ b2) = (−1)p(a2)p(b1)(a1b1 ⊗ a2b2),

where ai’s and bi’s are homogeneous elements of A and B, respectively.

The elementary properties of a Hopf superalgebra are similar to the correspond-
ing properties of ordinary Hopf algebras.

Definition 2. A Hopf superalgebra (or a Z2-graded Hopf algebra) is a super vector
space H over C with two algebra homomorphisms ∆ : H → H ⊗ H called the co-
product, ϵ : H → C called the counit and an algebra antihomomorphism S : H → H
called the antipode, such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

m ◦ (ϵ⊗ id) ◦∆ = id = m ◦ (id⊗ ϵ) ◦∆,

m ◦ (S ⊗ id) ◦∆ = η ◦ ϵ = m ◦ (id⊗ S) ◦∆,

and ∆(1) = 1⊗ 1, ϵ(1) = 1, S(1) = 1, where m is the multiplication map, id is the
identity map and η : C −→ H.

Definition 3. Let X be a superalgebra and H a Hopf superalgebra. Then the superal-
gebra X is called a left H-comodule algebra if there exists an algebra homomorphism
δL : X −→ H⊗X such that

(id⊗ δL) ◦ δL = (∆⊗ id) ◦ δL and (ϵ⊗ id) ◦ δL = id.

Moreover, δL is called the left coaction of H on X .
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3. The algebra of polynomials on quantum superspace C2|1
q

Let x, y and θ be the elements of a superalgebra, where the generators x and y
are of degree 0 (or even),and the generator θ is of degree 1 (or odd). Let O(C2|1)
be defined as the polynomial algebra C[x, y, θ]. It will sometimes be convenient
and more illustrative to write a point (x, y, θ) of O(C2|1) in the vector form x =
(x, y, θ) = (xi)

t.
Let C〈x, y, θ〉 be a free algebra with the unit generated by x, y and θ, where

p(x) = 0 = p(y) and p(θ) = 1. Also, let q be a nonzero complex number.

Definition 4 (see [7]). Let Iq be the two-sided ideal of the algebra C〈x, y, θ〉 generated
by the elements xy − yx, xθ − qθx, yθ − qθy and θ2. The Z2-graded, associative,
unital algebra

O(C2|1
q ) = C〈x, y, θ〉/Iq

is the algebra of polynomials on the Z2-graded quantum space C2|1
q .

This associative algebra over the complex number is known as the algebra of
polynomials over the quantum (2+1)-superspace. In accordance with Definition 4,

if (x, y, θ)t ∈ C2|1
q , then we have

xy = yx, xθ = qθx, yθ = qθy, θ2 = 0. (1)

If we consider the generators of the algebra O(C2|1
q ) as linear functionals, we can find

many 3 × 3 matrix representations of these generators that preserve the relations
(1):

Example 1. There is a C-linear homomorphism ρ : O(C2|1
q ) → M3(C) defined by

ρ(x) =

q 0 0
0 q 0
0 0 1

 , ρ(y) =

1 q2 − 1 0
0 q2 0
0 0 q

 , ρ(θ) =

0 0 q2 − 1
0 0 q2 − 1
0 0 0


corresponding to the coordinate functions satisfying the relations (1).

Example 2. There exists a representation ρ : O(C2|1
q ) → M3(C) such that the

matrices

ρ(x) =

1 0 0
0 1 0
0 0 q

 , ρ(y) =

 q2 0 0
1− q2 1 0

0 0 q

 , ρ(θ) =

 0 0 0
0 0 0

1− q2 1− q2 0


representing the coordinate functions satisfy the relations (1).

Definition 5 (see [7]). Let Λ(C2|1
q ) be the algebra with the generators φ1, φ2 and z

satisfying the relations

φiφj = −q2(i−j)φjφi, φiz = q−1zφi, (i, j = 1, 2), (2)

where the coordinates φi are of degree 1, and the coordinate z is of degree 0. We

call Λ(C2|1
q ) the exterior algebra of the Z2-graded space C2|1

q .
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Of course, it is also possible to find Z2-graded C-linear homomorphisms repre-

senting generators of the superalgebra Λ(C2|1
q ):

Example 3. As can be easily shown, the Z2-graded C-linear homomorphism ρ̃ :

Λ(C2|1
q ) → M3(C) defined by

ρ̃(φ1) =

0 0 1
0 0 0
0 0 0

 , ρ̃(φ2) =

0 0 0
0 0 1
0 0 0

 , ρ̃(z) =

q 0 0
0 q 0
0 0 −1


represents the generators of Λ(C2|1

q ) and preserves the relations (2).

In this section, we will finally talk about the superalgebra O(GLq(2|1)) intro-
duced in [8], which is sufficient to meet our needs.

Theorem 1 (see [8]). The algebra O(Mq(2|1)) is the quotient of the free algebra
C〈a, b, c, e, f, α, β, γ, δ〉 by two-sided ideal Jq generated by the relations

ab = q2ba, bc = q−2cb, ce = q2ec, eα = αe,

ac = ca, be = eb, cα = qαc, eβ = qβe,

aα = qαa, bα = qαb, cβ = qβc, eγ = q−1γe,

aγ = qγa, bγ = q−1γb, cγ = qγc, eδ = qδe,

fα = αf, bδ = qδb, αγ = −γα, βδ = −δβ,

fβ = qβf, fδ = qδf, αδ = −δα, γδ = −δγ,

fγ = qγf, αβ = −q−2βα, βγ = −γβ, µ2 = 0,

ae = ea+ qλbc, af = fa+ λγα, aβ = q−1βa+ λαc, aδ = qδa+ λγb,

bf = fb+ λδα, bβ = q−1βb+ λαe, cf = fc+ λγβ, ef = fe+ λδβ,

cδ = qδc+ λγe,

where µ ∈ {α, β, γ, δ} and λ = q − q−1.

It will sometimes be convenient and more illustrative to write a point (a, b, . . . , δ, f)

of O(M(2|1)) in the matrix form, as a supermatrix, T = (tij) =

a b α
c e β
γ δ f

. The

quantum superdeterminant for the supermatrix T is given by

sdet(T ) = a(e− ca−1b)[f − γa−1α− (δ − γca−1)(e− ca−1b)−1(β − αca−1)]−1,

where the formal inverses of the generators a, e and f exist. Using the quantum
superdeterminant sdet(T ) belonging to the algebra O(Mq(2|1)), we can define a
superalgebra adding the inverse of sdet(T ) to O(Mq(2|1)).

Definition 6. The algebra O(GLq(2|1)) is the quotient of the algebra O(Mq(2|1))
by the two-sided ideal generated by the element t · sdet(T )− 1. In short, we write

O(GLq(2|1)) := O(Mq(2|1))[t]/〈t · sdet(T )− 1〉.
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The Hopf superalgebra structure of O(GLq(2|1)) is given, as usual, in the follow-
ing theorem.

Theorem 2 (see [8]). There exists a unique Hopf superalgebra structure on the
superalgebra O(GLq(2|1)) with co-maps ∆, ϵ and S such that

∆(tij) =
∑
k

tik ⊗ tkj , ϵ(tij) = δij , S(tij) = t−1
ij .

Definition 7. The Hopf superalgebra O(GLq(2|1)) is called the coordinate algebra
of the quantum supergroup GLq(2|1).

By Definition 3, we can consider the superalgebra O(C2|1
q ) as a left comodule

algebra with respect to the coproduct.

Theorem 3. The algebra O(C2|1
q ) is a left comodule algebra of the Hopf superalgebra

O(GLq(2|1)) with left coaction δL such that

δL(xi) =
∑
k

tik ⊗ xk,

where x1 = x, x2 = y and x3 = θ.

4. The quantum de Rham complex on O(C2|1
q )

The de Rham complex of a smooth manifold X is the cochain complex, which in
degree n ∈ N has the vector space Ωn(X ) of n-degree differential forms on X . Under
the wedge product, the de Rham complex becomes a differential graded algebra. In
this section, we set up two quantum de Rham complexes, two first order differential

calculi, on the quantum superalgebra O(C2|1
q ). It contains functions on C2|1

q and
their differentials as differential one-forms.

Definition 8. Let A be an arbitrary superalgebra with unity and Ω a bimodule
over A. A first order Z2-graded differential calculus over A is a pair (Ω, d), where
d : A −→ Ω is a linear mapping such that the so-called Z2-graded Leibniz rule

d(uv) = (du) v + (−1)p(u)u (dv)

holds for any u, v ∈ A, and Ω is the linear span of elements of the form u · dv · w
with u, v, w ∈ A.

A Z2-graded differential algebra over A is a Z2-graded algebra Ω =
⊕

n≥0 Ω
n, with

the linear map d of degree 1 such that d ◦ d := d2 = 0, and the Z2-graded Leibniz
rule holds. Here we assume that Ω0 := A and Ω<0 = 0.

To set up a quantum de Rham complex on the quantum superalgebra O(C2|1
q )

we actually choose the cotangent superspace or differential 1-forms. Since one can
multiply forms by functions from the left and the right, this must be an Ω-bimodule.
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4.1. The relations between coordinates and differentials

We denote the quantum de Rham complex of the quantum superspace C2|1
q by

Ω(C2|1
q ) and assume the superalgebrasO(C2|1

q ) and Λ(C2|1
q ) as parts of the differential

graded algebra Ω(C2|1
q ), as Wess and Zumino say [15]. For this reason, we introduce

the first order differentials of the generators of O(C2|1
q ) as dx = φ1, dy = φ2 and

dθ = z. Then the differential d is uniquely defined by the conditions in Definition 8,
and the commutation relations between the differentials have the form

du ∧ du = 0, dx ∧ dy = −q−2dy ∧ dx, dθ ∧ du = qdu ∧ dθ (3)

for u ∈ {x, y}.
In this case, the quantum de Rham complex Ω(C2|1

q ) is generated by the elements
of the set {x, y, θ, dx, dy, dθ} by adding the nine cross-commutation relations satisfied

between the elements of O(C2|1
q ) and Λ(C2|1

q ), which will be given in the following
theorem, to relations (1) and (3).

We assume that the cross-commutation relations are of the following form:

xi · dxj =
∑
k,l

Cij
kl dxk · xl, (4)

where C = (Cij
kl) is a 9x9-matrix with constant entries. Here, there seems to be

81 indeterminate constants when the sum is explicitly written, but in fact, we have
41 indeterminate constants due to consistency and we can determine them in a few
steps:

1. The differential d reduces to sixteen numbers of constants in relations (4).

2. The compatibility with the left coaction of O(GLq(2|1)) leaves one free param-
eter and relations (4) are of the form:

x · dx = [(q2 + 1)r − 1]dx · x, y · dx = q2rdx · y + (r − 1)dy · x,
x · dθ = (q2r − 1)dx · θ + qrdθ · x, y · dy = [(q2 + 1)r − 1]dy · y,
x · dy = (q2r − 1)dx · y + rdy · x, y · dθ = (q2r − 1)dy · θ + qrdθ · y,
θ · dx = −qrdx · θ + (1− r)dθ · x, θ · dy = −qrdy · θ + (1− r)dθ · y,
θ · dθ = dθ · θ.

3. The associativity of the graded differential algebra Ω(C2|1
q ) solves the param-

eter r as r = 1 or r = q−2.

As a result, when we combine the above three steps, we have the following theorem.

Theorem 4. There exist two left covariant Z2-graded first order differential calculi

Ω(C2|1
q ) over O(C2|1

q ) with respect to the Hopf superalgebra O(GLq(2|1)) such that

{dx, dy, dθ} is a free right O(C2|1
q )-module basis of Ω(C2|1

q ). The bimodule structures
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for these calculi are determined by the relations:

x · dx = q2 dx · x, y · dx = q2 dx · y,
x · dy = dy · x+ (q2 − 1) dx · y, y · dy = q2 dy · y, (5a)

x · dθ = q dθ · x+ (q2 − 1) dx · θ, y · dθ = q dθ · y + (q2 − 1) dy · θ,
θ · dx = −q dx · θ, θ · dy = −q dy · θ, θ · dθ = dθ · θ

for Case I (r = 1) and,

x · dx = q−2 dx · x, y · dx = dx · y + (q−2 − 1) dy · x,
x · dy = q−2 dy · x, y · dy = q−2 dy · y,
x · dθ = q−1 dθ · x, y · dθ = q−1 dθ · y, (5b)

θ · dx = −q−1 dx · θ + (1− q−2) dθ · x, θ · dθ = dθ · θ
θ · dy = −q−1 dy · θ + (1− q−2) dθ · y

for Case II (r = q−2).

As a note, in [7], a differential calculus on the Hopf superalgebra F(C2|1
q ) of

functions on C2|1
q was constructed using Woronowicz’s approach. This calculus is

right-covariant with respect to the Hopf superalgebra F((C2|1
q ) itself. Both calculi

obtained above are left-covariant under the action of the quantum group GLq(2|1),
which is the symmetry group of the superspace C2|1

q . These calculi were obtained
using Wess-Zumino’s approach. However, one of the calculi that emerged in this
work, namely relations (5b), coincides with the relations in [7].

Remark 1. We know that a free right O(C2|1
q )-module basis of O(C2|1

q )-bimodule

Ω(C2|1
q ) is the set {dx, dy, dθ} and relations (1) and (3) hold. We now consider a

left module structure of O(C2|1
q )-bimodule Ω(C2|1

q ). The left product dv 7→ u ·dv is an

endomorphism of the right module Ω(C2|1
q ). The ring of all endomorphisms of any

free module of rank 3 is isomorphic to the ring of all 3×3 matrices. Since {dx, dy, dθ}
is the homogeneous basis of Ω(C2|1

q ), there exists a map σ : O(C2|1
q ) −→ M3(O(C2|1

q ))
defined by

u · dxj =
∑
i

dxi · σij(u) (6)

for all u ∈ O(C2|1
q ) and x1 = x, x2 = y and x3 = θ. Indeed, one can see that

relations (6) equivalent to relations (5a), where

σ(x) =

q2x (q2 − 1)y (q2 − 1)θ
0 x 0
0 0 qx

 , σ(y) =

q2y 0 0
0 q2y (q2 − 1)θ
0 0 qy

 ,

σ(θ) =

−qθ 0 0
0 −qθ 0
0 0 θ

 . (7)
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Theorem 5. The map σ is a C-linear homomorphism such that

σij(uv) =
∑
k

σik(u)σkj(v), ∀u, v ∈ O(C2|1
q ).

Remark 2. It is easy to see that relations (1) are preserved under the action of the
map σ.

Remark 3. We can also define a map τ : O(C2|1
q ) → M3(O(C2|1

q )) by the formulas

dxi · u =
∑
j

τij(u) · dxj , ∀u, xi ∈ O(C2|1
q ), (8)

where

τ(x) =

 q−2x 0 0
(q−2 − 1)y x 0
(1− q−2)θ 0 q−1x

 , τ(y) =

q−2y 0 0
0 q−2y 0
0 (1− q−2)θ q−1y

 ,

τ(θ) =

−q−1θ 0 0
0 −q−1θ 0
0 0 θ


for Case I.

Theorem 6. The map τ is a C-linear homomorphism such that

τij(uv) =
∑
k

τik(u)τkj(v), ∀u, v ∈ O(C2|1
q ).

Remark 4. It is easy to see from Theorem 6 that relations (1) are preserved under
the action of the map τ .

Remark 5. The maps σ and τ are not the inverse of each other. However, they
have the property ∑

k

σjk(τik(u)) = uδij , ∀u ∈ O(C2|1
q ).

4.2. The action of the map σ on Ω(A)

By taking the differential of both sides of (6), we get

du ∧ dxj =
∑
i

(−1)p(dxi) dxi ∧ dσij(u), ∀u, xj ∈ O(C2|1
q ). (9)

From Remark 1, we know that the map σ acts on the generators of O(C2|1
q ). We

wish to extend the map σ to the whole algebra Ω(C2|1
q ). For this, we define a map

σΩ as follows:

σΩ : Ω(C2|1
q ) −→ M3(Ω(C2|1

q )), σΩ
ij(du) = dσij(u), ∀ du ∈ Ω(C2|1

q ),

where σΩ
ij(u) := σij(u) for all u ∈ O(C2|1

q ). Then we have
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Theorem 7. The map σΩ is a Z2-graded C-linear operator such that

σΩ
ij(du · v) =

∑
k

σΩ
ik(du) · σkj(v),

σΩ
ij(u · dv) =

∑
k

(−1)p(xi)+p(xk) σik(u) · σΩ
kj(dv)

=
∑
k

(−1)p(u)+p(σik(u)) σik(u) · σΩ
kj(dv), (10)

for all xi, xk ∈ O(C2|1
q ) and du, dv ∈ Ω(C2|1

q ).

Proof. It is clear that σΩ is linear. To obtain the first equality in (10), we can use
the identity (du · v) ∧ dxj = du ∧ (v · dxj). Indeed, we write

(du · v) ∧ dxj =
∑
i

(−1)p(dxi) dxi ∧ σΩ
ij(du · v), ∀u, v, xi ∈ O(C2|1

q ),

according to (9). On the other hand, we have

du ∧ (v · dxj) =
∑
k

(du ∧ dxk) · σkj(v)

=
∑
i

(−1)p(dxi) dxi ∧
∑
k

σΩ
ik(du) · σkj(v).

We make use of the fact that (u · dv) ∧ dxi = u · (dv ∧ dxi) to show that σΩ

satisfies the first of the second equality in (10). According to (9), we can write

(u · dv) ∧ dxj =
∑
i

(−1)p(dxi) dxi ∧ σΩ
ij(u · dv),

for all u, xk ∈ O(C2|1
q ) and dv ∈ Ω(C2|1

q ). On the other hand, we have

u · (dv ∧ dxj) =
∑
k

(−1)p(dxk)(u · dxk) ∧ σΩ
kj(dv)

=
∑
k

(−1)p(dxk)
∑
i

dxi ∧ σik(u) · σΩ
kj(dv)

=
∑
i

(−1)p(dxi) dxi ∧
∑
k

(−1)p(dxi)+p(dxk) σik(u) · σΩ
kj(dv).

When we compare these two results, considering that p(du) = 1 + p(u) (mod2) for

all u ∈ O(C2|1
q ), we get the first equality in (10). Finally, since

dσij(u · v) =
∑
k

[dσik(u) · σkj(v) + (−1)p(σik(u))σik(u) · dσkj(v)]

=
∑
k

[σΩ
ik(du) · σkj(v) + (−1)p(σik(u))σik(u) · σΩ

kj(dv)],

σΩ
ij(d(u · v)) = σΩ

ij(du · v + (−1)p(u)u · dv) = σΩ
ij(du · v) + (−1)p(u)σΩ

ij(u · dv)
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for all i, j and u, v ∈ O(C2|1
q ), we can write

(−1)p(u)σΩ
ij(u · dv) =

∑
k

(−1)p(σik(u))σik(u) · σΩ
kj(dv)

with the first equality in (10).

Remark 6. It is easy to see from Theorem 7 that relations (5a) and (5b) are pre-
served under the action of the map σΩ.

The proof of the following corollary can be done using the fact that (du ∧ dv) ∧
dxj = du ∧ (dv ∧ dxj) for all du, dv, dxj ∈ Ω(C2|1

q ).

Corollary 1. For all du, dv ∈ Ω(C2|1
q ),

σΩ
ij(du ∧ dv) =

∑
k

(−1)p(dxk)σΩ
ik(du) ∧ σΩ

kj(dv).

We can obtain similar results for the map τ . Indeed, if we take the differential
of both sides of (8), we get

dxi ∧ du = (−1)p(dxi)
∑
j

dτij(u) ∧ dxj , ∀xi, u ∈ O(C2|1
q ).

We now define a map τΩ as follows:

τΩ : Ω(C2|1
q ) −→ M3(Ω(C2|1

q )), τΩij (du) = dτij(u), ∀ du ∈ Ω(C2|1
q ),

where τΩij (u) := τij(u) for all u ∈ O(C2|1
q ). Then we have

Corollary 2. For all u ∈ O(C2|1
q ) and dv ∈ Ω(C2|1

q ),

τΩij (u · dv) =
∑
k

(−1)p(xi)+p(xk) τik(u) · τΩkj(dv),

τΩij (dv · u) =
∑
k

τΩik(dv) · τkj(u).

It is easy to see from Corollary 2 that relations (5) are preserved under the action
of the map τΩ.

4.3. The relations with partial derivatives

We will complete the calculus with the following two theorems. To obtain the com-

mutation relations of the generators of O(C2|1
q ) with derivatives, we first introduce

the derivatives of the generators of the algebra. Since (Ω, d) is a left covariant differ-

ential calculus, for any element u in O(C2|1
q ) there are uniquely determined elements

∂k(u) ∈ O(C2|1
q ) such that

du = dx ∂x(u) + dy ∂y(u) + dθ ∂θ(u). (11)

For consistency, the degree of the derivative ∂θ should be 1.
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Definition 9. The linear mappings ∂x, ∂y, ∂θ : O(C2|1
q ) → O(C2|1

q ) defined by (11)
are called the partial derivatives of the calculus (Ω, d).

The next theorem gives the relations between the generators of O(C2|1
q ) and their

partial derivatives.

Theorem 8. The relations between the generators of O(C2|1
q ) and partial derivatives

are as follows:

∂j · xk = δjk + (−1)p(xk)
∑
m

σjm(xk) · ∂m, ∀xk ∈ O(C2|1
q ). (12)

The proof of the following theorem follows from the fact that d2f = 0 for a
differentiable function f .

Theorem 9. The partial derivatives satisfy the following commutation relations:

∂x∂y = q−2∂y∂x, ∂x∂θ = q−1∂θ∂x, ∂y∂θ = q−1∂θ∂y, ∂2
θ = 0. (13)

Remark 7. We can write relations (13) as (no summation)

∂j∂k = Qjk∂k∂j ,

with a single formula, where Qjj = (−q2)p(∂j) and QjkQkj = 1.

4.4. A deformed Clifford superalgebra

Suppose that A is a unital ∗-algebra with the involution x 7→ x+ and the algebraic
relation uv = qvu holds for the generators u, v ∈ A and q ∈ C. There are three
important cases where this relation is invariant under involution. Case 1: u is
unitary, v is hermitian and q ∈ R; Case 2: u = v+ and q ∈ R; Case 3: u and v
are hermitian and |q| = 1. All three cases arise from the definitions of real forms
of quantum algebras. The corresponding ∗-algebra generated by u and v is the
coordinate algebra of the real quantum plane.

In this subsection, we will introduce a deformation of the Clifford superalgebra
pointing out relations (6) and (13). Let us consider the real quantum superspace,
that is, x⋆ = x, y⋆ = y and θ⋆ = −θ. This request imposes the condition q̄ = q−1 on
the deformation parameter. Further, the involution of the partial derivatives should
be of the form:

∂⋆
x = −q2∂x, ∂⋆

y = −∂y, ∂⋆
θ = ∂θ.

We can now define real momentum operators as

Px = −
√
−1 q2∂x, Py = −

√
−1 ∂y, Pθ = ∂θ.

Lemma 1. The real momentum operators and the generators of O(C2|1
q ) satisfy the

following commutation relations:

Pjvk = −(
√
−1)p(Pj)+1 q2p(Pj)δjk + (−1)p(vk)

∑
i

σji(vk)Pi, ∀vk ∈ O(C2|1
q )

PxPy = q−2PyPx, PuPθ = q−1PθPu, P 2
θ = 0,

where u ∈ {x, y}, together with relations (1).
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To obtain the Clifford superalgebra, we define the super gamma matrices as
follows:

c1 = Px, c2 = Py, c3 = x, c4 = y; γ1 = Pθ, γ2 = θ.

Theorem 10. The generators of the Clifford superalgebra satisfy the following com-
mutation relations:

c1c2 = q−2c2c1, c1γ1 = q−1γ1c1, c3γ1 = q−1γ1c3, γ2
1 = 0,

c1c4 = q2c4c1, c1γ2 = qγ2c1, c3γ2 = q−1γ2c3, γ2
2 = 0,

c2c3 = c3c2, c2γ1 = q−1γ1c2, c4γ1 = q−1γ1c4,

c3c4 = c4c3, c2γ2 = qγ2c2, c4γ2 = q−1γ2c4,

c1c3 − q2c3c1 = −
√
−1 q21+ q2(q2 − 1)(c4c2 −

√
−1 γ2γ1),

c2c4 − q2c4c2 = −
√
−11+ (1− q2)

√
−1 γ2γ1, γ1γ2 + γ2γ1 = 1.

5. Z2-graded Cartan calculus on O(C2|1
q )

In this section, we will continue with relations (5a), (9) and (12). We know from

Subsection 4.1 that the cotangent space Ω(T ∗C2|1
q ) is an O(C2|1

q )-bimodule spanned
by the basis {dx, dy, dθ} with relations (5a) and from Subsection 4.3 that the tan-

gent space Ω(T C2|1
q ) is a O(C2|1

q )-bimodule spanned by the basis {∂x, ∂y, ∂θ} with
relations (13). Therefore, we can define an inner product by analogy with the cor-
responding objects of the theory of ordinary manifolds. The general inner product

between Ω(T C2|1
q ) and Ω(T ∗C2|1

q ) is of the form:

∂j(dxk) :=< ∂j , dxk >= δjk.

5.1. The Cartan calculus in the classical geometry

We first briefly review the construction of a Cartan calculus in the classical differ-
ential geometry. Let A be a unital associative algebra over a field K, and Γ(A)
an A-bimodule such that there exists a linear map d : A −→ Γ(A) which obeys
d(1A) = 0 and the Leibniz rule

d(f · g) = (df) · g + f · (dg),

where 1A is the unit in A and f, g ∈ A. We now denote the differential algebra
associated with A by Ω(A). This algebra is spanned by elements of the form f0 ·
df1 ∧ df2 ∧ · · · ∧ dfk. Therefore, we can extend the linear map d to a linear map
d : Ω(A) −→ Ω(A) by requiring d(1) = 0, d ◦ d := d2 = 0 and

d(α ∧ β) = (dα) ∧ β + (−1)p(α) α ∧ (dβ) ≡ dα ∧ β + (−1)p(α) α ∧ dβ, (14)

where α and β are any differential forms in Ω(A). That is, d maps k-forms to
(k + 1)-forms (functions being 0-forms). Actually, we assume that the action of d
on α (and then β) in (14) is the same as the differential of α, that is, dα.
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The exterior derivative d on the algebra A is given by

da ≡
∑
j

daj ∂aj
(u), a, aj ∈ A, (15)

so that it verifies (14) and the rule

dα = dα+ (−1)p(α) αd,

where α ∈ Ω(A). In particular,

da = da+ ad, a ∈ A. (16)

The Cartan calculus contains inner derivations and Lie derivatives which act on
Ω(A). An inner derivation is defined to be the contraction of a vector field with
a differential form. Thus if X is a vector field on a manifold M , then the inner
derivation, denoted by iX , is a linear operator which transforms k-forms to (k− 1)-
forms. The inner derivation is an anti-derivation of degree −1 on the exterior algebra
and

iX(α ∧ β) = (iXα) ∧ β + (−1)p(α) α ∧ (iXβ), (17)

where α and β are any differential forms. The inner derivation iX acts on 0- and
1-forms as follows:

iX(f) = 0, iX(df) = X(f). (18)

The anticommutativity of forms gives iX ◦ iY = −iY ◦ iX and iX ◦ iX := i2X = 0.
From now on, unless stated otherwise, we will write iX iY instead of iX ◦ iY .

We know from the classical differential geometry that the Lie derivative of a
vector field is a vector field and the Lie derivative of a k-form is a k-form, that is,
the Lie derivative has degree 0. The Lie derivative of a smooth function f with
respect to the vector field X corresponds to the action of derivatives: £Xf = X(f).
Cartan’s formula relates the Lie derivative to the inner derivation iX and the exterior
differential d:

£X = iX ◦ d+ d ◦ iX := iXd+ diX .

The Lie derivative has the following properties. If F(M) is the algebra of functions
defined on a manifold M , then £X : F(M) −→ F(M) is a linear derivation on the
algebra F(M) and commutes the exterior derivative d.

5.2. Extension of the Cartan calculus to the supergeometry

Let A be a unital Z2-graded associative algebra over a field K, that is, A = ⊕n∈ZAn.
In this case, some formulas given above will undergo some changes. The linear map
d : A −→ Γ(A) will satisfy d(1A) = 0 and the Z2-graded Leibniz rule

d(f · g) = (df) · g + (−1)p(f)f · (dg),

where f, g ∈ A. If f ∈ A, then (16) will take the form

df = df + (−1)p(f)fd.



226 S.Celik

If X is a supervector field on A, then the Z2-graded inner derivation iX of the
Z2-graded algebra Ω(A) preserves (18) and (17) and can be expressed as

iX(α ∧ β) = (iXα) ∧ β + (−1)p(iX)p(α) α ∧ (iXβ),

where α and β are two differential forms in Ω(A). The map iX : Ω(A) −→ Ω(A) is
K-linear and maps k-forms to (k − 1)-forms. The Z2-graded Lie derivative £X of
the Z2-graded algebra Ω(A) acts on 0- and 1-forms as follows:

£Xf = X(f), £Xdf = dX(f),

for all smooth functions on A := Ω0(A). The map £X : Ω(A) −→ Ω(A) is K-linear
and maps k-forms to k-forms such that

£X(α ∧ β) = (£Xα) ∧ β + (−1)p(£X)p(α) α ∧ (£Xβ),

where α and β are two differential forms in Ω(A).
If X is a supervector field on A, then the Z2-graded Cartan formula can be

expressed as
£X = iXd− (−1)p(iX)diX .

The Z2-graded Lie derivative £X supercommutes the exterior derivative d:

£Xd = (−1)p(£X)d£X .

5.3. Commutation relations with inner derivations

In this and the next two subsections we will consider the vector fields as the partial
derivatives of the generators and assume ∂1 = ∂x, ∂2 = ∂y, ∂3 = ∂θ.

We now wish to find the commutation relations of the generators of the superal-

gebra O(C2|1
q ) with the inner derivations.

Theorem 11. The relations of the generators with inner derivations are given by

i∂k
· u =

∑
j

σkj(u) · i∂j
, u ∈ O(C2|1

q ).

Proof. The commutation relations (6) satisfied by the generators and their dif-
ferentials allow us to write the possible relations of the generators with the inner
derivations in the form:

i∂k
· u =

∑
j

σ̃kj(u) · i∂j
, ∀u ∈ O(C2|1

q ).

Therefore, we need to determine the operator σ̃ for the proof. Recalling (18) and
using (8), according to Remark 5 we can write:

0 = i∂k

dxi · u−
∑
j

τij(u) · dxj

 = i∂k
(dxi) · u−

∑
j,m

σ̃km(τij(u)) · i∂m
(dxj)

= δki · u−
∑
j,m

σ̃km(τij(u)) · δmj =
∑
j

[σij(τkj(u))− σ̃ij(τkj(u))] .

So, it must be σ̃ij = σij for all i, j.
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Theorem 12. The relations between differentials of the generators and inner deriva-
tions are given by the formulas:

i∂k
· dxi = δki + q−2

∑
j

(−1)p(i∂k ) σΩ
kj(dxi) · i∂j

, xi ∈ O(C2|1
q ). (19)

Proof. Let us assume that the possible relations of the differentials of the generators
with inner derivations have the form:

i∂k
· dxi = i∂k

(dxi) +
∑
j

σ̂kj(dxi) · i∂j
, ∀xi ∈ O(C2|1

q ). (20)

Then using (9), we can write

0 = i∂k
[dxi ∧ dxj −

∑
n

(−1)p(dxn)dxn ∧ σΩ
nj(dxi)]

= [δki +
∑
m

σ̂km(dxi) · i∂m ]dxj −
∑
n

(−1)p(dxn)[δkn +
∑
m

σ̂km(dxn) · i∂m ]σΩ
nj(dxi)

= δkidxj +
∑
m

σ̂km(dxi)[δmj +
∑
s

σ̂ms(dxj) · i∂s
]− (−1)p(dxk)σΩ

kj(dxi)

−
∑
n

(−1)p(dxn)
∑
m

σ̂km(dxn)[i∂m
(σΩ

nj(dxi)) +
∑
s

σ̂ms(σ
Ω
nj(dxi))i∂s

]

= δkidxj + σ̂kj(dxi)− (−1)p(dxk)σΩ
kj(dxi)−

∑
m,n

(−1)p(dxn)i∂m(σΩ
nj(dxi))σ̂km(dxn)

+
∑
m,s

[σ̂km(dxi) ∧ σ̂ms(dxj)−
∑
n

(−1)p(dxn)σ̂km(dxn) ∧ σ̂ms(σ
Ω
nj(dxi))]i∂s .

There is a conclusion we can deduce from here:

σ̂jk(du) = q−2(−1)p(i∂j )σΩ
jk(du), ∀u ∈ O(C2|1

q ).

Then, the last expression in the last equality above is:

K =
∑
m

[
σ̂km(dxi) ∧ σ̂ms(dxj)−

∑
n

(−1)p(dxn)σ̂km(dxn) ∧ σ̂ms(σ
Ω
nj(dxi))

]
= q−4(−1)p(dxk)

∑
m

(−1)p(dxm)σΩ
km(dxi) ∧ σΩ

ms(dxj)

− q−4(−1)p(dxk)
∑
n

(−1)p(dxn)
∑
m

(−1)p(dxm)σΩ
km(dxn) ∧ σΩ

ms(σ
Ω
nj(dxi))

= q−4(−1)p(dxk)

[
σΩ
ks(dxi ∧ dxj)−

∑
n

(−1)p(dxn)σΩ
ks(dxn ∧ σΩ

nj(dxi))

]
= 0.

Thus the proof is complete.

Remark 8. This theorem is also valid for the algebra of functions on Cm|n
q excluding

a factor q−2. We found this factor for special matrices σ given by (7).
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Theorem 13. The relations of the partial derivatives with the inner derivations are
of the form (no summation):

i∂j∂k = (−1)p(∂k)
[
q−2HjkQjk∂ki∂j + (q−2 − 1)(1−Hjk)∂ji∂k

]
, (21)

where Qjj = (−q2)p(∂i) and Hjk := H(j − k) is the Heaviside step function.

Proof. To find the commutation relations of the inner derivations with the par-
tial derivatives, inspired by relations (5a), let us assume that they are simply (no
summation)

i∂j∂k = ajk∂ki∂j + bjk∂ji∂k
,

where ajk and bjk are constants to be determined. By applying the inner derivations
i∂j

from the left to relations (12), we determine all constants ajk and bjk. Then,
when we make the necessary arrangements, we arrive at relations (21).

The following lemma can be easily proved using the definition of d given by (15),
and relations (19) and (21).

Lemma 2. The partial derivatives in terms of the exterior derivative and the inner
derivations are expressed below:

i∂k
d = ∂k + q−2(−1)p(i∂k )di∂k

. (22)

Theorem 14. The relations between the inner derivations are of the form:

i2∂u
= 0, i∂x

i∂y
= −i∂y

i∂x
, i∂u

i∂θ
= qi∂θ

i∂u
,

where ∂u ∈ {∂x, ∂y}.

Proof. If it is assumed that the commutation relations between the inner derivations
are of the form: i∂j

i∂k
= Q′

jki∂k
i∂j

for j, k = 1, 2, 3, and Theorem 13 and Lemma 2
are used, the desired relations can be deduced. For example, one has

0 = (i∂x
i∂y

−Q′
12 i∂y

i∂x
)d = i∂x

(∂y − q−2di∂y
)−Q′

12i∂y
(∂x − q−2di∂x

)

= q−2∂yi∂x
+ (q−2 − 1)∂xi∂y

− q−2(∂x − q−2di∂x
)i∂y

−Q′
12

[
∂xi∂y − q−2(∂y − q−2di∂y )i∂x

]
= q−2(1 +Q′

12)
(
∂yi∂x

− q2∂xi∂y

)
+ q−4d(i∂x

i∂y
−Q′

12i∂y
i∂x

).

So it must be 1 +Q′
12 = 0. When performing general operations, it is seen that the

constants Q′
jk must be

Q′
jk = (−1)p(i∂j )+p(i∂k )

[
(1− q−2)Hjk − 1

]
q2HkjQjk, Q′

jj = −q−2Qjj

for all j, k.

Remark 9. Using Lemma 2, one can easily see that

d∂u = (−1)p(∂u) q2∂ud,

for all ∂u ∈ {∂x, ∂y, ∂θ}.



Cartan calculus on the superalgebra O(C2|1
q ) 229

5.4. Z2-graded Lie derivatives

We now will find the commutation rules of the Lie derivatives with the elements of
the superalgebra O(C2|1

q ), their differentials, etc. The Z2-graded Cartan formula for

the generators of O(C2|1
q ) can be expressed as

£∂u
= i∂u

d− (−1)p(i∂u )di∂u
, (23)

where ∂u ∈ {∂x, ∂y, ∂θ}.

Theorem 15. The commutation relations of £∂u
’s with the generators of O(C2|1

q )
are as follows:

£∂j
xk = δjk +

∑
m

[
(−1)p(xk)σjm(xk)£∂m

+ (q−2 − 1)(−1)p(i∂j )σΩ
jm(dxk)i∂m

]
,

for all xk ∈ O(C2|1
q ).

Proof. Using (23) and relations (19) we can write

£jxk = (ijd− (−1)p(ij)dij)xk = ij(dxk + (−1)p(xk)xkd)− (−1)p(ij)d(ijxk)

= δjk + q−2(−1)p(ij)
∑
m

σΩ
jm(xk)im + (−1)p(xk)

∑
m

σjm(xk)imd

− (−1)p(ij)
∑
m

dσjm(xk) · im

= δjk + q−2(−1)p(ij)
∑
m

σΩ
jm(xk)im + (−1)p(xk)

∑
m

σjm(xk)imd

− (−1)p(ij)
∑
m

[
σΩ
jm(dxk) + (−1)p(σjm(xk))σjm(xk)d

]
im

= δjk + (−1)p(xk)
∑
m

σjm(xk)£m + (q−2 − 1)(−1)p(ij)
∑
m

σΩ
jm(dxk)im

+
∑
m

[
(−1)p(xk)+p(im) − (−1)p(ij)+p(σjm(xk))

]
σjm(xk)dim.

Since the last expression is equal to zero for all j, k, we have the desired result.

Theorem 16. The commutation relations of £∂u
’s with the differentials of the gen-

erators of O(C2|1
q ) are as follows:

£∂k
· du = q−2(−1)p(du)+p(£∂k

)+1
∑
j

σΩ
kj(du) ·£∂j , u ∈ O(C2|1

q ).

Proof. Using (23) and relations (19) we can write

£j · du = (ijd− (−1)p(ij)dij)du = (−1)p(du)(ij · du)d− (−1)p(ij)d(ij · du)

= (−1)p(ij)q−2[(−1)p(du)
∑
k

σΩ
jk(du) · ikd−

∑
k

(−1)p(σ
Ω
jk(du))σΩ

jk(du) · dik]

= (−1)p(du)+p(£j)+1q−2
∑
k

σΩ
jk(du) ·£k +Mj ,
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where

Mj =
∑
k

[
(−1)p(du)+p(£j)+p(£k) − (−1)p(σ

Ω
jk(du))

]
σΩ
jk(du) · dik.

Since Mj is equal to zero for all j, k according to Theorem 7, we have completed the
proof.

Theorem 17. The commutation relations between the Lie derivatives and partial
derivatives are of the form:

£∂j∂k = q2(1−Hjk)Qjk∂k£∂j + (1− q2)(1−Hjk)∂j£∂k
. (24)

Proof. The desired relations can be easily deduced using Theorem 13 with Remark
9. Indeed,

£∂j
∂k = (i∂j

d− (−1)p(i∂j )di∂j
)∂k

= q2
[
q−2HjkQjk∂ki∂j

+ (q−2 − 1)(1−Hjk)∂ji∂k

]
d

− (−1)p(i∂j )+p(∂k)d
[
q−2HjkQjk∂ki∂j

+ (q−2 − 1)(1−Hjk)∂ji∂k

]
= q2(1−Hjk)Qjk∂k(i∂j

d− (−1)p(i∂j )di∂j
)

+ (1− q2)(1−Hjk)∂j(i∂k
d− (−1)p(i∂k )di∂k

),

as expected.

Theorem 18. The relations between the Lie derivatives and the inner derivations
are of the form:

£∂j
i∂k

= (−1)p(£∂j
)q2(1−Hjk)Qjki∂k

£∂j
+ (−1)p(i∂k )(q2 − 1)(1−Hjk)i∂j

£∂k
. (25)

Proof. We can do the proof using the equality given in (23), but it is quite long and
a bit tedious. Therefore, we will use the equality given in (22) and hence relations
(24). If we apply the operator £ to both sides of the equality given in (22) and use
relations (24), we write

£jikd = £j(∂k + q−2(−1)p(ik)dik) = £j∂k + q−2(−1)p(ik)+p(£j)d£jik

= q2(1−Hjk)Qjk∂k£j + (1− q2)(1−Hjk)∂j£k − q−2(−1)p(ik)+p(ij)d£jik

= q2(1−Hjk)Qjk[ikd− q−2(−1)p(ik)dik]£j − q−2(−1)p(ik)+p(ij)d£jik

+ (1− q2)(1−Hjk)[ijd− q−2(−1)p(ij)dij ]£k

= q2(1−Hjk)Qjk(−1)p(£j)ik£jd− q−2HjkQjk(−1)p(ik)dik£j

+ (1− q2)(1−Hjk)(−1)p(£j)ij£kd+ (1− q−2)(1−Hjk)(−1)p(ij)dij£k.

Now, if we consider the parts where the operator d is on the left and on the right
separately, we get relations (25).

Theorem 19. The relations between the Lie derivatives are of the form:

£∂j
£∂k

= Qjk£∂k
£∂j

.



Cartan calculus on the superalgebra O(C2|1
q ) 231

Proof. Using (23) and relations (24) we can write

£j£k = £j [ikd− (−1)p(ik)dik]

= [(−1)p(£j)q2(1−Hjk)Qjkik£j + (−1)p(ik)(q2 − 1)(1−Hjk)ij£k]d

− d[(−1)p(ik)q2(1−Hjk)Qjkik£j + (−1)p(£j)(q2 − 1)(1−Hjk)ij£k]

= q2(1−Hjk)Qjk[ikd− (−1)p(ik)dik]£j + (1− q2)(1−Hjk)[ijd− (−1)p(ij)dij ]£k

= q2(1−Hjk)Qjk£k£j + (1− q2)(1−Hjk)£j£k

or

£j£k =
q−2HjkQjk

1 + (q−2 − 1)Hjk
£j£k.

On the other hand, since 1 + (q−2 − 1)Hjk = q−2Hjk for all j, k, we get the desired
result.

6. The R-matrix formalism

We know from Theorem 4 that there exist left-covariant differential calculi over
O(C2|1

q ) with respect to the Hopf superalgebra O(GLq(2|1)). So, we can use the
R-matrix of the quantum supergroup GLq(2|1) to formulate the calculi. Here, we
consider relations (5a).

6.1. Commutation relations of calculus

Using the commutation relations (5a), it is possible to find an R-matrix that obeys
the Z2-graded Yang-Baxter equation. If it is assumed that an R-matrix is associated

with the superspace C2|1
q , the relations of the coordinates with their differentials can

be expressed as xj · dxk =
∑

Bjk
mn dxm · xn. When we compare these relations with

(5a), we see that relations (5a) can be expressed as

xj · dxk = q
∑
m,n

(−1)p(xj) R̂jk
mn dxm · xn,

in terms of an R-matrix. Here the entries of the matrix R̂ are R̂11
11 = q, R̂12

12 = q−q−1,
R̂12

21 = q−1, R̂13
13 = q − q−1, R̂13

31 = 1, R̂21
12 = q,R̂22

22 = q, R̂23
23 = q − q−1, R̂23

32 = 1,
R̂31

13 = 1, R̂32
23 = 1 and R̂33

33 = −q−1, except the zero entries. The matrix R is given
by R = PR̂, where P is the Z2-graded permutation matrix. The matrix R satisfies
the graded Yang-Baxter equation R12R13R23 = R23R13R12, where R12 = R ⊗ I3,
R23 = I3⊗R and R13 = (P ⊗ I3)R23(P ⊗ I3) with the 3× 3 identity matrix I3. The
matrix R̂ obeys braid relation R̂12R̂23R̂12 = R̂23R̂12R̂23 and the Hecke condition

R̂2 = (q − q−1)R̂+ I9,

where I9 is the 9× 9 unit matrix.
As a note, the matrix R is skew-invertible, that is, there is a matrix B such that∑

m,n

Bni
lmRkm

nj = δijδ
k
l =

∑
m,n

Rmk
jn Bin

ml.
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The non-zero entries of this B matrix are B11
11 = q−1, B12

12 = q−1, B13
13 = 1, B21

12 =
q−2(q−1 − 1), B21

21 = q, B22
22 = q−1, B23

23 = 1, B31
13 = q−2(q−1 − 1), B31

31 = 1,
B32

23 = q−1 − q, B32
32 = 1 and B33

33 = q.
The commutation rules of the generators of the function algebra on the super-

space C2|1
q , with the matrix R̂, can be expressed as follows:∑

m,n

R̂jk
mnxmxn = qxjxk.

Using the R̂-matrix, we can rewrite relations (12) and (13) as follows:

∂jxk = δjk + q
∑
m,n

R̂kn
jm xm∂n, ∂j∂k = q

∑
m,n

(R̂−1)nmkj ∂m∂n.

6.2. Commutation relations of the Cartan calculus

Here, we give all cases formulated with the matrix R of the Cartan calculus presented
in Section 5.
1. Relations involving the inner derivations:

i∂j
· xk = q

∑
m,n

(−1)p(xk) R̂kn
jm xm · i∂n

,

i∂j
· dxk = δjk − q−1

∑
m,n

(−1)p(dxm)+p(i∂n ) R̂kn
jm dxm · i∂n

,

i∂j∂k = q−1
∑
m,n

(−1)p(∂k) (R̂−1)nmkj ∂m i∂n ,

i∂j i∂k
= q−1

∑
m,n

(−1)1+p(i∂j )+p(i∂m ) (R̂−1)nmkj i∂m i∂n .

2. Relations involving the Lie derivatives:

£∂j
· xk = δjk + q

∑
m,n

R̂kn
jm

[
xm ·£∂n

+ (−1)p(dxm)+p(i∂n ) (1− q−2) dxm · i∂n

]
,

£∂j
· dxk = q−1

∑
m,n

(−1)p(£∂j
)R̂kn

jm dxm ·£∂n
, £∂j

∂k = q
∑
m,n

(R̂−1)nmkj ∂m £∂n
,

£∂j£∂k
= q

∑
m,n

(R̂−1)nmkj £∂m £∂n .

3. Mixed relations:

£∂j i∂k
= q

∑
m,n

(−1)1+p(£∂j
)+p(i∂m ) (R̂−1)nmkj i∂m £∂n .

6.3. Tensor product realization of the wedge product

The commutation relations of iXj
with dxk given by (20) can be used to define the

wedge product ∧ of forms as an antisymmetrized tensor product. Since dxi ⊗ dxj is
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an element in the tensor space of Ω(T ∗C2|1
q )⊗Ω(T ∗C2|1

q ), we can define the product
of two forms in terms of tensor products as:

dxi ∧ dxj = dxi ⊗ dxj + q−2
∑
k

(−1)p(dxk)dxk ⊗ σΩ
kj(dxi)

= dxi ⊗ dxj −
∑
m,n

(−1)p(dxi)+p(dxm)Λij
mn dxm ⊗ dxn,

where Λ = q−1R̂. These equations give implicit commutation relations between the
dxk’s. So we have

〈∂i, dxj ∧ dxk〉 = δij dxk +
∑
m,n

(−1)p(∂i)+p(dxj)Λjk
mn δim dxn.

We can define iXj
to act on this product by contracting in the first tensor product

space, that is,

i∂i
(dxj ∧ dxk) = δij dxk −

∑
m,n

(−1)p(i∂i )+p(dxj)Λjk
mn δim dxn.

Using the same method as for dxk we can also obtain a tensor product decom-
position of products of inner derivations as follows:

i∂j
∧ i∂k

= i∂j
⊗ i∂k

−
∑
m,n

(−1)p(i∂j )+p(i∂m )Λnm
kj i∂m

⊗ i∂n
.
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