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Gaussian limit theorem for posterior distribution in the
problem of conflicting expert opinions
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Abstract. Suppose we have n experts who have their prior opinions about the unknown
probability q in the experiment with a binary outcome. It is known that expert opinions
are in conflict with each other. To model “conflicting” expert opinions a prior distribution
based on Selberg’s integral is constructed. We prove a theorem regarding the limiting
properties of the posterior distribution. Also, differential entropy and the Kullback-Leibler
(KL) divergence of such posterior are studied.
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1. Introduction

When conducting a clinical trial, a researcher might be pursuing competing objec-
tives, one of them is to maximize the statistical power, another is to maximize the
number of patients responding to the treatment. For entropy-based designs, e.g. in
a setting used in [7], the experiment starts with the treatment arm that minimises
the proposed asymptotic criteria based on the prior Beta distribution. In the case
of the rare disease Phase II clinical trials, the number of patients can be limited. To
improve the operating characteristics of the designs expert opinions can be collected
beforehand to specify the prior distribution of the parameters under study. Then
several opinions must be combined to be used to calibrate the design characteristics.
This process of synthesis of authorities opinions is called expert elicitation. Gener-
ally, this approach provides a way to quantify uncertainty. A popular method for
quantifying uncertainty is the Bayesian approach.

In the setting of this work, we are talking about one treatment with a binary
response with an unknown probability q. Several (n) experts have opinions on the
distribution of q. We also assume that their responses are correlated with each other:
they can either agree or disagree with each other.

The goal of this research is to construct a prior, which takes into consideration
additional information on the degree of conflict in expert opinions. This is a con-
tinuation and generalization of some results obtained in [8]. Note that a treatment
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can possibly have multiple responses, hence in a classical setting with no conflict a
prior would take a form of multivariate generalization of the Beta distribution, or
the Dirichlet distribution. Also, the experts can be asked about several treatments
at once. These topics will be the scope of further research.

Let there be m conditionally independent random variables ξi, i = 1, . . . ,m,
identically distributed with Bernoulli(q). Let xi be the value obtained in the i-th

experiment, Sm = ξ1 + ξ2 + . . .+ ξm, and x =
m∑
i=1

xi.

Consider a function

f (z1, z2, . . . , zn) =
1

Sn(α, β, γ)

n∏
i=1

zα−1i (1− zi)β−1
∏

1≤i<j≤n

|zi − zj |2γ , (1)

where Sn(α, β, γ) is the Selberg integral [10] defined as follows:

Sn(α, β, γ) =

∫ 1

0

. . .

∫ 1

0

n∏
i=1

tα−1i (1− ti)β−1
∏

1≤i<j≤n

|ti − tj |2γ dt1 . . . dtn

=

n−1∏
j=0

Γ(α+ jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)

Γ(α+ β + (n+ j − 1)γ)Γ(1 + γ)
,

where α, β, γ ∈ R, α > 0, β > 0, γ > −min

(
1

n
,

α

n− 1
,

β

n− 1

)
.

It is known that f (z1, z2, . . . , zn) is a probability density function called the
multivariate Selberg-Beta distribution of the first type [9]. In the context of a
Bayesian setting, this distribution can be regarded as a conflicting prior distribution
π(q) (see Figure 1), where γ shows to what degree the experts are in conflict, and
q ∼ MSBeta1(α, β, γ, n) is random vector of the unknown response probability
q considered by each of the n experts. If γ = 0, hence there is no conflict, the
distribution is equivalent to n independent Beta priors with parameters α, β. If
γ < 0, the experts tend to agree with each other.
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Figure 1: Joint and marginal distribution functions for certain conflicting priors:
(a) MSBeta1(1, 1, 1, 2), (b) MSBeta1(4, 4, 0.5, 2), (c) MSBeta1(3, 9, 4, 2).
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Let n experts have the joint prior distribution given by the density function f .
Hence, by Bayes’ theorem, the posterior probability density that after m experiments
we observe x successes takes the form of MSBeta1(α+ x, β +m− x, γ, n):

π(q | Sm = x) = fm (z1, z2, . . . , zn | Sm = x)

=

f (z1, z2, . . . , zn)
n∏
i=1

zxi (1− zi)m−x∫ 1

0
. . .
∫ 1

0

n∏
i=1

txi (1− ti)m−x f (t1, t2, . . . , tn) dt1 . . . dtn

=
1

Sn(α+ x, β +m− x, γ)

n∏
i=1

zx+α−1i (1−zi)m−x+β−1
∏

1≤i<j≤n

|zi−zj |2γ .

By Aomoto’s integral formula [1], the mean value predicted by the k-th expert equals:

E(qk) =
1

Sn(α, β, γ)

∫ 1

0

· · ·
∫ 1

0

zk

n∏
i=1

zα−1i (1− zi)β−1
∏

1≤i<j≤n

|zi − zj |2γ dz1 · · · dzn

=
α+ (n− 1)γ

α+ β + 2(n− 1)γ
.

Following the results obtained in [9], the mean and the moments of the posterior
distribution of an unknown parameter q considered by the k-th expert are given as:

Em (qk) =
α+ x+ (n− 1)γ

α+ β +m+ (2n− 2)γ
,

Em
(
q2k
)

=
[α+ x+ 1 + 2(n− 1)γ]Em (qk)− (n− 1)γEm (q1q2)

α+ β +m+ 1 + 2(n− 1)γ
,

Em (qkql) =

2∏
j=1

α+ x+ (n− j)γ
α+ β +m+ (2n− 1− j)γ

.

Figure 2 illustrates that if a conflict parameter γ > 0, then the correlation between
the opinions is negative, and vice versa. If γ = 0, then the correlation is zero.
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Figure 2: Correlation of q1 and q2 in the conflicting prior distribution MSBeta1(α, 1, γ, 2) with
α = {1, 10, 100, 1000} depending on a conflict parameter γ.
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2. Gaussian limit theorem

Consider a random variable Zmκm with the density fm,κm , which has the form (1),
for x = x(m) = κmm , 0 < κm < 1. Hence, κm represents the observed proportion
of successes. By the Law of Large Numbers κm → κ a.s., the true probability of

success, as m → ∞. So, κ is the mean of binomial r.v., and κ(1−κ)
m is its variance.

To formulate the Gaussian limit theorem Zmκm should be normalized. Thus, we

introduce a new random variable Z̃m, which is expressed in terms of Zmκm , and

denote its density as f̃m = f̃m,κ.

Z̃m = A
(
Zmκm − κm

)>
=

(√
m
(
Zmκm,1 − κm

)√
κm(1− κm)

,

√
m
(
Zmκm,2 − κm

)√
κm(1− κm)

, . . . ,

√
m
(
Zmκm,n − κm

)√
κm(1− κm)

)>
,

where A = diag

(√
m

κm(1−κm) , . . . ,
√

m
κm(1−κm)

)
.

Our goal is to demonstrate that the correlation in the prior washes out in the
large sample limit m→∞. Hence, the theorem can be formulated in the following
way.

Theorem 1. Z̃m weakly converges in distribution to Z as m→∞:

Z̃m ⇒ Z, (2)

where Z ∼ N (~0, I).

Proof. To prove the weak convergence in distribution of Z̃m to Z in (2) we use
the method of characteristic functions. The characteristic function of the standard
multivariate normal distribution has the form:

e
− 1

2

n∑
j=1

t2j
.

Let ϕm(t) be the characteristic function of Z̃m. We should prove that as m→∞
the following holds:

ϕm(t) = e
− 1

2

n∑
j=1

t2j
+O

(
1

m

)
.

In view of Slutsky’s theorem, it is enough to prove the statement for non-random
κ = limm→∞ κm as the correction term tends to 1. Using the definition of ϕm(t),
after expanding the brackets and simplifications, we get:

ϕm(t) = E
[
ei(t1Z̃

m
κ,1+...+tnZ̃

m
k,n)
]

=

∫ 1

0

. . .

∫ 1

0

n∏
j=1

e
itj

√
m(zj−κ)√
κ(1−κ) fm,κdz1 . . . dzn

=
1

Sn(α+ κm, β + (1− κ)m, γ)

n∏
j=1

e
itj
√
m(−κ)√
κ(1−κ) I(m)
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where

I(m) =

∫ 1

0

. . .

∫ 1

0

n∏
j=1

e
itj

√
mzj√
κ(1−κ) zκm+α−1

j (1− zj)(1−κ)m+β−1

×
∏

1≤i<j≤n

|zi − zj |2γ dz1 . . . dzn. (3)

We introduce two functions:

S (z1, . . . , zn) =

n∑
j=1

itj
zj√

mκ(1− κ)
+ κ ln (zj) + (1− κ) ln (1− zj) ,

g (z1, . . . , zn) =

n∏
j=1

zα−1j (1− zj)β−1
∏

1≤i<j≤n

|zi − zj |2γ .

Note that Re(S(z)) has a sharp maximum for sufficiently large m. Hence, (3) can
be rewritten as:

I(m) =

∫ 1

0

. . .

∫ 1

0

emS(z1,...,zn)g (z1, . . . , zn) dz1 . . . dzn.

To find the asymptotics of I(m) we use the saddle point method [5]:

I(m) = emS(z
∗)

√
(2π)n

mn det (−S′′ (z∗))

(
g (z∗) +O

(
1

m

))
,

where S′′ (z∗) is the Hessian and z∗ is a saddle point:

z∗ =

(
κ+

it1
√
κ(1− κ)√
m

+O

(
1

m

)
, . . . , κ+

itn
√
κ(1− κ)√
m

+O

(
1

m

))
.

After substituting the value of z∗ we get:

g (z∗) emS(z
∗)

=

n∏
j=1

e
itj

√
mκ√

κ(1−κ) e−t
2
j
(
z∗j
)κm+α−1 (

1− z∗j
)(1−κ)m+β−1 ∏

1≤i<j≤n

∣∣z∗i − z∗j ∣∣2γ .
Thus, we derive a representation for the characteristic function of Z̃mκ :

ϕm(t) =

n∏
j=1

(
z∗j
)κm+α−1 (

1− z∗j
)(1−κ)m+β−1 ∏

1≤i<j≤n

∣∣z∗i − z∗j ∣∣2γ
Sn(α+ κm, β + (1− κ)m, γ)

× e
−

n∑
j=1

t2j
(

2π

mκ(1− κ)

)n
2
(

1 +O

(
1

m

))
.
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Using the Stirling formula and the Taylor series for the logarithm we obtain:

n∏
j=1

(
z∗j
)κm+α−1 (

1− z∗j
)(1−κ)m+β−1 ∏

1≤i<j≤n

∣∣z∗i − z∗j ∣∣2γ
Sn(α+ κm, β + (1− κ)m, γ)

=

n∏
j=1

e(κm+α−1) ln(z∗j )+((1−κ)m+β−1) ln(1−z∗j )
∏

1≤i<j≤n
e2γ ln|z∗i−z∗j |

Sn(α+ κm, β + (1− κ)m, γ)

= e
1
2

n∑
j=1

t2j
(
mκ(1− κ)

2π

)n
2
(

1 +O

(
1

m

))
.

Finally,

ϕm(t) = e
1
2

n∑
j=1

t21
(
mκ(1− κ)

2π

)n
2

e
−

n∑
j=1

t2j
(

2π

mκ(1− κ)

)n
2
(

1 +O

(
1

m

))

= e
− 1

2

n∑
j=1

t2i
+O

(
1

m

)

implies the weak convergence in distribution of the r.v. Z̃m to Z and completes the
proof of Theorem 1.

Theorem 2. The differential entropy Z̃m converges to the differential entropy of Z
as m→∞:

h
(
f̃m,κ

)
−→ 1

2
log ((2πe)n) = h(φ),

where φ(z) = (2π)−n/2 exp
(
− 1

2z
>z
)

is the PDF of Z.

Proof. Consider differential Shannon (4) and Rényi (5) entropies [4] for a r.v. with
the density function fm,κ (z1, z2, . . . , zn) :

h (fm,κ (z1, z2, . . . , zn))

= −
∫ 1

0

. . .

∫ 1

0

fm,κ (z1, z2, . . . , zn) log (fm,κ (z1, z2, . . . , zn)) dz1 . . . dzn, (4)

Hν (fm,κ (z1, z2, . . . , zn))

=
1

1− ν
log

(∫ 1

0

. . .

∫ 1

0

(fm,κ (z1, z2, . . . , zn))
ν

dz1 . . . dzn

)
, (5)

where ν ≥ 0, ν 6= 1. Note that Shannon’s entropy is bounded from ∞ because
two moments are finite, and from −∞ because the PDF (1) is log-concave, cf. the
appendix in [3].

Before proceeding with the proof of Theorem 2, we need to find
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Hν (fm,κ (z1, z2, . . . , zn)) :

(1− ν)Hν (fm,κ (z1, z2, . . . , zn))

= log

(∫ 1

0

. . .

∫ 1

0

(fm,κ (z1, z2, . . . , zn))
ν

dz1 . . . dzn

)
= log

(
1

Sn(α+ x, β +m− x, γ)ν

∫ 1

0

· · ·
∫ 1

0

n∏
i=1

z
ν(x+α−1)
i (1− zi)ν(m−x+β−1)

×
∏

1≤i<j≤n

(zi − zj)2γν dz1 . . . dzn


= log

(
Sn(ν(x+ α− 1) + 1, ν(m− x+ β − 1) + 1, νγ)

Sn(α+ x, β +m− x, γ)ν

)
=

n−1∑
i=0

log

(
Γ(ν(x+α−1)+1+iνγ)Γ(ν(m−x+β−1)+1+iνγ)Γ(1+(i+1)νγ)

Γ(x+α+iγ)νΓ(m−x+β+iγ)νΓ(1+(i+1)γ)ν

× Γ(α+ β +m+ (n+ i− 1)γ)νΓ(1 + γ)ν

Γ(ν(x+ α− 1) + ν(m− x+ β − 1) + 2 + (n+ i− 1)νγ)Γ(1 + νγ)

)

Using the properties of g Gamma functions, we obtain an expression for
Hν (fm,κ (z1, z2, . . . , zn)) :

Hν (fm,κ)

=

n−1∑
i=0

1

1− ν

(
log

(
Γ(ν(x+ α− 1 + iγ))

Γ(x+ α− 1 + iγ)ν

)
+ log

(
Γ(ν(m− x+ β − 1 + iγ))

Γ(m− x+ β − 1 + iγ)ν

)
+ log

(
Γ(ν(i+1)γ)

Γ((i+1)γ)ν

)
+log

(
Γ(γ)ν

Γ(νγ)

)
+log

(
Γ(α+β+m−2+(n+i−1)γ)ν

Γ(ν(α+β+m−2+(n+i−1)γ))

))
+ log

(
(x+ α− 1 + iγ)(m− x+ β − 1 + iγ)(i+ 1)

α+ β +m− 2 + (n+ i− 1)γ

)
+

1

1− ν
log

(
ν(α+ β +m− 1 + (n+ i− 1)γ)ν

1 + ν(α+ β +m− 2 + (n+ i− 1)γ)

)
.

Now we can find h (fm,κ) by taking a limit:

h (fm,κ) = lim
ν→1

Hν (fm,κ)

=

n−1∑
i=0

log(Γ(x+ α− 1 + iγ))− (x+ α− 1 + iγ)ψ(x+ α− 1 + iγ) log(e)

+log(Γ(m−x+β−1+iγ))−(m−x+β−1+iγ)ψ(m−x+β−1+iγ) log(e)

+log(Γ((i+1)γ))−(i+1)γψ((i+1)γ) log(e)−log(Γ(γ))+γψ(γ) log(e)

− log(Γ(α+ β +m− 2 + (n+ i− 1)γ))
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+(α+ β +m− 2 + (n+ i− 1)γ)ψ(α+ β +m− 2 + (n+ i− 1)γ) log(e)

− log(e)

α+ β +m− 1 + (n+ i− 1)γ
− log(α+ β +m− 1 + (n+ i− 1)γ)

+ log

(
(x+ α− 1 + iγ)(m− x+ β − 1 + iγ)(i+ 1)

α+ β +m− 2 + (n+ i− 1)γ

)
,

where ψ stands for the digamma function.
Using the asymptotics of gamma and digamma functions [6], we derive the

asymptotics for h (fm,κ):

h (fm,κ) =

n−1∑
i=0

(n− 2i− 1)γ log(e) +
1

2
log(2πe)

+

(
1

2
log

(
(x+ α− 1 + iγ)(m− x+ β − 1 + iγ)(i+ 1)

α+ β +m− 2 + (n+ i− 1)γ

)
− log(α+ β +m− 1 + (n+ i− 1)γ))

(
1 +O

(
1

m

))
=

1

2
log

(
n−1∏
i=0

2πe(x+ α− 1 + iγ)(m− x+ β − 1 + iγ)

(α+β+m−2+(n+i−1)γ)(α+β+m−1+(n+i−1)γ)2

)

×
(

1 +O

(
n(log(n)− 1)

m

))
.

Thus, h (fm,κ) takes the form:

h (fm,κ) =
1

2
log

(
n−1∏
i=0

2πe(κm+α−1+iγ)((1−κ)m+β−1+iγ)

(α+β+m−2+(n+i−1)γ)(α+β+m−1+(n+i−1)γ)2

)

×
(

1 +O

(
n(log(n)− 1)

m

))
.

Note that for n = 1, γ = 0, α = β = 1 this result is similar to the results obtained in
[8]. Using the properties of differential entropy, we can find

h
(
f̃m,κ

)
= h (fm,κ) + log(|det(A)|)

=

(
1

2
log

(
n−1∏
i=0

2πe(κm+α−1+iγ)((1−κ)m+β−1+iγ)

(α+β+m−2+(n+i−1)γ)(α+β+m−1+(n+i−1)γ)2

)

+
n

2
log

(
m

κ(1− κ)

))(
1 +O

(
n(log(n)− 1)

m

))
.

Thus, for m→∞,

h
(
f̃m,κ

)
−→ n

2
log

(
2πeκ(1− κ)

m

)
+
n

2
log

(
m

κ(1− κ)

)
=

1

2
log ((2πe)n) = h(φ),

which concludes the proof of Theorem 2.
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Theorem 3. The Kullback-Leibler (KL) divergence between f̃m,κ and φ converges
to zero as m→∞:

KL
(
f̃m,κ‖φ

)
−→ 0,

where the Kullback-Leibler divergence between distributions π1 and π2 is defined as

KL (π1‖π2) =

∫
Rn
π1(x) log

π1(x)

π2(x)
dx.

Proof. Using the results obtained in Theorem 2, we calculate the Kullback - Leibler
divergence between f̃m,κ and φ:

KL
(
f̃m,κ‖φ

)
= h

(
f̃m,κ, φ

)
− h

(
f̃m,κ

)
h
(
f̃m,κ, φ

)
=

∫ 1

0

. . .

∫ 1

0

f̃m,κ (z1, z2, . . . , zn) log (φ (z1, z2, . . . , zn)) dz1 . . . dzn

=
1

2
log ((2π)n)+

1

2
log(e)

n∑
i=1

∫ 1

0

. . .

∫ 1

0

f̃m,κ (z1, z2, . . . , zn) z2i dz1 . . . dzn.

By the results of Theorem 1, one can check that the second moment of Z̃κ converges
to one as m→∞. Hence,

KL
(
f̃m,κ‖φ

)
→ −1

2
log ((2πe)n) +

1

2
log ((2π)n) +

1

2
log(e)n = 0,

which concludes the proof of Theorem 3. Note that this result implies the weak
convergence established in Theorem 1, cf. [2].

We have shown that the random variable Z̃m obtained from Zmκm is asymptotically
normally distributed as m→∞. In future research, one could consider other types
of relationship for x = x(m) and study its properties. The problem we have analyzed
has a natural extension in the context of weighted differential entropies [11, 12].

3. Conclusions

We have presented the conflicting prior distribution based on Selberg’s integral con-
sidered in a setting of an expert elicitation problem and the Gaussian limit theorem
for its posterior distribution. Applications of this prior distribution rely on the as-
sumption that in a setting similar to [7], such a prior with an additional conflict
parameter in the prior distribution would allow to achieve faster convergence to the
truth than selecting one of experts’ opinions at random.
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