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Abstract. Under appropriate algebraic conditions on the nonlinearity, using variational
methods and critical point theory we discuss the existence of one, two and three solutions
for nonlinear discrete Dirichlet boundary value problems driven by ϕc-Laplacian operator
involving two parameters λ and µ, without imposing the symmetry or oscillating behavior at
infinity on the the nonlinearity, which has applications in the dynamic model of combustible
gases, the capillarity problem in hydrodynamics, and the flux-limited diffusion phenomenon.
Some applications and examples illustrate the obtained results.
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1. Introduction

In this paper, we study the following problem:{
−∆(ϕc(∆u(k − 1))) = λf(k, u(k)) + µg(k, u(k)), k ∈ [1, N ]Z,

u(0) = u(N + 1) = 0,
(1)

where ϕc(s) =
s√

1+s2
, [1, N ]Z = {1, 2, ..., N} and f, g : [1, N ]Z × R → R are continu-

ous functions. ∆u(k − 1) = u(k)− u(k − 1) and λ, µ are two positive parameters.
In the last decades, differential equations involving ϕc-Laplacian operator (ϕc(s)

= s√
1+s2

is the mean curvature operator) regarded as a variant of the Liouville-

Bratu-Gelfand problem, which is used to study the dynamic model of combustible
gases [36, 37], the capillarity problem in hydrodynamics [22, 35], and the flux-limited
diffusion phenomenon [29], have been studied by some researchers [3, 2, 4, 5, 15, 34].

On the other hand, difference equations describe evolution of certain phenomena
over the route of time. For example, if a certain population has discrete genera-
tions, the size of the k + 1th generation u(k + 1) is a function of the kth generation
u(k). Namely, since difference equations give a natural description of many discrete
models in the real world, in various fields of science and technology such as statis-
tics, computer science, electrical circuit analysis, biology, neural networks, optimal
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control, economics, finance, and so on, it is of practical importance to study the
existence of solutions of difference equations and discrete boundary value problems.
Lately, there have been many studies on discrete boundary value problems by differ-
ent approaches, for example, see [11, 12, 17, 19, 20, 23, 24, 26, 27, 28, 30, 31, 32]. In
[28], by using the three critical point theorems proposed by Bonanno [7], Jiang and
Zhou have obtained sufficient conditions for the existence of at least three solutions
of discrete p-Laplacian Dirichlet boundary value problems. In [12, 11], Bonanno and
Candito have discussed the existence of multiple solutions for a class of discrete non-
linear boundary value problems under rather different assumptions via variational
methods and critical point theory. In [17], by using critical point theory, the au-
thors have studied the existence of at least three solutions for a perturbed nonlinear
Dirichlet boundary value problem for difference equations depending on two positive
parameters.

To the best of our knowledge, there are a few works in the literature studying
the existence of solutions for boundary value problems involving ϕc-Laplacian, and
we have just found [19, 38], in which the authors have discussed the existence of
multiple solutions for problem (1) in the case µ = 0, and the existence of infinitely
many solutions for problem (1) in the case µ = 0. We refer to [21], in which
a partial discrete Dirichlet boundary value problem involving the mean curvature
operator was studied, and under proper assumptions on the nonlinear term, some
feasible conditions on the existence of multiple solutions by the method of critical
point theory were obtained. Also, open intervals of the parameter to attain at least
two positive solutions and an unbounded sequence of positive solutions with the help
of the maximum principle were separately determined.

We refer to [25], where the author has studied the characterization of entire
solutions of some system of Fermat type functional equations and also posed an
open problem. The author has provided a nice discussion and presentation of the
mathematical background to underline the relevance of the topic. The author has
distinguished various situations and supported the finding with illustrative examples.
We also refer to paper [6], where using critical point theory and variational methods,
the existence of at least three solutions for a class of double eigenvalue discrete
anisotropic Kirchhoff-type problems was discussed. Further, the effects of Kirchhoff
weight on the principal operator were considered. We note the fact that establishing
the Kirchhoff counterpart of existing models is a very actual topic of research. In [33],
the authors have established the existence and multiplicity of non-zero homoclinic
solutions to a nonlinear Laplacian difference equation without using Ambrosetti-
Rabinowitz type-conditions. Similarly to our present paper, the main approach is
based on the mountain pass theorem and the Palais-Smale compactness condition
involving suitable functionals.

Inspired by the above results, in this the article, we investigate the existence
of one, two and three solutions for problem (1). In these cases, we apply suitable
conditions on the nonlinear terms and create openings for two parameters λ and µ
in problem (1), without imposing the symmetry or oscillating behavior at infinity on
the nonlinear terms f and g. We also give examples to show the use of the proven
theorems. At the end, we discuss the existence of the solutions for the problem in
the case when two parameters are the same. Precisely, we discuss the regularity
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properties of energy functionals associated to the main problem.

2. Preliminaries and basic notation

In this section, we introduce the tools that are necessary for our main results in the
next section. Set

X = {u : [0, N + 1]Z → R|u(0) = u(N + 1) = 0}. (2)

X is an N -dimensional Banach space with the following norm:

∥u∥ :=
(N+1∑

k=1

|∆u(k − 1)|2
) 1

2

. (3)

Let ∥u∥∞ := max{u(k) : k ∈ [1, N ]Z}. We see that ∥u∥∞ is another norm in X.
From Lemma 2.2 of [28], we have

Lemma 1. For any u ∈ X, the following relation holds:

∥u∥∞ ≤
√
N + 1

2
∥u∥. (4)

From (2.1) and (2.3) in [13], we have the following lemma.

Lemma 2. For any u ∈ X, one has

1√
NλN

∥u∥ ≤ ∥u∥∞ ≤ 1√
λ1

∥u∥,

where λ1 = 4 sin2 π
2(N+1) and λN = 4 sin2 Nπ

2(N+1) .

We define the functionals Φ, Ψ : X → R in the following way:

Φ(u)=

N+1∑
k=1

(√
1+(∆u(k − 1))2−1

)
, Ψ(u) =

N∑
k=1

(
F (k, u(k))+

µ

λ
G(k, u(k))

)
. (5)

Corresponding to the functions f and g, we introduce the functions F,G : [1, N ]Z ×
R → R, respectively, as follows:

F (k, t) =

∫ t

0

f(k, ξ)dξ, t ∈ R and G(k, t) =

∫ t

0

g(k, ξ)dξ, t ∈ R.

For γ > 0 and η > 0, set

Gγ :=

N∑
k=1

max
|t|<γ

G(k, ξ) and Gη :=

N∑
k=1

inf
ξ∈[0,η]

G(k, ξ).

If g is sign-changing, then Gγ ≤ 0 and Gη ≥ 0. We say that a function u ∈ X is a
solution of problem (1) if

−
N∑

k=1

∆(ϕc(∆u(k − 1)))v(k)−
N∑

k=1

(
λf(k, u(k))v(k) + µg(k, u(k))v(k)

)
= 0

holds for all v ∈ X.
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Definition 1. Assume that X is a real reflexive Banach space. We say I satisfies the
Palais-Smale condition (denoted as PS-condition for short) if any sequence {uk} ⊂
X, for which {I(uk)} is bounded and I ′(uk) → 0 as k → 0, possesses a convergent
subsequence.

If r1, r2 ∈ [−∞,+∞] such that r1 < r2 and I = Φ + λΨ, where Φ,Ψ : X → R
are two continuously Gâteaux differentiable functions, so that each sequence {un}
that has the following conditions:

(i1) {I(un)} is bounded;

(i2) limn→∞ ∥I ′(un)∥X∗ = 0;

(i3) r1 < Φ(un) < r2,

possesses a convergent subsequence. At a time, the functional J applies to the
Palais-Smale condition cut off lower at r1 and upper at r2 ( [r1](PS)[r2]-condition).
Likewise we can make (PS)[r2] in which r1 = −∞ and r2 ∈ R and [r1](PS) in
which r1 ∈ R and r2 = ∞. By definition (1) of the (PS)-condition, it is established
that in [r1](PS)[r2]-condition, r1 = −∞ and r2 = ∞. Indeed, let Φ and Ψ be two
continuously Gâteaux differentiable functionals defined on a real Banach space X;
fix r ∈ R. The functional I = Φ − λΨ is said to verify the Palais-Smale condition
cut off upper at r (in short (PS)[r]) if any sequence {un}n∈N in X such that

(j1) {I(un)} is bounded;

(j2) limn→∞ ∥I ′(un)∥X∗ = 0;

(j3) Φ(un) < r for each n ∈ N,

has a convergent subsequence.
The proofs of our theorems are based on the following four theorems.

Theorem 1 ([10, Theorem 2.3]). Let X be a real Banach space and let Φ,Ψ : X → R
be two continuously Gâteaux differentiable functions such that infu∈X Φ(u) = Φ(0) =
Ψ(0) = 0. Assume that there exist r > 0 and ū ∈ X, with 0 < Φ(ū) < r, such that:

(k1)
supΦ(u)≤r Ψ(u)

r < Ψ(ū)
Φ(ū) ,

(k2) for each λ ∈
(

Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u)

)
, the functional Iλ := Φ − λΨ satisfies the

(PS)[r]-condition.

Then, for each λ ∈ Λ :=
(

Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u)

)
, there exists u0,λ ∈ Φ−1(0, r) such

that Iλ(u0,λ) ≡ ϑX∗ and Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(0, r).

Theorem 2 ([10, Theorem 3.2]). Let X be a real Banach space, Φ,Ψ : X → R two
continuously Gâteaux differentiable functionals such that Φ is bounded from below
and Φ(0) = Ψ(0) = 0. Fix r > 0 and assume that for each

λ ∈
(
0,

r

supu∈Φ−1(−∞,r) Ψ(u)

)
,
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the functional Iλ = Φ − λΨ satisfies (PS)-condition and is unbounded from below.
Then, for each

λ ∈
(
0,

r

supu∈Φ−1(−∞,r) Ψ(u)

)
,

the functional Iλ admits two distinct critical points.

Theorem 3 ([1, Theorem A]). Let X be a reflexive real Banach space, Φ : X → R
a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗ and let Ψ :
X → R be a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact. Assume that:

(m1) lim∥u∥→∞(Φ(u) + λΨ(u)) = ∞, for all λ ∈ [0,∞);

(m2) there is r ∈ R such that infX Φ < r and φ1(r) < φ2(r), where

φ1(r) = inf
u∈Φ−1]−∞,r̄[

Ψ(u)− inf
Φ−1(−∞,r)

ω Ψ

r − Φ(u)
,

φ2(r̄) = inf
u∈Φ−1(−∞,r)

sup
v∈Φ−1[r,∞)

Ψ(u)−Ψ(v)

Φ(v)− Φ(u)
,

and Φ−1(−∞, r)
ω
is the closure of Φ−1(−∞, r) in the weak topology. Then, for each

λ ∈ ( 1
φ2(r)

, 1
φ1(r)

) the functional Φ+ λΨ has at least three critical points in X.

Theorem 4 ([8, Theorem 1.1]). Let X be a reflexive real Banach space, and let
Φ, Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux differ-
entiable functions. Assume that Φ is (strongly) continuous and satisfies lim∥u∥→∞
Φ(u) = ∞. Also, suppose there exist two constants r1 and r2 such that

(n1) infX Φ < r1 < r2;

(n2) φ1(r1) < φ∗
2(r1, r2);

(n3) φ1(r2) < φ∗
2(r1, r2), where φ1 is defined as in Theorem 3 and

φ∗
2(r1, r2) = inf

u∈Φ−1(−∞,r)
sup

v∈Φ−1[r1,r2]

Ψ(v)−Ψ(u)

Φ(v)− Φ(u)
.

Then, for each λ ∈ ( 1
φ∗

2(r1,r2)
,min{ 1

φ1(r1)
, 1
φ1(r2)

}), the functional Φ + λΨ admits at

least two critical points which lie in Φ−1(−∞, r1] and Φ−1[r1, r2), respectively.

For situations of successful employment of the results such as Theorems 1-4 in
order to prove the existence of solutions for various boundary value problems, we
refer the reader to [14, 16, 18].



44 A.Ghobadi and S.Heidarkhani

3. Main results

In this section, we present the existence results.

Theorem 5. Assume that there exist two positive constants γ > (N+1)
√
N+1

2 and η
with the property

2
√
1 + η2 − 1 <

2√
N + 1

γ −N,

and assume that

(A1)
∑N

k=1 sup|t|≤γ F (k,t)
2√

N+1
γ−N−1

<
∑N

k=1 F (k,η)

2(
√

1+η2−1)
;

(A2) lim sup|ξ|→∞
supk∈[1,N]Z

F (k,ξ)

|ξ| < ∞.

Then, for every

λ ∈ Λ :=
(2(√1 + η2 − 1)∑N

k=1 F (k, η)
,

2√
N+1

γ −N − 1∑N
k=1 sup|t|≤γ F (k, t)

)
and for every continuous function g : [1, N ]Z × R → R satisfying the following
condition:

lim sup
|t|→∞

supk∈[1,N ]Z G(k, t)

|t|
< ∞, (6)

there exists δλ given by

min
{2(√1+η2−1)−λ

∑N
k=1 F (k, η)

Gη
,

2√
N+1

γ−N−1−λ
∑N

k=1 sup|t|≤γ F (k, t)

Gγ

}
(7)

such that for each µ ∈ [0, δλ), problem (1) admits at least one solution uλ in X such
that maxt∈[0,1] |uλ(t)| < γ.

Proof. We want to apply Theorem 1 with regard to the space X with the norm
defined in (3), and the functionals Φ and Ψ defined as in (5). According to the
definition of Φ, we realize that Φ is Gâteaux differentiable and sequentially weakly
lower semicontinuous, its Gâteaux derivative is the functional Φ′(u) ∈ X∗, that is
as follows:

Φ′(u)(v) = −
N∑

k=1

∆(ϕc(∆u(k − 1)))v(k)

and

Ψ′(u)(v) =

N∑
k=1

(
f(k, u(k))v(k) +

µ

λ
g(k, u(k))v(k)

)
,
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for every v ∈ X. An easy computation ensures the regularity assumptions required
on Φ. Moreover, the functional Ψ is in C1(X,R) and Ψ has a compact derivative.
By the definition of Φ, one has

Φ(u) =

N+1∑
k=1

√
1 + (∆u(k − 1))2 −

N+1∑
k=1

1

≥
(N+1∑

k=1

(1 + (∆u(k − 1))2)
) 1

2 −
N+1∑
k=1

1

≥ ∥u∥ −N − 1. (8)

Put r = 2√
N+1

γ −N − 1 and

ω(k) =

{
η, k ∈ [1, N ]Z,

0, k = 0 = N + 1.

Clearly, w ∈ X. Hence, we have

Φ(ω) = 2(
√
1 + η2 − 1).

Thus, by assumption (12), we get 0 < Φ(ω) < r. Moreover, by (4) and (8), we have

|u(t)| ≤ ∥u∥∞ ≤
√
N + 1

2
∥u∥ ≤

√
N + 1

2
(Φ(u) +N + 1)

≤
√
N + 1

2
(r +N + 1) = γ, ∀ k ∈ [1, N ]Z.

Consequently,

Φ−1(−∞, r] = {u ∈ X; Φ(u) ≤ r} ⊆ {u ∈ X; |u(t)| ≤ γ}.

Therefore, one has

sup
u∈Φ−1(−∞,r)

N∑
k=1

F (k, u(k)) ≤ sup
|t|≤γ

N∑
k=1

F (k, t),

and this in conjunction with the second inequality in (6) ensures

sup
u∈Φ−1(−∞,r)

N∑
k=1

(
F (k, u(k)) +

µ

λ
G(k, u(k))

)
≤ sup

u∈Φ−1(−∞,r)

N∑
k=1

F (k, u(k)) +
µ

λ
Gγ

≤
N∑

k=1

sup
|t|≤γ

F (k, t) +
µ

λ
Gγ ,

for every u ∈ X such that Φ(u) < r. Thus,

sup
Φ(u)≤r

Ψ(u) ≤
N∑

k=1

sup
|t|≤γ

F (k, t) +
µ

λ
Gγ .
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On the other hand, we have

Ψ(ω) =

N∑
k=1

(
F (k, ω(k)) +

µ

λ
G(k, ω(k))

)
≥

N∑
k=1

F (k, ω(k)) +
µ

λ
Gη.

Therefore,

supu∈Φ−1(−∞,r] Ψ(u)

r
=

supu∈Φ−1(−∞,r]

∑N
k=1

(
F (k, u(k)) + µ

λG(k, u(k))
)

r

≤
∑N

k=1 sup|t|≤γ F (k, t) + µ
λG

γ

2√
N+1

γ −N − 1
, (9)

and

Ψ(ω)

Φ(ω)
≥

∑N
k=1

(
F (k, η) + µ

λG(k, η)
)

2(
√

1 + η2 − 1)
≥

∑N
k=1 F (k, η) + µ

λGη

2(
√

1 + η2 − 1)
.

Since

µ <

2√
N+1

γ −N − 1− λ
∑N

k=1 sup|t|≤γ F (k, t)

Gγ
,

this means ∑N
k=1 sup|t|≤γ F (k, t) + µ

λG
γ

2√
N+1

γ −N − 1
<

1

λ
.

Furthermore,

µ <
2(
√
1 + η2 − 1)− λ

∑N
k=1 F (k, η)

Gη
,

this means ∑N
k=1 F (k, η) + µ

λGη

2(
√
1 + η2 − 1)

>
1

λ
.

Then, ∑N
k=1 sup|t|≤γ F (k, t) + µ

λG
γ

2√
N+1

γ −N − 1
<

1

λ
<

∑N
k=1 F (k, η) + µ

λGη

2(
√
1 + η2 − 1)

. (10)

Hence, from (9) to (10), the condition (k1) of Theorem 1 is fulfilled. Finally, for
λ > 0, we will show that the functional Iλ = Φ − λΨ is coercive. Since µ < δk and
by (6), we can fix α > 0 such that αµ < 2

N
√
N+1

, and there exists ρ ∈ R such that

G(k, t) ≤ α|t| + ρ, for every (k, t) ∈ [1, N ]Z × R. Now, we fix ε < 2
λN

√
N+1

− αµ
λ .
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From the assumption (A2) there exists h ∈ R such that F (k, t) ≤ ε|t|+ h for every
(k, t) ∈ [1, N ]Z × R. It follows that for each u ∈ X,

Φ(u)− λΨ(u) =

N+1∑
k=1

(√
1 + (∆u(k − 1))2 − 1

)
− λ

N∑
k=1

(
F (k, u(k)) +

µ

λ
G(k, u(k))

)
≥

(N+1∑
k=1

[1 + (∆u(k − 1))2]
) 1

2 −
N+1∑
k=1

1− λε

N∑
k=1

|u(k)| − λh

− αµ

N∑
k=1

|u(k)| − µρ

≥ ∥u∥ − λ
εN

√
N + 1

2
∥u∥ − µ

αN
√
N + 1

2
∥u∥ −N(1 + λh+ µρ)− 1

≥
(
1− λ

εN
√
N + 1

2
− µ

αN
√
N + 1

2

)
∥u∥ −N(1 + λh+ µρ)− 1,

so

lim
∥u∥X→∞

(Φ(u)− λΨ(u)) = ∞,

which means the functional Iλ = Φ(u)−λΨ(u) is coercive. Therefore, by [9, Propo-
sition 2.1], the functional Iλ = Φ(u)− λΨ(u) verifies the (PS)[r]-condition for each
r > 0, so the condition (k2) of Theorem 1 is fulfilled. From (9)-(10), one also has

λ ∈
(Φ(ω)
Ψ(ω)

,
r

supΦ(u)≤r Ψ(u)

)
.

Theorem 1 with u = ω guarantees the existence of a local minimum point uλ for
the functional Iλ such that 0 < Φ(uλ) < r and so uλ is a nontrivial weak solution of
problem (1) such that maxk∈[1,N ]Z |uλ(k)| < γ.

Now we give an example to show the use of Theorem 5.

Example 1. Consider the problem−∆
(

∆u(k−1)√
1+(∆u(k−1))2

)
= λf(k, u(k)) + µg(k, u(k)), k ∈ [1, 3]Z,

u(0) = u(N + 1) = 0,
(11)

where g(k, t) = 2k for all (k, t) ∈ [1, 3]Z × R, we have G(k, t) = 2kt + 1 for all

(k, t) ∈ [1, 3]Z × R. We see that lim sup|ξ|→∞
supk∈[1,3]Z

G(k,ξ)

|ξ| < ∞, namely, (6)

holds. Letting

f(k, t) =

{
3k, t ≤ 1,
3k
t , t > 1,

for every k ∈ [1, 3]Z, we have

F (k, t) =

{
3kt, t ≤ 1,

3k(ln(t) + 1), t > 1,
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for every k ∈ [1, 3]Z. Hence, lim sup|ξ|→∞
supk∈[1,3]Z

F (k,ξ)

|ξ| < ∞, the condition (A2)

holds. Taking γ = 5 and η = 10−6, then 2
√
1 + 10−12 − 1 = 2

√
1 + η2 − 1 <

2√
N+1

γ −N = 2, and also

∑N
k=1 sup|t|≤γ F (k, t)

2√
N+1

γ −N − 1
= 18× ln 6 <

18× 10−6

2(
√
1 + 10−12 − 1)

=

∑N
k=1 F (k, η)

2(
√
1 + η2 − 1)

.

Therefore, the condition (A1) holds. So, all conditions of Theorem (5) are satisfied.

Consequently, it follows that for each λ ∈ ( 2(
√
1+10−12−1)
18×10−6 , 1

18 ln 6 ) and for every

0 ≤ µ < min
{2× (

√
1 + 10−12 − 1)− 18× 10−6λ

12× 10−6 + 3
,
1− 18 ln 6× λ

63

}
problem (11) admits at least one weak solution in X.

Now, we want to discuss the existence of at least two solutions for problem (1).

Theorem 6. Assume that there exist two positive constants γ > (N+1)
√
N+1

2 and η
with the property

2
√
1 + η2 − 1 <

1√
N + 1

γ −N, (12)

and assume that

(A3) there exist ν > 1 and T > 0 such that

0 < νF (k, ξ) < ξf(k, ξ)

for all |ξ| > T and k ∈ [1, N ]Z.

Then, for each

λ ∈
(
0,

2√
N+1

γ −N − 1∑N
k=1 sup|t|≤γ F (k, t)

)
,

and for every continuous function g : [1, N ]Z × R → R satisfying the following
condition:

(A4) there exist ν ≥ ν′ > 1 and T ′ > 0 such that

0 < ν′G(k, ξ) < ξg(k, ξ)

for all |ξ| > T ′ and k ∈ [1, N ]Z,

and for each µ in (7), problem (1) admits at least two solutions u1 and u2 in X such
that maxk∈[1,N ]Z |u1(k)| < γ.
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Proof. We want to apply Theorem 2. Recalling the functionals Φ and Ψ defined
in Theorem 2, we first examine the (PS)-condition for the functional Iλ. To prove
this, let {un} be a sequence in X such that {Iλ(un)} is bounded and I ′λ(un) → 0
as n → +∞. Then, there exists a positive constant c0 such that |Iλ(un)| ≤ c0 and
|I ′λ(un)| ≤ c0 for all n ∈ N. Therefore, by assumptions (A3), (A4), and the definition
of I ′λ, we have

c0 + c1∥un∥ ≥ νIλ(un)− I ′λ(un)(un)

≥ (ν − 1)∥un∥ −N − 1 + λ

N∑
k=1

(
f(k, un(k))un(k)− νF (k, un(k))

)
+ µ

N∑
k=1

(
g(k, un(k))un(k)− νG(k, un(k))

)
≥ (ν − 1)∥un∥ −N − 1,

for some c1 > 0. Since ν ≥ ν′ > 1, this implies that {un} is bounded. Next, we
prove that there exists u ∈ X such that un → u in X, as n → ∞. Since X is a
Banach space, there exist a subsequence, still denoted by {un}, and a function u in
X such that un ⇀ u, in X. We have

N∑
k=1

(√
1 + (∆un(k − 1))2 − 1− (

√
1 + (∆u(k − 1))2 − 1)

)
dt → 0, n → ∞. (13)

From the continuity of f and g we get

λ

N∑
k=1

(f(k, un(k))− f(k, u(k)))(un(k)− u(k)) → 0, n → ∞, (14)

and

µ

N∑
k=1

(g(k, un(k))− g(k, u(k)))(un(k)− u(k)) → 0, n → ∞. (15)

On the other hand, we have

< I ′λ(un)− I ′λ(u), un − u > = −
N+1∑
k=1

∆(ϕc(∆un(k − 1)))(un(k)− u(k))

− λ

N∑
k=1

(
f(k, un(k))(un(k)− u(k))

)
− µ

N∑
k=1

(
g(k, un(k))(un(k)− u(k))

)
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+

N+1∑
k=1

∆(ϕc(∆u(k − 1)))(un(k)− u(k))

+ λ

N∑
k=1

(
λf(k, u(k))(un(k)− u(k))

)
+ µ

N∑
k=1

(
g(k, u(k))(un(k)− u(k))

)
≥ ∥un − u∥

−
N∑

k=1

(
λ(f(k, un(k))− f(k, u(k)))(un(k)− u(k))

+ µ(g(k, un(k))− g(k, u(k)))(un(k)− u(k))
)
. (16)

It is easy to see that

< I ′λ(un)− I ′λ(u), un − u >→ 0.

From (13)-(16), we have

∥un − u∥ → 0.

Consequently, the sequence un converges strongly to u in X. Therefore, Iλ sat-
isfies the (PS)-condition. From the conditions A3 and A4, there exist constants
a1, a2, b1, b2 > 0 such that

F (k, t) ≥ a1|t|ν − a2 (17)

for all k ∈ [1, N ]Z and t ∈ R.

G(k, t) ≥ b1|t|ν
′
− b2 (18)

for all k ∈ [1, N ]Z and t ∈ R. Now, choosing any u ∈ X\{0}, using (17) and (18) for
each τ > 0, one has

Iλ(τu) ≤ ∥τu∥ −N − 1− λ

N∑
k=1

F (k, τu(k))− µ

N∑
k=1

G(k, τu(k))

≤ τ∥u∥ − λτν
N∑

k=1

a1|u(k)|ν + λa2 − µτν
′

N∑
k=1

b1|u(k)|ν
′
+ µb2 −N − 1.

Since ν > 2, this indicates that the functional Iλ is unbounded from below. Thus, all

hypotheses of Theorem 2 are verified. Therefore, for each λ ∈
(
0,

2√
N+1

γ−N−1∑N
k=1 sup|t|≤γ F (k,t)

)
the functional Iλ admits two critical points that are weak solutions of problem (1).
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Remark 1. In Theorem 1 we observe that if f(k, 0) ̸= 0, then Theorem 7 ensures
the existence of two nontrivial solutions for problem (1). If the condition f(k, 0) ̸= 0
for all k ∈ [1, N ]Z does not hold, the second solution u2 of problem (1) may be trivial,
but the problem has at least a nontrivial solution.

Now, we want to present an example to illustrate the application of Theorem 6.

Example 2. Let N = 20. Put g(k, t) = 3t2 + t + k for all (k, t) ∈ [1, 20]Z × R,
so G(k, t) = t3 + t2 + kt for all (k, t) ∈ [1, 20]Z × R, hence limξ→+∞

ξg(k,ξ)
G(k,ξ) = 3, by

choosing ν′ = 3 and T ′ = 1, condition (A4) holds. Letting

f(k, t) =

{
t3 + cosπt+ 4, t ≤ 1,

5t4 − 1, t > 1,

for all k ∈ [1, 20]Z, we have

F (k, t) =

{
1
4 t

4 + 1
π sinπt+ 4t, t ≤ 1,

t5 + 13
4 , t > 1.

Hence, limξ→+∞
ξf(k,ξ)
F (k,ξ) = 5 < ∞ and limξ→−∞

ξf(k,ξ)
F (k,ξ) = 4 < ∞, thus by choosing

ν = 5 > 2 and T = 1, condition (A3) is satisfied, also ν > ν′. Taking γ = 100 and

η = 1 such that 2
√
1 + η2 − 1 = 2

√
2 − 1 < 2√

21
× 100 − 21 = 2√

N+1
γ −N − 1, we

clearly see that all assumptions of Theorem 6 are fulfilled. Therefore, it follows that

for each λ ∈
(
0,

2√
21

×100−21

21(1005+ 13
4 )

)
the following problem:−∆

(
∆u(k−1)√

1+(∆u(k−1))2

)
= λf(k, u(k)) + µ(3t2 + t+ k), k ∈ [1, 20]Z

u(0) = u(21) = 0,

has at least two nontrivial solutions.

Now, we consider λ = µ, and in this case we want to discuss the existence of at
least two and three solutions for problem (1).

Theorem 7. Assume that there exist two positive constants γ̄ > (N+1)
√
N+1

2 and η̄
with the property

√
N + 1

2
(2
√
1 + η̄2 +N − 1) > γ̄, (19)

and let the assumption (A2) in Theorem 5 hold. Moreover, assume that

(A5)
∑N

k=1 F (k, η) ≥ 0;

(A6) ∑N
k=1 sup|t|≤γ̄ F (k, t)

2√
N+1

γ̄ −N − 1
<

∑N
k=1 F (k, η)−

∑N
k=1 sup|t|≤γ̄ F (k, t)

2(
√

1 + η̄2 − 1)
.
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Then, for every

λ ∈
( 2(

√
1 + η̄2 − 1)∑N

k=1 F (k, η)−
∑N

k=1 sup|t|≤γ̄ F (k, t)
,

2√
N+1

γ̄ −N − 1∑N
k=1 sup|t|≤γ̄ F (k, t)

)
and for every sign-changing function g : [1, N ]Z × R → R satisfying in (6) problem
(1), in the case λ = µ, admits at least three solutions in X.

Proof. Put Iλ = Φ(u) + λΨ(u), where

Φ(u)=

N+1∑
k=1

(√
1 + (∆u(k−1))2−1

)
and Ψ(u)=−

N∑
k=1

(
F (k, u(k))+G(k, u(k))

)
(20)

for all u ∈ X. Standard arguments show that Φ and Ψ are Gâteaux differentiable
functionals whose Gâteaux derivatives at the point u ∈ X are given by

Φ′(u)(v) = −
N∑

k=1

∆(ϕc(∆u(k − 1)))v(k)

and

Ψ′(u)v = −
N∑

k=1

(
f(k, u(k))v(k) + g(k, u(k))v(k)

)
for all u, v ∈ X, respectively. We know that a critical point for function Φ(u)+λΨ(u)
represents a solution of problem (1) in the case λ = µ. Our objective is to imple-
ment Theorem 3 for Φ and Ψ. By sequentially weakly lower semicontinuity of the
norm, the functional Φ is sequentially weakly lower semicontinuous. Moreover, Φ
is continuously Gâteaux differentiable and its Gâteaux derivative admits a contin-
uous inverse on X∗. The functional Ψ : X → R is well-defined and continuously
Gâteaux differentiable and its Gâteaux derivative is compact. Thus it is enough
to show that Φ and Ψ satisfy (m1) and (m2) in Theorem 3. By (6), we can fix
α > 0 such that αλ < 2

N
√
N+1

, and there exists ρ ∈ R such that G(k, t) ≤ α|t| + ρ.

Now, we fix ε < 2
λN

√
N+1

− α. From the assumption (A2) there is h ∈ R such that

F (k, t) ≤ ε|t|+ h for every (k, t) ∈ [1, N ]Z × R. It follows that for each u ∈ X,

Φ(u) + λΨ(u) =

N+1∑
k=1

(√
1 + (∆u(k − 1))2 − 1

)
− λ

N∑
k=1

(
F (k, u(k)) +G(k, u(k))

)
≥

(N+1∑
k=1

[1 + (∆u(k − 1))2]
) 1

2 −
N+1∑
k=1

1− λε

N∑
1

|u(k)| − λh

− αλ

N∑
1

|u(k)| − λρ
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≥ ∥u∥ −N − 1− λ
εN

√
N + 1

2
∥u∥ − λNh− λ

αN
√
N + 1

2
∥u∥ − λNρ

≥
(
1− λ

εN
√
N + 1

2
− λ

αN
√
N + 1

2

)
∥u∥ − λNh− λNρ−N − 1,

thus lim∥u∥X→∞(Φ(u)+λΨ(u)) = ∞, which means the functional Iλ = Φ(u)+λΨ(u)
is coercive. Now it remains to show that (m2) of Theorem 3 is satisfied. Put
r̄ = 2√

N+1
γ̄ −N − 1 and

ω(k) =

{
η̄, k ∈ [1, N ]Z,

0, otherwise.

Clearly, w ∈ X and

Φ(ω) = 2(
√
1 + η̄2 − 1). (21)

Thus, by (19) we see that Φ(ω) > r̄. Moreover, since g is sign-changing and using
the condition (A5), we have

Ψ(ω) = −
N∑

k=1

(
F (k,w(k)) +G(k,w(k))

)
≤ −

N∑
k=1

F (k, η).

Taking (4) into account, for every u ∈ X such that Φ(u) < r̄, we get

sup
k∈[1,N ]Z

|u(k)| ≤ γ̄.

Thus

sup
u∈Φ−1(−∞,r̄)

N∑
k=1

(
F (k, u(k)) +G(k, u(k))

)
≤ sup

u∈Φ−1(−∞,r̄)

N∑
k=1

F (k, u(k))

≤
N∑

k=1

sup
|t|≤γ̄

F (k, t), (22)

for every u ∈ X with Φ(u) < r̄. So

sup
Φ(u)≤r̄

Ψ(u) ≤
N∑

k=1

sup
|t|≤γ̄

F (k, t).

By simple calculations and from the definition of φ1(r̄), since Φ(0) = Ψ(0) = 0 and

Φ−1(−∞, r̄)
ω
= Φ−1(−∞, ar̄), we have

φ1(r̄) = inf
u∈Φ−1]−∞,r̄[

Ψ(u)− inf
Φ−1(−∞,r̄)

ω Ψ(u)

r̄ − Φ(u)

≤
− inf

Φ−1(−∞,r̄)
ω Ψ(u)

r̄

≤
∑N

k=1 sup|t|≤γ̄ F (k, t)
2√
N+1

γ̄ −N − 1
.
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On the other hand, by (22), one has

φ2(r̄) = inf
u∈Φ−1(−∞,r̄)

sup
v∈Φ−1[r̄,∞)

Ψ(u)−Ψ(v)

Φ(v)− Φ(u)

≥ inf
u∈Φ−1(−∞,r̄)

Ψ(u)−Ψ(ω)

Φ(ω)− Φ(u)

≥
infu∈Φ−1(−∞,r̄) Ψ(u)−Ψ(ω)

Φ(ω)− Φ(u)

≥
−
∑N

k=1 sup|k|≤γ̄ F (k, t) +
∑N

k=1 F (k, η)

Φ(ω)− Φ(u)

≥
∑N

k=1 F (k, η)−
∑N

k=1 sup|t|≤γ̄ F (k, t)

2(
√
1 + η̄2 − 1)

.

From (A6) one has

φ1(r̄) < φ2(r̄).

Therefore, from Theorem 3, taking into account that

1

φ2(r̄)
≤ 2(

√
1 + η̄2 − 1)∑N

k=1 F (k, η)−
∑N

k=1 sup|t|≤γ̄ F (k, t)

and

1

φ1(r̄)
≥

2√
N+1

γ̄ −N − 1∑N
k=1 sup|t|≤γ̄ F (k, t)

,

we obtain the desired result.

Remark 2. In Theorem 7, if we replace the condition

(A7)
∑N

k=1 sup|t|≤γ̄ F (k,t)
2√

N+1
γ̄−N−1

<
∑N

k=1 F (k,η)

2(
√

1+η̄2−1)

with the condition (A6), the assumptions (19), (A5) and (A7) hold. Then, for each

λ ∈
(2(√1 + η̄2 − 1)∑N

k=1 F (k, η)
,

2√
N+1

γ̄ −N − 1∑N
k=1 sup|t|≤γ̄ F (k, t)

)
,

and for every sign-changing function g : [1, N ]Z × R → R satisfying condition (6),
in the case λ = µ problem (1) admits at least three solutions.

We now want to show the existence and multiplicity of solutions for problem (1)
by using Theorem 4 in the case λ = µ.
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Theorem 8. Assume that there exist three positive constants γ̄1 > (N+1)
√
N+1

2 ,

γ̄2 > (N+1)
√
N+1

2 and η̄ with the property

2√
N + 1

γ̄1 −N < 2
√
1 + η̄2 − 1 <

2√
N + 1

γ̄2 −N (23)

such that the assumption (A5) in Theorem 3 holds, and

(A8)

max
{∑N

k=1 sup|t|≤γ̄1
F (k, t)

2√
N+1

γ̄1 −N − 1
,

∑N
k=1 sup|t|≤γ̄2

F (k, t)
2√
N+1

γ̄2 −N − 1

}
<

∑N
k=1 F (k, η)

2(
√

1 + η̄2 − 1)
.

Then, for each

λ ∈ Λ =
(2(√1 + η̄2 − 1)∑N

k=1 F (k, η)
,min

{ 2√
N+1

γ̄1 −N − 1∑N
k=1 sup|t|≤γ̄1

F (k, t)
,

2√
N+1

γ̄2 −N − 1∑N
k=1 sup|t|≤γ̄2

F (k, t)

})
,

and for every sign-changing function g : [1, N ]Z × R → R satisfying in (6), in
the case λ = µ problem (1) admits at least two solutions u1,λ and u2,λ such that
maxk∈[1,N ]Z |u1,λ(k)| < γ̄1 and maxk∈[1,N ]Z |u2,λ(k)| < γ̄2.

Proof. Put

f̄(k, t) =


f(k,−γ̄1), if (k, t) ∈ [1, N ]Z × (−∞,−γ̄1)

f(t, x), if (k, t) ∈ [1, N ]Z × [−γ̄1, γ̄2]

f(k, γ̄2), if (k, t) ∈ [1, N ]Z × (γ̄2,∞).

Clearly, f̄ : [1, N ]Z×R → R is a continuous function. Now put F̄ (k, t) =
∫ t

0
f̄(k, ξ)dξ

for all (k, ξ) ∈ [1, N ]Z × R and take X and Φ as (2) and (20), respectively, and

Ψ(u) = −
N∑

k=1

(
F̄ (k, u(k)) +G(k, u(k))

)
for all u ∈ X. Our goal is to apply Theorem 4 to Φ and Ψ. It is well known that
lim∥u∥X→∞ Φ(u) = ∞ and Ψ is a differentiable functional whose differential at the
point u ∈ X is

Ψ′(u)v = −
N∑

k=1

(
f̄(k, u(k))v(k) + g(k, u(k))v(k)

)
for any v ∈ X, and it is also sequentially weakly lower semicontinuous. Furthermore,
Ψ′ : X → X∗ is a compact operator. Thus, it is enough to show that Φ and Ψ satisfy
conditions (n1), (n2) and (n3) in Theorem 4. Let

r̄1 =
2√

N + 1
γ̄1 −N − 1, r̄2 =

2√
N + 1

γ̄2 −N − 1
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and let ω ∈ X as in the proof of Theorem 4. Due to the assumptions (23) and (21),
we have r̄1 < Φ(ω) < r̄2 and infX Φ < r̄1 < r̄2. Moreover, arguing as in the proof of
Theorem 7 and taking Remark 2 into account, we obtain

φ(r̄1) ≤
∑N

k=1 sup|t|≤γ̄1
F (k, t)

2√
N+1

γ̄1 −N − 1
,

φ(r̄2) ≤
∑N

k=1 sup|t|≤γ̄2
F (k, t)

2√
N+1

γ̄2 −N − 1

and

φ∗
2(r̄2, r̄2) ≥

∑N
k=1 F (k, η)

2(
√
1 + η̄2 − 1)

.

Hence, from (A8), the conditions (n2) and (n3) of Theorem 4 hold. Therefore, from
Theorem 4 we obtain that for each λ ∈ Λ, the problem−∆

(
∆u(k−1)√

1+(∆u(k−1))2

)
= λ

(
f̄(k, u(k)) + g(k, u(k))

)
, k ∈ [1, N ]Z

u(0) = u(N + 1) = 0,

admits at least two solutions u1,λ and u2,λ such that maxk∈[1,N ]Z |u1,λ(k)| < γ̄2
1 and

maxk∈[1,N ]Z |u2,λ(k)| < γ̄2
2 . Observing that these solutions are also the solutions for

problem (1) in the case λ = µ, the conclusion follows.

We now consider the case where variables of function f are separated, in which
case problem (1) is written as follows:−∆

(
∆u(k−1)√

1+(∆u(k−1))2

)
= λ

(
θ(k)f(u(k)) + g(k, u(k))

)
, k ∈ [1, N ]Z

u(0) = u(N + 1) = 0,

where θ : [1, N ]Z → R is a non-negative and non-zero function such that θ ∈
l1([1, N ]Z) and f : R → R is a non-negative and continuous function.

Put

F (ξ) =

∫ ξ

0

f(t)dt, for all ξ ∈ R.

We apply the results of Theorems 7 and 8 to the case when f(k, t) = θ(k)f(t) ( ∀
(k, t) ∈ [1, N ]Z × R).

Theorem 9. Assume that there exist two positive constants γ̄ > (N+1)
√
N+1

2 and η̄
with the property

√
N + 1

2
(2
√
1 + η̄2 +N − 1) > γ̄

and let the assumption (A2) and
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(A8)
F (γ̄)

2√
N+1

γ̄−N−1
< F (η)

2(
√

1+η̄2−1)
hold.

Then, for every

λ ∈
( 2(

√
1 + η̄2 − 1)

∥θ∥l1([1,N ]Z)F (η)
,

2√
N+1

γ̄ −N − 1

∥θ∥l1([1,N ]Z)F (γ̄)

)
and for every sign-changing function g : [1, N ]Z × R → R satisfying (6), in the case
λ = µ, problem (1) admits at least three solutions in X.

Theorem 10. Assume that there exist three positive constants γ̄1 > (N+1)
√
N+1

2 , η̄

and γ̄2 > (N+1)
√
N+1

2 with the property

2√
N + 1

γ̄1 −N < 2
√
1 + η̄2 − 1 <

2√
N + 1

γ̄2 −N

and

(A9)

max
{ F (γ̄1)

2√
N+1

γ̄1 −N − 1
,

F (γ̄2)
2√
N+1

γ̄2 −N − 1

}
<

F (η)

2(
√

1 + η̄2 − 1)
.

Then, for each

λ ∈ Λ =
( 2(

√
1 + η̄2 − 1)

∥θ∥l1([1,N ]Z)F (η)
,min

{ 2√
N+1

γ̄1 −N − 1

∥θ∥l1([1,N ]Z)F (γ̄1)
,

2√
N+1

γ̄2 −N − 1

∥θ∥l1([1,N ]Z)F (γ̄2)

})
and for every sign-changing function g : [1, N ]Z × R → R satisfying (6), in the
case λ = µ, problem (1) admits at least two solutions u1,λ and u2,λ such that
maxk∈[1,N ]Z |u1,λ(k)| < γ̄1 and maxk∈[1,N ]Z |u2,λ(k)| < γ̄2.
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