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On symplectic and isospectral integration of the stationary
Landau–Lifshitz (Neumann oscillator) equation

Saša Krešić–Jurić∗and Tea Martinić–Bilać
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Abstract. In this paper, we discuss numerical integration of the stationary Landau–
Lifshitz (LL) equation. Using a Lax pair representation of the LL equation, we propose an
isospectral algorithm that preserves the geometric structure of the system. The algorithm
computes a discrete flow of a pair of matrices satisfying Lax–type equations and projects
the flow on the phase space of the system. Since the stationary LL equation is equivalent
to an integrable Hamiltonian system on the cotangent bundle of the unit sphere, we show
that it can also be integrated by a symplectic method for constrained Hamiltonian systems.
Comparison of the two methods demonstrates that they are similar in terms of accuracy
and stability over long–time integration, but the isospectral method is much faster since it
avoids solving a system of nonlinear equations required at each iteration of the symplectic
algorithm.
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1. Introduction

The Landau–Lifshitz (LL) equation is an important integrable system given by the
partial differential equation:

St = S × Sxx + S × JS, S ∈ R3, ‖S‖ = 1, (1)

where S = S(x, t) is a unit vector and J = diag(J1, J2, J3) is a constant diagonal
matrix. Equation (1) describes classical spin waves in a ferromagnetic crystal with
magnetization vector S and J characterizes the interaction anisotropy [14]. In this
model, the ferromagnetic crystal is assumed to have one distinguished axis (such as
a stretched wire), which is the axis of easiest magnetization. The crystal consists
of layers called domains, which are magnetized to saturation parallel to this axis in
opposite directions. Between two domains there is an intermediate region in which
the direction of the magnetic moment S changes from one domain to the next. The
length of the vector S is equal to the saturation moment which is normalized to one.
If the axis perpendicular to the layers is labelled by x, then the time evolution of
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S is given by (1). We note that equation (1) remains invariant if the interaction
constants Ji are replaced by Ji +C, hence we may assume that Ji > 0 for i = 1, 2, 3.

Integrability of the Landau–Lifshitz equation has been studied extensively in the
literature. We refer the reader to [9] for a comprehensive review, and mention here
only a few key results. The LL equation admits a zero–curvature representation
with spectral parameter lying on a torus [24, 6]. Using this representation, it was
shown in [8] that the LL equation can be integrated by an analogue of the Birkhoff
factorization for elliptic curves. The inverse scattering method for the LL equation
was developed in [17] and [23] as a matrix Riemann problem on an elliptic curve,
and a description of the n–soliton solution was given. Soliton solutions to the LL
equation were obtained by a dressing procedure presented in [5, 4], and solutions
in terms of theta functions were found in [2, 3]. The isotropic case J = 0, also
known as the Heisenberg magnet equation, was studied by the inverse scattering
method in [15] and [26], and a geometric description in terms of the Segal–Wilson
Grassmannian was given in [13].

Although many special solutions to the LL equation have been found in the
literature, there is no closed form solution to a general initial value problem. Thus,
it is of interest to study numerical solutions to the LL equation. This paper is
concerned with numerical integration of the stationary (time independent) equation.
The stationary case of the LL equation is interesting because it is related to an
integrable Hamiltonian system and it also admits a Lax pair representation. Thus
it can be efficiently integrated by symplectic or isospectral methods. The stationary
solutions satisfy

S × (Sxx + JS) = 0, ‖S‖ = 1,

which implies
Sxx + JS = λS (2)

for some λ ∈ R. The multiplier λ is uniquely determined from the normalization
condition ‖S‖ = 1. Differentiating ‖S‖2 = 1 twice with respect to x we obtain

〈Sxx, S〉+ ‖Sx‖2 = 0, (3)

where 〈· , ·〉 denotes the inner product in R3. Substituting (2) into (3) we find

λ = 〈JS, S〉 − ‖Sx‖2,

hence the stationary LL equation is a nonlinear problem given by

Sxx = −JS +
(
〈JS, S〉 − ‖Sx‖2

)
S, ‖S‖ = 1. (4)

In this paper, we consider two efficient methods for integrating equation (4) based on
symplectic and isospectral techniques. The symplectic method uses interpretation
of (4) as a constrained Hamiltonian system, while the isospectral method employs
the Lax pair representation of the equation.

The paper is organized as follows. In Section 2, we recall that the stationary
Landau–Lifshitz equation is equivalent to the C. Neumann problem which describes
the motion of an anisotropic harmonic oscillator constrained to the unit sphere. Us-
ing this equivalence, we devise a symplectic algorithm for the integration of the LL
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equation, which exactly preserves the geometric constraints of the system. Section
3 is concerned with isospectral integration of the stationary LL equation based on a
Lax pair representation of the Neumann problem with a spectral parameter z ∈ C.
The Lax representation reduces to a system of differential equations for matrices de-
fined on the phase space of the system. We show that the system can be integrated
by an isospectral method which leads to exact conservation of the geometric con-
straints of the system. In Section 4, we compare numerical results of both methods
for oscillatory solutions and with a special case of an explicit solution admitting the
prescribed asymptotic behaviour.

2. Symplectic integration of the Landau–Liftshitz equation

It was noted by Veselov [25] that the stationary LL equation (4) is equivalent to the
C. Neumann problem, which describes the motion of a point particle with Hamilto-
nian

H(q, p) =
1

2
‖p‖2 +

1

2
〈Jq, q〉, (q, p) ∈ R6 (5)

constrained to the unit sphere. This allows for the application of symplectic methods
to integration of (1). Let

XH =

3∑
k=1

∂H

∂pk

∂

∂qk
− ∂H

∂qk

∂

∂pk

be the Hamiltonian vector field associated with Hamiltonian (5). The equations
of motion of the Neumann problem can be derived by the method of constrained
vector fields [19]. We constrain the vector field XH to the cotangent bundle of the
unit sphere T ∗S2 =

{
(q, p) ∈ R6 | ‖q‖ = 1, 〈q, p〉 = 0

}
by requiring that the

constrained field is tangent to T ∗S2. The manifold T ∗S2 is the level set of the
function G : R3 × R3 → R2 defined by

G1(q, p) =
1

2

(
‖q‖2 − 1

)
, G2(q, p) = 〈q, p〉,

hence we replace XH by the vector field

X∗H = XH − λ1XG1
− λ2XG2

,

where the functions λi = λi(q, p) are chosen such that the flow of X∗H lies on T ∗S2.
This holds if and only if the field X∗H satisfies the invariance condition

dGi(q, p)X
∗
H(q, p) = 0 ∀ (q, p) ∈ T ∗S2, i = 1, 2,

which is equivalent to the system of equations

{Gi, H} −
2∑

j=1

λj{Gi, Gj} = 0, i = 1, 2, (6)
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where {· , ·} is the canonical Poisson bracket {F,G} =
∑3

k=1
∂F
∂qk

∂G
∂pk
− ∂F

∂pk

∂G
∂qk

. One

easily verifies that {G1, G2} = 1 on T ∗S2, hence the system of equations (6) has a
unique solution

λ1(q, p) = 〈Jq, q〉 − ‖p‖2, λ2 = 0.

Therefore, the constrained vector field is given by

X∗H =

3∑
k=1

∂H

∂pk

∂

∂qk
−
(∂H
∂qk
− λ1

∂G1

∂qk

) ∂

∂pk
.

The Hamiltonian equations of motion yield

dqk
dt

= X∗H(qk) =
∂H

∂pk
= pk, (7)

dpk
dt

= X∗H(pk) = −∂H
∂qk

+ λ1
∂G1

∂qk
= −Jkqk +

(
〈Jq, q〉 − ‖p‖2

)
qk, (8)

where (q, p) ∈ T ∗S2. Combining (7) and (8) we find

d2q

dt2
= −Jq +

(
〈Jq, q〉 −

∥∥∥dq
dt

∥∥∥2)q, ‖q‖ = 1. (9)

We note that equation (9) is the same as equation (4) if we identify the magnetization
vector S with the position vector q ∈ S2 and the space variable x with time t. It is
well known that (9) is a completely integrable Hamiltonian system. This was shown
by C. Neumann using separation of variables in the Hamilton–Jacobi equation [20].
The system has constants of motion in involution found by K. Uhlenbeck (see [21]),

Fi = q2i +
∑
k 6=i

(piqk − qipk)2

Ji − Jk
,

3∑
i=1

Fi = 1. (10)

Integrability of the Neumann problem has also been proved by Lie algebraic methods
in [21] and by Birkhoff factorization of loops groups in [12].

The Hamiltonian structure of (9) allows the application of geometric numeri-
cal integration techniques in finding efficient and stable numerical algorithms that
preserve the structure of the system under discretization. Since the phase space
of the Neumann problem is the cotangent bundle T ∗S2, one should apply an algo-
rithm that preserves the symplectic structure of the system together with geometric
constraints ‖q‖ = 1 and 〈q, p〉 = 0. Symplectic algorithms that preserve geometric
constraints can be constructed in various ways. Here we consider the composition
method proposed by C. Reich in [22]. Consider a free Hamiltonian

H(q, p) =
1

2
pTM−1p+ U(q), (11)

where M is a positive definite symmetric matrix. The equations of motion are given
by

q̇ = ∇pH = M−1p, (12)

ṗ = −∇qH = −∇U(q). (13)
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A widely used symplectic integrator for equations (12)–(13) is the Strömer–Verlet
algorithm [11] defined by

pn+ 1
2

= p̂n −
h

2
∇U(q̂n), (14)

q̂n+1 = q̂n + hM−1pn+ 1
2
, (15)

p̂n+1 = pn+ 1
2
− h

2
∇U(q̂n+1). (16)

The discrete flow ϕ : (q̂n, p̂n) 7→ (q̂n+1, p̂n+1) given by (14)–(16) is symplectic and of
order two, and it is also symmetric with respect to changing the direction of time
t 7→ −t (for details see [11]).

Suppose now that the system with Hamiltonian (11) satisfies the holonomic con-
straint f(q) = 0 for some C1 function f : Rd → Rm, m < d. By differentiating
d
dtf(q) = 0 we find that the system also satisfies the constraint Df(q)M−1p = 0,
where Df(q) is the Jacobian matrix of f . Thus, the flow of the Hamiltonian vector
field XH lies on the manifold

M =
{

(q, p) ∈ R2d | f(q) = 0, Df(q)M−1p = 0
}
.

In order to take the geometric constraints into account, we want to project the
discrete flow ϕ onto the manifold M such that the projection remains symplectic.
This can be done using the following lemma proved in [22].

Lemma 1. Let λ : R2d → Rm be an arbitrary function of phase space coordinates
(q, p) ∈ R2d. Suppose that q satisfies the holonomic constraint f(q) = 0 for some C1

function f : Rd → Rm. Then the map (q, p) 7→ (q̂, p̂) defined by

q̂ = q, (17)

p̂ = p− hDf(q)Tλ(q, p), h ∈ R, (18)

preserves the symplectic form ω =
∑d

i=1 dqi ∧ dpi.

The idea is to compose the map (17)–(18) by the Strömer–Verlet algorithm (14)–
(16) and use freedom of choice of λ in order to satisfy the constraints defining the
manifold M. Let ϕ1 : (qn, pn) 7→ (q̂n, p̂n) denote the map (17)–(18) with step size
h/2 and an arbitrary function λ : R2d → Rm. The composition with the Strömer–
Verlet map, ϕ ◦ ϕ1 : (qn, pn) 7→ (q̂n+1, p̂n+1), yields

pn+ 1
2

= pn −
h

2

[
Df(qn)Tλ(qn, pn) +∇U(qn)

]
,

q̂n+1 = qn + hM−1pn+ 1
2
,

p̂n+1 = pn+ 1
2
− h

2
∇U(q̂n+1).

Furthermore, let ϕ2 : (q̂n+1, p̂n+1) 7→ (qn+1, pn+1) denote the map (17)–(18) with
step size h/2 and an arbitrary function µ : R2d → Rm. Then by composing the maps
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ϕ2 ◦ ϕ ◦ ϕ1 : (qn, pn) 7→ (qn+1, pn+1) we obtain

pn+ 1
2

= pn −
h

2

[
Df(qn)Tλn +∇U(qn)

]
, (19)

qn+1 = qn + hM−1pn+ 1
2
, (20)

pn+1 = pn+ 1
2
− h

2

[
Df(qn+1)Tµn+1 +∇U(qn+1)

]
, (21)

where λn = λ(qn, pn) and µn+1 = µ(qn+1, p̂n+1). Since all maps are symplectic, the
composition ϕ2 ◦ ϕ ◦ ϕ1 is also symplectic for any choice of the functions λ and µ.
Now choose λ such that

f(qn+1) = 0. (22)

This leads to a system of equations (19), (20) and (22) for the unknowns qn+1 ∈ Rd

and λn ∈ Rm. Similarly, we can choose µ such that

Df(qn+1)M−1pn+1 = 0, (23)

which yields a system of equations (19), (21) and (23) for the unknowns pn+1 ∈ Rd

and µn+1 ∈ Rm. We note that we do not require the explicit form of λ and µ,
but only their numerical values λn and µn+1 determined by the conditions (22)
and (23). Thus, if we start with initial data (q0, p0) ∈ M, then the discrete flow
(qn, pn) 7→ (qn+1, pn+1) lies on the manifold M. The algorithm (19)–(23) is known
as the RATTLE algorithm. It is symplectic, time reversible and convergent of order
two, and it is also explicit for separable Hamiltonians. More details about the
RATTLE algorithm, including a different proof of its symplecticity, can be found in
[11].

Applying the RATTLE algorithm to the Neumann problem (9) with potential
U(q) = 1

2 〈Jq, q〉 and holonomic constraint f(q) ≡ ‖q‖2 − 1 = 0, we find

qn+1 = qn + hpn −
h2

2

(
λnqn + Jqn

)
, (24)

pn+1 = pn −
h

2

(
λnqn + Jqn + µn+1qn+1 + Jqn+1

)
, (25)

where J = diag(J1, J2, J3). Here, λn, µn+1 ∈ R are determined on the basis of
conditions (22) and (23), i.e.,

‖qn+1‖2 = 1 (26)

and

〈qn+1, pn+1〉 = 0. (27)

First we show that one can always solve the sytem of equations (24) and (26).

Lemma 2. Let (qn, pn) ∈ T ∗S2. Then the system of equations (24) and (26) has a
unique solution (qn+1, λn) ∈ S2 × R for a sufficiently small h.
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Proof. Writing the system of equations (24) and (26) explicitly in components, we
have

qin+1 − hpin +
h2

2
λnq

i
n +

h2

2
Jiq

i
n − qin = 0, i = 1, 2, 3, (28)

3∑
i=1

(qin+1)2 − 1 = 0. (29)

Introduce variables x = h, yi = qin+1, i = 1, 2, 3,, and y4 = h2λn. Then the system
(28)–(29) is equivalent to F (x, y) = 0, where F : R× R4 → R is given by

F (x, y) =


y1 + 1

2q
1
n y4 − xp1n + 1

2x
2J1q

1
n − q1n

y2 + 1
2q

2
n y4 − xp2n + 1

2x
2J2q

2
n − q2n

y3 + 1
2q

2
n y4 − xp3n + 1

2x
2J3q

3
n − q3n

y21 + y22 + y23 − 1

 .
Note that F (a, b) = 0 at the point a = 0, b = (qn, 0) since ‖qn‖2 = 1. The Jacobian
of F with respect to y,

DyF (x, y) =


1 0 0 1

2q
1
n

0 1 0 1
2q

2
n

0 0 1 1
2q

3
n

2y1 2y2 2y3 0

 ,
has a nonvanishing determinant at (a, b), detDyF (a, b) = −1 6= 0; hence by the
Implicit Function Theorem there exists ε > 0 and a unique C1 function g : (−ε, ε)→
R4 such that g(0) = (qn, 0) and F (x, g(x)) = 0 for all x ∈ (−ε, ε). This implies that
the equation F (x, y) = 0 has a unique solution y = g(x) for all |x| < ε. Consequently,
the system of equations (28)–(29) has a unique solution qin+1 = yi, i = 1, 2, 3, and
λn = y4/h

2 whenever 0 < |h| < ε.

Now, given qn+1 with ‖qn+1‖2 = 1 one finds from (25) and (27) that µn+1 has
the explicit form

µn+1 =
2

h
〈qn+1, pn〉 − λn〈qn+1, qn〉 − 〈qn+1, Jqn〉 − 〈qn+1, Jqn+1〉. (30)

Finally, (30) and (25) yield the momentum pn+1. We summarize the algorithm for
the integration of the Neumann problem as follows:

(i) given a point (qn, pn) ∈ T ∗S2, solve by a numerical method the system of
equations (28)–(29) to obtain qn+1 and λn,

(ii) compute µn+1 from (30) and then compute pn+1 from (25).

The obtained solution is a point (qn+1, pn+1) ∈ T ∗S2.
In the following section, we present an alternative method for solving numerically

the Neumann problem based on a Lax pair representation, and compare it with the
symplectic method discussed here.
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3. Isospectral method for solving the Landau–Liftshitz
equation

A number of integrable systems possess a Lax representation whereby the equations
of motion can be written in the form:

dL

dt
= [M,L], L(0) = L0, (31)

where L and M are matrix functions defined on the phase space of the system
possibly depending on a spectral parameter, and [M,L] = ML− LM is the matrix
commutator. It is well known that the solution of the Lax equation (31) is given by
L(t) = P (t)L(0)P (t)−1, where the matrix P (t) satisfies the differential equation

dP

dt
= MP, P (0) = I.

Since L(t) and L(0) have the same spectrum, the eigenvalues of L(t) are time inde-
pendent, hence the flow (t, L0) 7→ L(t) is isospectral. It is easily seen that the trace
TrLk(t), k ≥ 1, is also invariant under the flow determined by (31). Therefore, if a
system of Hamilton’s equations can be written in Lax form for some choice of matri-
ces L and M , then the constants of motion can be found by algebraic methods either
from the eigenvalues of L(t) or from TrLk(t). This usually implies integrability of
the system in the Arnold–Liouville sense provided there are sufficiently many inde-
pendent integrals of motion in involution. Examples of Hamiltonian systems with
Lax representation include the Kowalevski top, the Toda chain, the Calogero–Moser
model [1], [18], and Euler–Arnold equation [16].

In this section, we are concerned with solving the Neumann problem numerically
by discretizing (31) such that the underlying discrete flow lies on the manifold T ∗S2.
For further discussion we recall the following result due to K. Uhlenbeck [21].

Lemma 3. Define matrices Q = q ⊗ q and L = p ⊗ q − q ⊗ p, and let U(z) =
Jz2 + Lz −Q and M(z) = Jz + L be matrix polynomials in the spectral parameter
z ∈ C. Then equation (9) is equivalent to the Lax equation

dU

dt
= [M,U ] subject to constraints ‖q‖ = 1, 〈q, p〉 = 0. (32)

Proof. The Lax equation (32) is equivalent to the system of equations

dQ

dt
= [L,Q],

dL

dt
= −[J,Q]. (33)

Since Qij = qiqj and Lij = piqj − qipj , the commutators [L,Q] and [J,Q] are given
by

[L,Q]ij = pi qj + qi pj , [J,Q]ij = (Ji − Jj) qi qj .

The first equation in (33) yields

(q̇i − pi)qj + (q̇j − pj)qi = 0,
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which implies q̇i = pi since any two coordinates are independent. The second equa-
tion in (33) implies

ṗi qj + pi q̇j − q̇i pj − qi ṗj = −(Ji − Jj) qi qj . (34)

Substituting q̇i = pi into (34) we find

q̈i qj − qi q̈j = −(Ji − Jj) qi qj . (35)

Multiplying equation (35) by qj and summing over j we obtain

q̈i = −Ji qi + 〈q, q̈〉 qi + 〈Jq, q〉 qi, (36)

where we have used the constraint ‖q‖ = 1. Differentiating the condition 〈q, p〉 = 0
yields 〈q̈, q〉 = −‖q̇‖2, hence substituting this expression into (36) we obtain the
equation of motion for the Neumann problem (9).

As noted earlier, the constants of motion can be found from the trace TrUk(z),
k ≥ 1. For k = 1 we have TrU(z) = −‖q‖2, which is trivially constant since ‖q‖ = 1.
For k = 2, 3, after some algebraic manipulation we find

TrU2(z) = (Tr J2)z4 − 2
(
〈Jq, q〉+ L2

12 + L3
13 + L2

23

)
z2 + ‖q‖4, (37)

TrU3(z) = (Tr J3)z6

− 3
[
〈Jq, Jq〉+ J1(L2

12 + L2
13) + J2(L2

12 + L2
23) + J3(L2

13 + L2
23)
]
z4

+ 3
[
‖q‖2〈Jq, q〉+

∑
i<j

L2
ij(q

2
i + q2j ) + 2

3∑
k=1

k 6=i<j 6=k

Lki Lkj qi qj

]
z2 − ‖q‖6.

(38)

Since each coefficient multiplying the spectral parameter z is constant, we obtain
the following nontrivial integrals of motion from (37) and (38):

F̃1 = 〈Jq, q〉+ L2
12 + L2

13 + L2
23,

F̃2 = 〈Jq, Jq〉+ J1(L2
12 + L2

13) + J2(L2
12 + L2

23) + J3(L2
13 + L2

23),

F̃3 = 〈Jq, q〉+
∑
i<j

L2
ij(q

2
i + q2j ) + 2

3∑
k=1

k 6=i<j 6=k

Lki Lkj qi qj .

These integrals are different from the ones given in (10). Since the Neumann problem
has two degrees of freedom, only two functionally independent constants in involu-
tion are sufficient to prove its integrability. We note that the Lax equation (32)
can be intepreted as a differential equation on the Lie algebra of the twisted loop
group LSO(3), and it can be integrated by solving a special case of the Birkhoff
factorization problem on LSO(3) [12].

Next, we turn to a numerical solution of the Neumann problem using the Lax
equation (32). Our goal is to solve the system of differential equations (33) by an
isospectral method. A solution to the Lax equation for Q in (33) can be written as

Q(t) = P (t)Q(0)P (t)−1, t ≥ 0,
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where
dP

dt
= L(t)P (t), P (0) = I, t ≥ 0. (39)

Let us introduce a partition of the time interval 0 = t0 < t1 < t2 < · · · . In every
subinterval [tn, tn+1] the matrix Q satisfies

Q(tn+1) = P (tn+1)Q(tn)P (tn+1)−1,

where P (t) is the solution to

dP

dt
= L(t)P (t), tn ≤ t ≤ tn+1, P (tn) = I (40)

(note that the functions P (t) appearing in (39) and (40) are actually different). Since
L(t) is skew–symmetric, it follows from (40) that P (t) is orthogonal, P (t)−1 = P (t)T .
Therefore, we can write Q(tn+1) = P (tn+1)Q(tn)P (tn+1)T . Suppose that (Pn)∞n=1

is a sequence of orthogonal matrices approximating P (tn), and define a sequence
(Qn)∞n=0 by

Qn+1 = Pn+1Qn P
T
n+1, Q0 = Q(0). (41)

Recall that Q(t) = q(t) ⊗ q(t) is a symmetric matrix and TrQ(t) = ‖q(t)‖2 = 1
for all t ≥ 0. The advantage of computing numerical approximations of Q(t) by the
method (41) is twofold. Since QT

0 = Q0, algorithm (41) implies that QT
n = Qn for all

n ≥ 1. Furthermore, the discrete flow Qn 7→ Qn+1 is isospectral since PT
n+1 = P−1n+1,

and also TrQn = 1 for all n ≥ 1. Therefore, algorithm (41) preserves two important
properties of the continuous system:

(i) symmetry of the matrix Q(t), and

(ii) the geometric constraint ‖q(t)‖ = 1.

In order to compute the map Qn 7→ Qn+1 using (41), we need to solve equation (40)
by a method that preserves orthogonality of the matrix P . Then we can use the
second equation in (33) to approximate L(tn) and obtain the phase space variables
(qn, pn) ∈ T ∗S2.

We solve equation (40) by the implicit midpoint rule, which is a one–stage Runge–
Kutta method with a Butcher tableau

1
2

1
2

1

Recall that if y satisfies the differential equation y′(t) = f(t, y), the midpoint rule is
defined by

yn+1 = yn + hk1, (42)

k1 = f
(
tn +

1

2
h, yn +

1

2
hk1
)
. (43)

Applying the algorithm (42)–(43) to (40) with f(t, P ) = L(t)P we obtain

Pn+1 = Pn + hK1, (44)

K1 = Ln+ 1
2

(
Pn +

1

2
hK1

)
, (45)
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where Ln+ 1
2

= L(tn + 1
2h). Note that the above algorithm is explicit since K1 can

be expressed as

K1 =
(
I − 1

2
hLn+ 1

2

)−1
Ln+ 1

2
Pn.

The algorithm (44)–(45) belongs to a family of Runge–Kutta methods that preserve
orthogonality of the matrix Pn [7]. We provide a simplified proof of this fact for the
special case considered here.

Theorem 1. Suppose (Pn)∞n=1 is a sequence of matrices obtained by the algorithm
(44)–(45), where L(t) is a skew–symmetric matrix. If P1 is orthogonal, then Pn is
orthogonal for all n ≥ 1.

Proof. We prove that PT
n+1Pn+1 = PT

n Pn. Define Φ = Pn + 1
2hK1. Then

PT
n+1Pn+1 = (Pn+hK1)T (Pn+hK1) = PT

n Pn+h(KT
1 Pn+PT

n K1)+h2KT
1 K1. (46)

Furthermore,

KT
1 Pn+PT

n K1 = KT
1

(
Φ−1

2
hK1

)
+
(
Φ−1

2
hK1

)T
K1 = KT

1 Φ+ΦTK1−hKT
1 K1. (47)

Substituting (47) into (46) we find

PT
n+1Pn+1 = PT

n Pn + h(KT
1 Φ + ΦTK1).

From (45) we have K1 = Ln+ 1
2
Φ, which yields

KT
1 Φ + ΦTK1 = ΦT

(
LT
n+ 1

2
+ Ln+ 1

2

)
Φ = 0,

since Ln+ 1
2

is skew–symmmetric. Therefore, PT
n+1Pn+1 = PT

n Pn. Since PT
1 P1 = I,

it follows by induction that PT
n Pn = I for all n ≥ 1. The matrix Pn is regular, hence

also PnP
T
n = I for all n ≥ 1. Thus, the algorithm (44)–(45) preserves orthogonality

of Pn.

We use the method (44)–(45) to solve the differential equation (40). Since
P (tn) = I, the value of P (tn+1) is approximated by Pn+1 = I + hK1, where

K1 =
(
I − 1

2
hLn+ 1

2

)−1
Ln+ 1

2
.

The value of the matrix Ln+ 1
2

= L(tn + 1
2h) can be easily approximated to any

degree of accuracy using the Taylor series of L(t) since all derivatives L(k)(t) can be
expressed as nested commutators of the matrices L(t) and Q(t) by using equations
(33). For example, to the second order in ∆t we have

L(t+ ∆t) = L(t) + ∆t [Q(t), J ] +
1

2
(∆t)2

[
[L(t), Q(t)], J

]
+O(∆t3). (48)

Each term in the Taylor expansion of L(t) is skew–symmetric, hence the above
approximation does not destroy skew–symmetry of Ln+ 1

2
. Now, the full algorithm
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for computation of Qn+1 can be described as follows. For given values of Qn and
Ln compute

Ln+ 1
2

= Ln +
1

2
h[Qn, J ] +

h2

8

[
[Ln, Qn], J

]
, (49)

K1 =
(
I − 1

2
hLn+ 1

2

)−1
Ln+ 1

2
, (50)

Pn+1 = I + hK1, (51)

Qn+1 = Pn+1QnP
T
n+1. (52)

In the final, step we approximate the value of L(tn + h) by the Taylor series (48),

Ln+1 = Ln + h[Qn, J ] +
1

2
h2
[
[Ln, Qn], J

]
. (53)

Approximations (49) and (53) can be computed by a higher order Taylor series, if
desired. The map (Qn, Ln) 7→ (Qn+1, Ln+1) given by (49)–(53) describes the flow
of the phase space variables (qn, pn) on the manifold T ∗S2. Next, we show how to
compute (qn, pn) from the given values of the matrices (Qn, Ln).

Lemma 4. Let Qn and Ln, n ≥ 0, be a sequence of matrices obtained from the
algorithm (49)–(53), where Q0 = q0⊗ q0 and L0 = p0⊗ q0− q0⊗ p0 for some initial
data (q0, p0) ∈ T ∗S2. Then for every n ≥ 1 there exists a point (qn, pn) ∈ T ∗S2 such
that Qn = qn ⊗ qn and Ln = pn ⊗ qn − qn ⊗ pn.

Proof. The characteristic polynomial of Q0 is given by

det(Q0 − λI) = ‖q0‖2λ2 − λ3 = λ2(1− λ),

hence the eigenvalues of Q0 are λ1 = 1, λ2 = λ3 = 0. Since Pn is orthogonal for
all n ≥ 1, the matrix Qn is similar to Q0; thus Qn has the same spectrum as Q0.
Furthermore, QT

0 = Q0 implies that QT
n = Qn for all n ≥ 1. By the Spectral theorem

for real symmetric matrices, Qn can be factored as

Qn = ΩnDΩT
n , (54)

where D = diag(1, 0, 0) and Ωn = [Ωij
n ] is an orthogonal matrix. The right–hand

side of (54) implies that Qn = qn ⊗ qn for a unit vector qn ∈ R3, where qin = ±Ωii
n .

The same conclusion holds for any ordering of the eigenvalues of Q0. Decomposition
(54) determines the vector qn up to an overall sign. The correct sign is chosen by
minimizing the distance ‖qn − qn−1‖ = min. Now, given the vector qn, there is a
unique vector pn ∈ R3 such that Ln = pn ⊗ qn − qn ⊗ pn and 〈qn, pn〉 = 0. It is
readily verified that the components of pn are given by

pjn =

3∑
i=1

Lji
n q

i
n, j = 1, 2, 3.

Therefore, the matrices Qn and Ln yield the phase space variables (qn, pn) on T ∗S2.
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4. Numerical results

We compare the two methods by performing numerical simulations of the Neumann
problem in the case of oscillatory and asymptotic solutions. Figure 1 shows the RAT-
TLE and isospectral simulation of the Neumann oscillator with interaction constants
J1 = 1, J2 = 2, J3 = 5, and step size h = 0.02 for N = 10000 iterations. The initial
condition is given by q0 =

(
1
2 ,

1
2 ,

1√
2

)
and p0 = (1,−1, 0). We observe that numerical

trajectories computed by both methods are very close and show the correct quali-
tative behaviour of the system. Figure 2 shows the corresponding solution S(x) of
the stationary Landau-Lifshitz equation obtained by mapping q 7→ S and t 7→ x.

Figure 1: Simulation of the Neumann oscillator with the RATTLE and isospectral methods with
time step h = 0.02 and N = 10000 iterations

Figure 3 compares the error in constants of motion Fi given by (10) for the RATTLE
and isospectral methods. Both errors are of the same order of magnitude (i.e. 10−3),
but the error in F1 and F3 for the isospectral algorithm shows a small overall growth
after a large number of iterations. The behaviour of the error for F1, F2 and F3 is
consistent with the fact that they are constrained by the relation F1 + F2 + F3 = 1.

Next, we compare the two methods with the exact solution given in [10] exhibiting
the asymptotic behavior q(t) → (0, 0, 1) as t → ∞. Introduce the variables x =
ω1t + α1 and y = ω2t + α2, where ω1 =

√
J3 − J1, ω2 =

√
J3 − J2, and α1, α2 are

arbitrary real numbers. Let k = ω2/ω1, k′ =
√

1− k2 and define

a(t) = cosh(x) cosh(y)− k sinh(x) sinh(y),

b(t) = sinh(x) sinh(y)− k cosh(x) cosh(y).
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Figure 2: Magnetization vector S(x) between two domains

Figure 3: Error in constants of motion (10) for the RATTLE and isospectral methods

Then the vector q = (q1, q2, q3) given by

q1(t) =
k′ cosh(y)

a(t)
, q2(t) =

k′ sinh(x)

a(t)
, q3(t) =

b(t)

a(t)
, (55)

is a solution to (9) such that q(t) → (0, 0, 1) as t → ∞. The initial position as a
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Figure 4: (a) Exact solution with asymptotic limit q → (0, 0, 1). (b) L2–error between the exact
solution and numerical approximations computed by the RATTLE and isospectral algorithms

function of the parameters α1, α2 ∈ R is given by

q1(0) =
k′ cosh(α2)

a(0)
, q2(0) =

k′ sinh(α1)

a(0)
, q3(0) =

b(0)

a(0)
.

The initial momenta pi(0) = q̇i(0) are found to be

p1(0) = k′
ω2 sinh(α2)a(0)− cosh(α2)ȧ(0)

a2(0)
,

p2(0) = k′
ω1 cosh(α1)a(0)− sinh(α1)ȧ(0)

a2(0)
,

p3(0) = (k′)2
ω2 cosh(α1) sinh(α1) + ω1 cosh(α2) sinh(α2)

a2(0)
,

where

ȧ(0) = (ω1 − kω2) sinh(α1) cosh(α2) + (ω2 − kω1) cosh(α1) sinh(α2).

Figure 4(a) shows the exact solution (55) corresponding to α1 = α2 = 0 with inter-
action constants J1 = 1, J2 = 2, J3 = 5, and step size h = 0.02. Figure 4(b) shows
the error ‖qex − qnum‖ between the exact solution and numerical approximation
computed by the RATTLE and isospectral methods.

We observe that the error of the isospectral method grows slower than the error
of the RATTLE algorithm. Numerical experiments show that both methods exhibit
similar performance in terms of accuracy, stability and preservation of geometric
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constraints and constants of motion. However, measuring the execution time reveals
that the isospectral method is about 80 times faster for N = 10000 iterations since it
avoids solving a nonlinear system of equations (28)–(29) required at each iteration of
the RATTLE algorithm. The difference in speed is even more evident as the number
of iterations increases. This gives the proposed isospectral method a considerable
advantage over the RATTLE algorithm for long–time simulations.
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