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Abstract. Based on our results [1] on a representation of solutions to the Cauchy problem
for a multidimensional non-viscous Burgers equation obtained by a method of stochastic
perturbation of the associated Langevin system, we deduce an explicit asymptotic formula
for smooth solutions to the Cauchy problem for any genuinely nonlinear hyperbolic system
of equations written in the Riemann invariants.
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1. Introduction

We consider a system of the following form:

∂ri

∂t
+ fi(r1, . . . , rn)

∂ri

∂x
= 0, i = 1, . . . , n, (1)

written for the functions ri = ri(t, x), t ∈ R+, x ∈ R, subject to initial data

r(0, x) = r0(x) = (r01(x), . . . , r
0
n(x)). (2)

We assume that the vector-function f(r) ∈ C1(Rn) is real-valued and

det

(
∂fi(r)

∂rj

)

6= 0, i, j = 1, ..., n. (3)

It is well known that any quasilinear hyperbolic system ut+A(u)ux = 0, where u =
u(t, x) is an n-vector R2 → R

n, A(u) is an (n× n) matrix with smooth coefficients,
can be written in the Riemann invariants if it consists of two equations.
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For three equations the system can be written in the Riemann invariants if and
only if the left eigenvectors lk of A satisfy either rot lk = 0 or lk · rot lk = 0 [3].
Among physically meaningful systems admitting the Riemann invariants one can
name the equations of isentropic gas dynamics, equations of shallow water, equations
of electrophoresis and equations of chromatography [8, 10, 4].

2. Extended system and stochastic differential equation asso-

ciated with the equations of characteristics

Based on (1), we consider a system

∂qi

∂t
+ fk(q1, . . . , qn)

∂qi

∂xk

= 0, i, k = 1, . . . , n, (4)

written for functions qi(t, x), x ∈ R
n, together with initial data

q(0, x) = q0(x) = (q01(x), . . . , q
0
n(x)). (5)

Let us suppose that xi, i = 1, ..., n, are in turn functions of one variable x̄ ∈ R. In
this case, system (4) should be rewritten as

∂qi

∂t
+ fk(q1, . . . , qn)

∂qi

∂xk

dxk(x̄)

dx̄
= 0, i, k = 1, . . . , n. (6)

It can be readily checked that if we set

qi(t, 0, . . . , x̄
︸︷︷︸

i−th place

, . . . , 0) := ri(t, x̄), (7)

such that ∂qi
∂xm

= 0, i 6= m, and

q0i (0, . . . , x̄
︸︷︷︸

i−th place

, . . . , 0) := r0i (x̄), (8)

i,m = 1, . . . , n, then the vector-function r(t, x̄) solves the problem (1), (2).
We associate with (4) the following system of stochastic differential equations:

dXi(t) = fi(Q1(t), ..., Qn(t))dt+ σ1d(W
1
i )t,

dQi(t) = σ2 d(W
2
i )t, i = 1, ..., n, (9)

Xi(0) = xi, Qi(0) = qi, t > 0,

where X(t) and Q(t) are random values with given initial data, (X(t), Q(t)) takes
values in the phase space R

n × R
n, σ1 and σ2 are positive constants, |σ| 6= 0 (σ =

(σ1, σ2)), (W j)t = (W j
1 , . . . ,W

j
n)t, j = 1, 2, are independent Brownian motions.

Let P (t, dq1, ..., dqn, dx1, ..., dxn), t ∈ R+, xi ∈ R, qi ∈ R, i = 1, .., n, be the joint
probability distribution of random variables (Q,X), subject to the initial data

P0(dr, dx) =

n∏

i=1

δq(q
0
i (xi))ρ

0
i (xi) dx = δq(q

0(s)) ρ0(s), (10)
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where ρ0i (xi) are bounded nonnegative functions from C(R) and dx is a Lebesgue
measure on R

n, and δq is a Dirac measure concentrated on q.
We look at P = P (t, dq, dx) as a generalized function (distribution) with respect

to the variable q. It satisfies the Fokker-Planck equation

Pt +

n∑

i=1

fi(q)Pxi
=

σ2
1

2

n∑

i=1

Pxi xi
+

σ2
2

2

n∑

i=1

Pqi qi (11)

with initial data (10).
There is a standard procedure to find the fundamental solution for (11) (see, e.g.

[5]). This procedure consists of a reduction of the equation to a Fredholm integral
equation, the solution of which can be found in the form of series. We are going to
show that one can also find an explicit solution to the Cauchy problem (11), (10).

Let us introduce, still in the general case, the functions for t ∈ R+, x ∈ R
n,

depending on σ = (σ1, σ2):

ρi,σ(t, xi) =

∫

R2n−1

P (t, x, dr) dx̆i, (12)

ρσ(t, x) =

∫

Rn

P (t, x, dq), (13)

qi,σ(t, x) =

∫

Rn

qi P (t, x, dq)

∫

Rn

P (t, x, dq)
, (14)

fi,σ(t, x) =

∫

Rn

fi(q)P (t, x, dq)

∫

Rn

P (t, x, dq)
, (15)

where
dx̆i = dx1 .. dxi−1 dxi+1 ... dxn, dr = dr1...drn.

We can consider these values if the integrals exist in the Lebesgue sense.
It will readily be observed that qi,σ(0, x) = q0i (x) and fi,σ(0, x) = f(q0i (x)).
We denote

ρ̄i(t, x̄) = lim
σ→0

ρi,σ(t, x̄), ρ̄(t, x) = lim
σ→0

ρσ(t, x),

q̄i,σ(t, x) = lim
σ→0

qi,σ(t, x), f̄i(t, x) = lim
σ→0

fi,σ(t, x),

provided these limits exist, σ =
√

σ2
1 + σ2

2 .

3. Explicit probability density function

Equation (11) can be solved explicitly. Moreover, for the sake of simplicity, we set
σ2 = 0 and denote σ1 = σ.
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Proposition 1. Problem (11), (10) has the following solution:

P (t, x, dq) =
1

(
√
2πtσ)n

(16)

×
∫

Rn

δr(r
0(s))ρ0(s) exp






−

n∑

i=1

(fi(r
0
1(s1), . . . , r

0
n(sn)) t+ (si − xi))

2

2σ2t







ds,

for t ≥ 0, x ∈ R
n, therefore

∫

Rn

φ(q)P (t, x, dq) =
1

(
√
2πtσ)n

(17)

×
∫

Rn

φ(r0(s))ρ0(s)exp






−

n∑

i=1

(fi(r
0
1(s1), . . . , r

0
n(sn))t+(si−xi))

2

2σ2t






ds,

for all φ(r) ∈ C0(R
n).

Proof. Let us apply the Fourier transform to P (t, x, dq) in (11), (10) with respect
to the variable x and obtain the Cauchy problem for the Fourier transform P̃ =
P̃ (t, λ, dq) of P (t, x, dq):

∂P̃

∂t
= −(

1

2
σ2|λ|2 + i(λ, f(q)))P̃ , (18)

P̃ (0, λ, dq) =

∫

Rn

e−i(λ,s)δq(q
0(s))ρ0(s)ds, λ ∈ R

n. (19)

Equation (18) can be easily integrated and we obtain the solution given by the
following formula:

P̃ (t, λ, dq) = P̃ (0, λ, dq)e−
1
2σ

2|λ|2t+i(λ,f(q)) t. (20)

The inverse Fourier transform (in the distributional sense) allows to find the density
function P (t, x, dq), t > 0:

P (t, x, dq) =
1

(2π)n

∫

Rn

ei(λ,x)P̃ (t, λ, dq) dλ

=
1

(2π)2n

∫

Rn

ei(λ,x)





∫

Rn

e−i(λ,s)e−i(λ,f(q)) t δq(q
0(s)) ρ0(s)ds



e−
1
2σ

2|λ|2tdλ

=
1

(2π)n

∫

Rn

δq(q
0(s)) ρ0(s)

∫

Rn

e−
1
2σ

2t(λ− i|f(q)t+s−x|

σ2t
)
2
− |f(q)t+s−x|2

2σ2t dλds

=
1

(
√
2πtσ)n

∫

Rn

δq(q
0(s)) ρ0(s) e−

|f(q0(s))t+s−x|2

2σ2t ds, t ≥ 0, x ∈ R
n.
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The third equality is satisfied by Fubini’s theorem, which can be applied by the
absolute integrability and the bound on the function involved. Thus, the proposition
is proved.

Remark 1. In the general case σ2 6= 0, an analogous formula can be obtained in a
similar way (see [6] in this context).

Corollary 1. The functions ρσ, qσ and fσ defined in (13) – (15) can be represented
by the following formulae:

ρσ(t, x) =
1

(
√
2πtσ)n

∫

Rn

ρ0(s) e−

n∑

i=1
|fi(r

0(s))t+si−xi|
2

2σ2t ds, (21)

qi,σ(t, x) =

∫

Rn

r0(s)ρ0(s) e−

n∑

i=1
|fi(r

0(s))t+si−xi|
2

2σ2t ds

∫

Rn

ρ0(s) e−

n∑

i=1
|fi(r

0(s))t+si−xi|
2

2σ2t ds

, i = 1, ..., n, (22)

fi,σ(t, x) =

∫

Rn

f(r0(s))ρ0(s) e−

n∑

i=1
|fi(r

0(s))t+si−xi|
2

2σ2t ds

∫

Rn

ρ0(s) e−

n∑

i=1
|fi(r

0(s))t+si−xi|
2

2σ2t ds

, i = 1, ..., n. (23)

Proof. The result is obtained by substitution of P (t, x, dq) as given by (16) in (13),
(14), (15).

4. Representation of a smooth solution to (1), (2)

Now we are going to prove that if ρi and q̄i are continuous, then

r̄i(x̄) = q̄i(t, x)|{xj=0, xi=x̄}, j 6= i,

tend to the solution ri(t, x̄) of problem (1), (2) as σ → 0.
Namely, the following theorem holds.

Theorem 1. Let r(t, x̄) be a solution to the Cauchy problem (1), (2), r0 ∈ C1
b (R)

and t∗(r
0) the supremum of t such that this solution is smooth. Then for t ∈

[0, t∗(r
0)),

ri(t, x̄) = q̄i(t, x)|{xj=0, xi=x̄} = lim
σ→0

qσ,i(t, x)|{xj=0, xi=x̄}, j 6= i,

where qσ(t, x) is given by (22) and the limit exists pointwise.

Proof. The easiest way to prove the theorem is to reduce (4) to the multidimensional
non-viscous Burgers equation and use the representation from [1]. Namely, (4) has
the form

∂tq + (f(q),∇)q = 0, (24)
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where q(t, x) = (q1, ..., qn) is a vector-function R
n+1 → R

n, f(q) is a non-degenerate
differential mapping from R

n to R
n, such that its Jacobian satisfies the condition

det∂fi(q)
∂qj

6= 0, i, j = 1, ..., n, due to (3).

We multiply (24) by ∇qfi(q), i = 1, ..., n, to get

∂tf(q) + (f(q),∇)f(q) = 0. (25)

Thus, we can introduce a new vectorial variable u = f(q) to reduce the Cauchy
problem for (25) to

∂tu+ (u,∇)u = 0, t > 0, u(x, 0) = u0(x) ∈ C1(Rn) ∩ Cb(R
n), (26)

with u0(x) = f(q0(x)). As follows from [1], the solution to the non - viscous Burgers
equation (26) before the moment t∗ of a singularity formation can be obtained as a
pointwise limit as σ → 0 of

uσ(t, x) =

∫

Rn

u0(s)ρ
0(s)e−

|u0(s)t+s−x|2

2σ2t ds

∫

Rn

ρ0(s)e−
|u0(s)t+s−x|2

2σ2t ds

. (27)

Therefore, we find the representation of the solution to the stochastically per-
turbed along the characteristic equation (25) using formula (27) with f(q0(x)) in-
stead of u0(x).

Now we can go back to the vector-function q(t, x). As follows from Proposition 1,
q̄i(t, x) = lim

σ→0
qσ,i(t, x). At last, we use the redesignation (7) to obtain the statement

of theorem 1.

Further, we can find the maximal time t∗(r
0) of the existence of a smooth solution

to problem (1), (2).

Theorem 2. If at least one derivative

∂fi(q)

∂qi

dr0i (x)

dx
, i = 1, . . . , n, (28)

is negative, then the time t∗(r
0) of the existence of a smooth solution to (1), (2) is

finite and

t∗(r
∗) = min

i

{

−
(
∂fi(q)

∂qi

dr0i (x)

dx

)−1
}

. (29)

Otherwise, t∗(r
0) = ∞.

Proof. Let us come back to problem (26) and denote by J(u0(x)) the Jacobian
matrix of the map x 7→ u0(x). As it was shown in [7] (Theorem 1), if J(u0(x)) has
at least one eigenvalue which is negative for a certain point x ∈ R

n, then the classical
solution to (26) fails to exist beyond a positive time t∗(u0). Otherwise, t∗(u0) = ∞.

The matrix C(t, x) = (I + tJ(u0(x))), where I is the identity matrix, fails to be
invertible for t = t∗(u0). Thus, due to representation (25), if J(f(q0(x))) has at
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least one eigenvalue which is negative for a certain point x ∈ R
n, then the classical

solution to (4) fails to exist beyond a positive time t∗(q
0). For problem (1), (2) this

means that at least one derivative (28) is negative. Value (29) can be found from
the condition of invertibility of the matrix (I + tJ(f(q0(x))).

Remark 2. It easy to see that Theorem 2 can be considered as a version of [4,
Theorem 7.8.2], with a specification of the blow - up time obtained by a different
method.

5. Balance laws associated with systems written in Riemann

invariants

Now we get one more corollary of results of [1]. Let us denote

gi,σ(t, x̄) = fi,σ(t, x)|{xj=0, xi=x̄}, ḡi(t, x̄) = lim
σ→0

gi,σ(t, x̄).

Theorem 3. The functions ρi,σ and gi,σ satisfy the following system of 2n equa-
tions:

∂ρi,σ

∂t
+ ∂x(ρi,σgi,σ) =

1

2
σ2 ∂

2ρi,σ

∂x2
, (30)

∂(ρσ,igσ,i)

∂t
+ ∂x(ρσ,ig

2
σ,i) =

1

2
σ2 ∂

2(ρσ,igσ,i)

∂x2
(31)

−
∫

R2n−1

(gσ,i − ḡ(r)i)
(
(gσ − ḡ(r)),∇xP (t, x, dq)

)
dx̆.

For t ∈ (0, t∗(r
0)) its limit functions ρ̄i and ḡi satisfy the system of 2n conservation

laws:

∂ρ̄i

∂t
+ ∂x(ρ̄iḡi) = 0, (32)

∂(ρ̄iḡi)

∂t
+ ∂x(ρ̄iḡ

2
i ) = 0, (33)

i = 1, .., n, t ≥ 0.

Proof. The statement follows from Theorem 2.1 [1]. Namely, the theorem implies
that the scalar function ρσ(t, x) and the vector-function fσ(t, x) solve the following
system:

∂ρσ

∂t
+ divx(ρσfσ) =

1

2
σ2

n∑

k=1

∂2ρσ

∂x2
k

, (34)

∂(ρσfi,σ)

∂t
+∇(ρσ fi,σfσ) =

1

2
σ2

n∑

k=1

∂2(ρσfσ,i)

∂x2
k

(35)

−
∫

Rn

(fi,σ − f̄i)
(
(fσ − f̄),∇xP (t, x, dq)

)
,
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with i = 1, .., n, t ≥ 0, and the integral term vanishes as σ → 0. To obtain the
statement of Theorem 3, it is sufficient to set xj = 0, xi = x̄ and ρj(xj) = 1, j 6= i,

for every fixed i.

Remark 3. System (32), (33) constitutes n systems of the so - called “pressure-
less” gas dynamics, the simplest model introduced to describe the formation of large
structures in the Universe, see, e.g. [9].

Remark 4. The method of stochastic perturbations allows to study solutions to
quasilinear systems written in Riemann invariants at the moment of the singularity
formation and the shock waves evolution as well (in this context, see [2], [1], [6] for
simpler cases). In particular, it is possible to prove that after the moment t∗(r

0)
of singularity formation in the solution to problem (1), (2) the limit system for ρi,σ
and gi,σ differs from (32), (33) and contains an additional integral term in the group
of equations (33). This term does not vanish as σ → 0 and can be considered as a
gradient of a specific pressure term.
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