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Abstract. Let K be an uncountable algebraically closed field of characteristic zero. An
affine algebraic variety X over K is toral if it is isomorphic to a closed subvariety of a torus
(K∗)d. We study the group Aut(X) of regular automorphisms of a toral variety X. We
prove that if T is a maximal torus in Aut(X), then X is a direct product Y × T , where
Y is a toral variety with a trivial maximal torus in the automorphism group. We show
that knowing Aut(Y ), one can compute Aut(X). In the case when the rank of the group
K[Y ]∗/K∗ is dimY + 1, the group Aut(Y ) is described explicitly.
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1. Introduction

Let K be an algebraically closed field of characteristic zero. The set of solutions
of a system of polynomial equations in an affine space has been studied for a very
long time. But some interesting properties may appear when we consider the set of
solutions inside a torus (K∗)d. In other words, we consider only solutions with non-
zero coordinates. One of the examples of this approach is the Bernstein-Kushnirenko
Theorem; see [2, 6].

In [9], Popov proposed the following definition.

Definition 1. An irreducible affine algebraic variety X is called toral if it is iso-
morphic to a closed subvariety of a torus (K∗)d.

Some authors also use the term a ”very affine variety”; see [11, 3]. It can be seen
that X is toral if and only if the algebra of regular functions on X is generated by
invertible functions; see [9, Lemma 1.14]. One of the reasons why toral varieties are
interesting is that they are rigid varieties; see [9, Lemma 1.14].

Definition 2. An affine algebraic variety X is called rigid if there is no non-trivial
action of the additive group (K,+) on X.
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Despite the fact that the automorphism group of an affine algebraic variety has
a complicated structure, sometimes it is possible to describe it for rigid varieties. It
was proven in [1] that the group of regular automorphisms Aut(X) of a rigid variety
X contains a unique maximal torus T . One can find examples of computation of
Aut(X) for rigid varieties in [1, 7, 8].

In this paper, we study the automorphism group Aut(X) of a toral variety X.
We denote by K[X] the algebra of regular functions on X and by K[X]∗ the mul-
tiplicative group of invertible regular functions on X. Let E(X) be the quotient
group K[X]∗/K∗. By [10], the group E(X) is a free finitely generated abelian group.
For a toral variety X the rank of E(X) is not less than dimX.

Any automorphism of X induces an automorphism of E(X). So we obtain a
homomorphism from Aut(X) to Aut(E(X)). We denote by H(X) the kernel of this
homomorphism. Note that H(X) consists of automorphisms that multiply invertible
functions by constants.

Suppose that X is a closed subvariety of a torus Td = (K∗)d. In Proposition 1, we
show that the group H(X) is naturally isomorphic to a subgroup in Td which consists
of elements that preserve X under the action by multiplication. In Proposition 2,
we propose a way to compute the subgroup H(X).

In Theorem 1, we show that if T is a maximal torus in Aut(X), then X is
isomorphic to a direct product T × Y , where Y is a toral variety with a discrete
automorphism group. Here and below we assume that the field K is uncountable.
Theorem 3 gives a way to find Aut(X) knowing Aut(Y ). If the rank of E(Y ) is
dimY + 1, it is possible to describe Aut(Y ) (Theorem 3).

We also consider the case when the rank of E(X) is equal to dimX. By Propo-
sition 3 in this case X is a torus. Moreover, it is the only case when Aut(X) acts
on X with an open orbit.

We use the following notation. If ϕ is a regular automorphism of an affine variety
X, then by ϕ∗ we mean an automorphism of K[X] dual to ϕ. If A is a group and B
is a normal subgroup in A, then by [a] we denote the image of an element a ∈ A in
the quotient group A/B. If X is a closed subvariety of an affine variety Z, then by
I(X) we mean the ideal of regular functions on Z which are equal to zero on X.

2. General facts about toral varieties

Here we prove some initial properties of toral varieties and propose a way to compute
the group H(X) for a toral variety X

Let Tr be a torus of dimension r. We recall that the group Aut(Tr) is isomorphic
to Tr o GLr(Z); see [1, Example 2.3]. Here the left factor Tr acts on itself by
multiplications and a matrix (aij) ∈ GLr(Z) defines an automorphism of Tr which
is given by the formula

ti → tai11 . . . tairr ,

where t1, . . . , tr are coordinate functions on Tr.
Now let X be a toral variety and r is the rank of E(X). One can choose invertible

functions f1, . . . , fr ∈ K[X]∗ such that [f1], . . . , [fr] form a basis of the group E(X).
Then f1, . . . , fr generate the algebra K[X] and define a closed embedding of ρ : X ↪→
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Tr. Note that if we choose another g1, . . . , gr ∈ K[X]∗ such that [g1], . . . , [gr] form
a basis of E(X), then the respective embedding ρg : X ↪→ Tr differs from ρ by an
automorphism of Tr. Indeed, we have

gi = λif
ai1
1 . . . fairr , i = 1, . . . , r

for some λi ∈ K∗ and (aij) ∈ GLr(Z). If we consider an automorphism τ : Tr → Tr
which is given by the formulas

τ(ti) = λit
ai1
1 . . . tairr ,

then ρg = τ ◦ ρ.

Definition 3. We will call the embedding ρ described above canonical.

Note that if ρ : X ↪→ Tr is a canonical embedding, then K[X]∗ ' K[Tr]
∗ and

E(X) ' E(Tr). We denote by AutX(Tr) the subgroup of Aut(Tr) which con-
sists of automorphisms of Tr that preserve X. There is a natural homomorphism
AutX(Tr)→ Aut(X) which sends an automorphism ϕ ∈ AutX(Tr) to its restriction
ϕ|X .

Proposition 1. Let X be a toral variety and ρ : X ↪→ Tr a canonical embedding.
Then

1. the homomorphism

AutX(Tr)→ Aut(X), ϕ→ ϕ|X

is an isomorphism;

2. the subgroup H(X) is the image of the subgroup AutX(Tr)∩Tr with respect to
this isomorphism.

Proof. We denote by t1, . . . , tr coordinate functions on Tr and by f1, . . . , fr the
respective invertible regular functions on X. Then [f1], . . . , [fr] is a basis of E(X).

Firstly, we will prove that the homomorphism

AutX(Tr)→ Aut(X), ϕ→ ϕ|X

is surjective. Let ϕ be an automorphism of X. Then ϕ defines an automorphism of
the lattice E(X). Therefore,

ϕ(fi) = λif
ai1
1 . . . fairr , i = 1, . . . , r,

where λi ∈ K∗ and (aij) ∈ GLr(Z). We define an automorphism ϕ of Tr by the
formulas

ϕ(ti) = λit
ai1
1 . . . t

air
r , i = 1, . . . , r.

Then ϕ preserves X and ϕ|X = ϕ.
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Now suppose that the image of an automorphism ψ ∈ AutX(Tr) is a trivial
automorphism of X. Then ψ|X defines a trivial automorphism of the lattice E(X).
Hence, ψ defines a trivial automorphism of the lattice E(Tr). So ψ has the form

ψ(ti) = βiti

for some β ∈ K∗. It means that ψ ∈ Tr. But Tr acts on itself freely. Since ψ
preserves all points of X, then ψ is a trivial automorphism of Tr. So the map

AutX(Tr)→ Aut(X)

is injective and therefore it is an isomorphism.
It remains to prove the last property. If δ ∈ AutX(Tr) ∩ Tr, then δ|X defines a

trivial automorphism of E(X). Hence δ|X ∈ H(X).
Conversely, suppose that δ|X ∈ H(X). Then δ is given by the formulas

δ(ti) = γiti, i = 1, . . . , r,

for some γi ∈ K∗. Therefore, δ ∈ AutX(Tr) ∩ Tr.

Corollary 1. Let X be a toral variety and r = rank E(X). Then the group Aut(X)
is isomorphic to a subgroup in Tr o GLr(Z).

Remark 1. It follows from Proposition 1 that a toral variety X can be embedded in
a torus Tr in such a way that any automorphism X can be uniquely extended to an
automorphism of Tr. If X is a subvariety of Z, it is always natural to ask whether
an automorphism of X can be extended to an automorphism of Z. Some results
concerning this problem can be found in [4, 5].

Example 1. Let X be a toral variety and rank E(X) = r. Then there is a canonical
embedding ρ : X ↪→ Tr of X into a torus Tr of dimension r. But in some cases it is
also possible to embed X into a torus of lower dimension.

Consider

Y = {(x, y) ∈ (K∗)2|yx(x− 1)(x− 2) . . . (x− k) = 1}.

It is a closed subvariety of a torus T2 = (K∗)2, so Y is a toral variety. We see
that x, (x− 1), . . . , (x− k) are invertible functions on Y . We will show that [x], [x−
1], . . . , [x− k] are linearly independent in E(Y ). It implies that rk E(Y ) ≥ k + 1.

Indeed, otherwise there are b0, . . . , bk ∈ Z and λ ∈ K∗ such that

xb0(x− 1)b1 . . . (x− k)bk = λ. (1)

But the polynomial xb0(x− 1)b1 . . . (x− k)bk −λ is not divisible by yx(x− 1)(x−
2) . . . (x− k)− 1 in K[x±1, y±1]. So Equation (1) cannot hold for Y .

Example 2. It is also not true that every embedding of a toral variety X with
rank E(X) = r into a torus Tr is canonical.

The embedding X ↪→ Tr is canonical if [t1|X ], . . . , [tr|X ] is a basis of E(X). If
we choose Y ⊆ T2 as in Example 1 above, then the embedding Y ↪→ T2×Tr−2 = Tr,
where z → (z, p) for some fixed point p ∈ Tr−2, is not a canonical embedding. Here
the restrictions t3|Y , . . . , tr|Y are constants so [t3|Y ] = . . . = [tr|Y ] is a neutral
element in E(Y ).
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Now let X be a closed irreducible subvariety in Tr and let the embedding X ↪→ Tr
be canonical. By Proposition 1 we can identify the group H(X) with the subgroup
in Tr which preserves X. We will describe the subgroup H(X) as a subgroup in Tr.
Let M ' Zr be the lattice of characters of Tr. For m = (m1, . . . ,mr) ∈ M by χm

we mean the character t → tm1
1 . . . tmr

r . Then each function in K[t±11 , . . . , t±1r ] is a
linear combination of characters. For a function f =

∑
i αmi

χmi ∈ K[t±11 , . . . , t±1r ]
by support of f we mean the subset

Supp f = {mi ∈M | αmi
6= 0} ⊆M.

Let I(X) be the ideal of functions in K[t±11 , . . . , t±1r ] which are equal to zero on
X. We say that f ∈ I(X) is minimal if there is no non-zero g ∈ I(X) such that
Supp g ( Supp f.

Lemma 1. Minimal polynomials generate I(X) as a vector space.

Proof. If f ∈ I(X) is not minimal, then there is a g ∈ I(X) with Supp g ( Supp f .
One can choose a constant α such that Supp(f −αg) ( Supp f. Applying induction
by cardinality of Supp f we see that g and f − αg can be represented as a sum of
minimal polynomials. Then f is also a sum of minimal polynomials.

Definition 4. We denote by M(X) a subgroup of M which is generated by Minkowski
sums Supp f + (−Supp f) for all minimal f ∈ I(X).

Proposition 2. The subgroup H(X) ⊆ Tr is given by equations χm(t) = 1 for all
m ∈M(X).

Proof. Let h ∈ H(X) and f =
∑
i αmi

χmi be a minimal polynomial in I(X). Then
h ◦ f =

∑
i αmi

χmi(h)χmi . The ideal I(X) is invariant under the action of H(X).
So h ◦ f ∈ I(X). Suppose that there are a, b ∈ M(X) such that αa, αb 6= 0 and
χma(h) 6= χmb(h). Then g = χma(h)f − h ◦ f is a non-zero function in I(X) and
Supp g ( Supp f. But f is minimal. So χma(h) = χmb(h). Therefore, χma−mb(h) =
1 and this implies that χm(h) = 1 for all m ∈M(X).

Now consider an element t ∈ Tr such that χm(t) = 1, ∀ m ∈ M(X). Then
every minimal polynomial in I(X) is a semi-invariant with respect to t. But I(X)
is a linear span of minimal polynomials. So I(X) is invariant under the action of t.
Therefore, t ∈ H(X).

At the end of this section, we note that toral varieties over uncountable fields
satisfy the following conjecture formulated by Perepechko and Zaidenberg.

Conjecture 1 (Conjecture 1.0.1 in [8]). If Y is a rigid affine algebraic variety over
K, then the connected component Aut0(Y ) is an algebraic torus of the rank not
greater than dimY .

Corollary 2. Suppose that the field K is uncountable. Let X be a toral variety over
K. Then Aut(X) is a discrete extension of an algebraic torus.
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Proof. Indeed, if X is a toral variety, then the group Aut(X)/H(X) is isomorphic
to a subgroup in Aut(E(X)) ' GLr(Z), where r is the rank of E(X). If K is
uncountable, then Aut(X)/H(X) is a discrete group. So Aut0(X) is contained in
H(X). But H(X) is a quasitorus. Therefore, Aut0(X) is a torus and the quotient
group Aut(X)/Aut0(X) is a discrete group.

From this point onwards, we always assume that the field K is uncountable.

3. The structure of the automorphism group

It follows from Corollary 1 that toral varieties are rigid. By [1, Theorem 2.1], there
is a unique maximal torus in the automorphism group of an irreducible rigid variety.

Theorem 1. Let X be a toral variety over K and T the maximal torus in Aut(X).
Then X ' Y × T , where Y is a toral variety with a discrete automorphism group.

Proof. Let r be the rank of the group E(X) and ρ : X ↪→ Tr a canonical embedding.
We denote by M the lattice of characters of Tr and by M(X) the sublattice in
M which corresponds to X. One can choose a basis e1, . . . , er ∈ M such that
b1e1, . . . , blel is a basis of M(X) for some b1, . . . , bl ∈ N and l ≤ r. Denote by
t1, . . . , tr coordinates on Tr corresponding to e1, . . . , er.

Then the equations χm(t) = 1 for all m ∈ M(X) define the subgroup H(X) in
Tr which consists of elements of the form

(ε1, . . . , εl, tl+1, . . . , tr),

where ε1, . . . , εl are the roots of unity of degrees b1, . . . , bl, respectively, and tl+1, . . . , tr ∈
K∗. Then the maximal torus in H(X) is the torus

Tr−l = {(1, . . . , 1, tl+1, . . . , tr) ∈ Tr|ti ∈ K∗}.

The group Aut(X)/H(X) is a discrete group. So the maximal torus of Aut(X)
coincides with the maximal torus of the quasitorus H(X), which is Tr−l.

All minimal polynomials in I(X) are semi-invariant with respect to H(X). This
means that minimal polynomials in I(X) are homogeneous with respect to each
variable tl+1, . . . , tr. Since functions ti are invertible, one can choose a set of minimal
generators of I(X) which do not depend on tl+1, . . . , tr. It implies that X ' Y ×Tr−l,
where Y is a subvariety of Tl = {(t1, . . . , tl, 1, . . . , 1) ∈ Tr|ti ∈ K∗}.

The variety Y is also a toral variety given by the ideal I(X) ∩ K[t±11 , . . . t±1l ].
Since the unique maximal torus in Aut(X) is Tr−l, the maximal torus in Aut(Y ) is
trivial.

Let X be a toral variety and suppose that X ' Ts×Y , where Y is a toral variety
with a discrete automorphism group and Ts is the torus (K∗)s. One can see that
Aut(X) contains the following subgroups.

There is a subgroup which is isomorphic to Aut(Y ). This subgroup acts naturally
on Y and trivially on Ts. The subgroup GLs(Z) acts naturally on Ts and trivially on
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Y . Moreover, there is a subgroup which is isomorphic to (K[Y ]∗)s ' (E(Y )×K∗)s.
This subgroup acts in the following way. If f1, . . . , fs ∈ K[Y ]∗, then we can define
an automorphism of Ts × Y as follows:

(t1, . . . , ts, y)→ (f1(y)t1, . . . , fs(y)ts, y).

The following theorem was proposed to the authors by Gaifullin.

Theorem 2. Let X ' Ts × Y be a toral variety, where Y is a toral variety with a
discrete automorphism group. Then

Aut(X) ' Aut(Y ) n (GLs(Z) n (E(Y )×K∗)s).

Proof. There is a natural action of Ts on X. We see that K[Y ] is the algebra
of invariants of this action. Since Ts is a unique maximal torus in Aut(X), each
automorphism of Ts × Y preserves K[Y ]. So we obtain a homomorphism

Φ : Aut(X)→ Aut(Y ).

Let B be the kernel of Φ. The group Aut(Y ) is naturally embedded into Aut(Ts×Y )
and it intersects trivially with B. At the same time, Aut(Y ) maps isomorphically
to the image of Φ. It implies that

Aut(Ts × Y ) = Aut(Y ) nB.

We denote by t1, . . . , ts coordinate functions on Ts. Then

K[Ts × Y ] ' K[Ts]⊗K[Y ] = K[Y ][t±11 , . . . , t±1s ].

Let φ ∈ B. The algebra K[Y ] is invariant with respect to φ∗. So for all t ∈ Ts and
y ∈ Y we have

φ((t, y)) = (t′, y),

for some t′ ∈ Ts. Therefore, for each y ∈ Y the automorphism φ defines an automor-
phism φy : Ts → Ts. Hence, for each y ∈ Y we have

φ∗(ti)(t, y) = ti(φ(t, y)) = ti((φy(t), y)) = fi(y)t
ai1(y)
1 . . . tais(y)s ,

for some non-zero constant fi(y) and a matrix A(y) = (aij(y)) ∈ GLs(Z). For reasons
of continuity, the matrix A(y) is the same for all y ∈ Y and fi : Y → K are regular
functions on Y . Since fi(y) 6= 0 for all y ∈ Y , the functions fi are invertible. So we
have

φ∗(ti) = fit
ai1
1 . . . taiss

for some fi ∈ K[Y ]∗ and A ∈ GLs(Z).
Then we have a homomorphism Φ : B → GLs(Z), φ → A. Again, the group

GLs(Z) is naturally embedded into B in the following way. The matrix (dij) ∈
GLs(Z) corresponds to an automorphism

(t1, . . . , ts, y)→ (td111 . . . td1ss , . . . , tds11 . . . tdsss , y).
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The group GLs(Z) maps isomorphically to GLs(Z) under Φ. So

B = GLs(Z) n Ker Φ.

The kernel of Φ consists of automorphisms ϕ ∈ Aut(Ts×Y ) which have the following
form:

ϕ(t1, . . . , ts, y) = (f1(y)t1, . . . , fs(y)ts, y),

for some f1, . . . , fs ∈ K[Y ]∗. We see that for all f1, . . . , fs ∈ K[Y ]∗ this formula
defines an automorphism of Ts × Y, so Ker Φ ' (K[Y ]∗)s ' (E(Y )×K∗)s.

4. The case rk E(X) = dimX

Let X be a toral variety. Then rk E(X) ≥ dimX. Indeed, suppose that f1, . . . , fr
are invertible functions and [f1], . . . , [fr] is a basis in E(X). Then f1, . . . , fr generate
K[X]. So r ≥ tr.deg K[X] = dimX.

The following result shows that if rk E(X) = dimX, then X is a torus. Moreover,
this is the only case when Aut(X) acts with an open orbit on X.

Proposition 3. Let X be a toral variety. Then the following conditions are equiv-
alent:

1. X is a torus;

2. rk E(X) = dimX;

3. Aut(X) acts on X with an open orbit.

Proof. Implication 1)⇒ 2) is trivial.

Suppose that rk E(X) = dimX. Then one can choose invertible functions f1, . . . , fn
such that [f1], . . . , [fn] is a basis of E(X). Then K[X] is generated by

f1, f
−1
1 , . . . , fn, f

−1
n .

But f1, . . . , fn are algebraically independent, otherwise dimX < rk E(X). So K[X]
is isomorphic to the algebra of Laurent polynomials. So we obtain implication
2) ⇒ 1).

Implication 1)⇒ 3) is trivial. Suppose X is a toral variety and Aut(X) acts on
X with an open orbit U .

Let T be the maximal torus in Aut(X). Since the quotient group Aut(X)/T is a
discrete group, the set U is a countable union of orbits of T. Since K is uncountable,
it implies that one of the orbits of T is open in X. Then dimX = dimT. By Theorem
1, we have X ' T × Y for some toral variety Y . But since dimT = dimT × Y , we
obtain that Y is a point and X ' T.
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5. The case rk E(X) = dimX + 1

By Theorem 1, any toral variety over an algebraically closed uncountable field of
characteristic zero is a direct product T×Y , where T is a torus and Y is a toral variety
with a discrete automorphism group. By Theorem 2, one can find Aut(X) knowing
Aut(Y ). In this section, we provide a way to find Aut(Y ) when rk E(Y ) = dim Y +1.

Let Y be a toral variety with a trivial maximal torus in Aut(Y ). Let r be the
rank of E(Y ). We suppose that r = dim Y + 1.

There is a canonical embedding of Y into the torus Tr as a hypersurface. The
variety Tr is factorial so there is an irreducible polynomial h ∈ K[t±11 , . . . , t±1r ] such
that I(Y ) = (h). The polynomial h has a form

h =
∑

m ∈ Supp h

αmχ
m.

Let M be the lattice of characters of Tr and M(Y ) a sublattice in M which
corresponds to Y ; see Definition 4. Since the maximal torus in Aut(Y ) is trivial, the
rank of the lattice M(Y ) is equal to r. It means that the elements ma −mb with
ma,mb ∈ Supp h generate a sublattice of full rank in M .

We denote by GAff(M,h) the group of all invertible integer affine transformations
ϕ of M , which preserve Supp h and for any linear combination∑

m∈Supp h

amm = 0,

where am ∈ Z and
∑
m am = 0, the affine transformation ϕ satisfies∏
m∈Supp h

(αm)
am =

∏
m∈Supph

(
αϕ(m)

)am
. (2)

Theorem 3. Let Y be a toral variety with a trivial maximal torus in Aut(Y ).
Suppose that rk E(Y ) = dimY + 1. Then

Aut(Y )/H(Y ) ' GAff(M,h).

Proof. Let ψ be an automorphism of Y . By Proposition 1, the automorphism
ψ can be extended to an automorphism of Tr. We denote by ψ∗ the respective
automorphism of K[t±11 , . . . , t±1r ]. Then ψ∗ has the form

ψ∗(ti) = λit
ai1
1 . . . tairr ,

where λi ∈ K∗ and (aij) ∈ GLr(Z). We denote by λ the element (λ1, . . . , λr) ∈ Tr
and by ψ the automorphism of M that corresponds to the matrix (aij). Then

ψ∗(χm) = χm(λ)χψ(m)

for all m ∈M.
The polynomial ψ∗(h) also generates I(Y ). So it differs from h by an invertible

element of K[t±11 , . . . , t±1r ]. Then

ψ∗(h) = αχvh
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for some α ∈ K∗ and v ∈M. Therefore, we have the equation

ψ∗(h) =
∑

m∈Supp h

αmχ
m(λ)χψ(m) = α

∑
m∈Supp h

αmχ
m+v. (3)

It implies that ψ(m) − v belonge to Supp h for all m ∈ Supp h. We define the
map ϕ : M →M by the following formula:

ϕ(m) = ψ(m)− v.

Then ϕ is an affine transformation of M which preserves Supp h.
We will prove that ϕ belonge to GAff(M,h). So we consider a linear combination

as in (2): ∑
m∈Supp h

amm = 0,

where am ∈ Z and
∑
m am = 0.

Equation (3) can be written as∑
m∈Supp h

αmχ
m(λ)χϕ(m) = α

∑
m∈Supp h

αmχ
m = α

∑
m∈Supp h

αϕ(m)χ
ϕ(m),

and it implies
αm1

χm1(λ)

αm2χ
m2(λ)

=
αm1

αm2

χm1−m2(λ) =
αϕ(m1)

αϕ(m2)

for all m1,m2 ∈ Supp h.
We fix some m0 ∈ Supp h. Then we have

∏
m∈Supp h

(
αϕ(m)

)am
=

∏
m∈Supp h

(
αϕ(m)

αϕ(m0)

)am
=

∏
m∈Supp h

(
αm
αm0

χm−m0(λ)

)am
=

∏
m∈Supp h

(
αm
αm0

)am
(χ

∑
m am(m−m0)(λ))

=
∏

m∈Supp h

(
αm
αm0

)am
=

∏
m∈Supp h

(αm)
am

So ϕ ∈ GAff(M,h). Then we obtain a homomorphism

η : Aut(Y )→ GAff(M,h), ψ → ϕ.

Moreover, we see that the kernel of η is H(Y ). Now we will show that η is surjective.
Let ϕ ∈ GAff(M,h) and f1, . . . , fr be a basis in M(Y ). Again, we fix some

m0 ∈ Supph. Then there are am,j ∈ Z for m ∈ Supph such that

fj =
∑

m∈Supp h

am,j(m−m0).
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There is a λ ∈ Tr such that

χfj (λ) =
∏

m∈Supp h

(
αm
αm0

)−am,j ∏
m∈Supp h

(
αϕ(m)

αϕ(m0)

)am,j

for all j = 1, . . . , r.
Let dϕ be the linear part of ϕ, i.e., dϕ(m) = ϕ(m) − ϕ(0). We define an auto-

morphism ψ∗ of K[t±11 . . . t±1r ] by the following rule:

ψ∗(χm) = χm(λ)χdϕ(m).

Let us check if ψ∗ preserves I(Y ). We have

ψ∗(h) =
∑

m∈Supp h

αmχ
m(λ)χdϕ(m).

We denote ϕ(0) by v. Then

ϕ(m) = dϕ(m) + v

and
χvψ∗(h) =

∑
m∈Supp h

αmχ
m(λ)χϕ(m).

We see that Supp χvψ∗(h) = Supp h. We will show that there is an α ∈ K such that

χvψ∗(h) = αh.

For any b, c ∈ Supp h there are numbers dj ∈ Z such that

b− c =

r∑
j=1

djfj .

So

αbχ
b(λ)

αcχc(λ)
=
αc
αb
χb−c(λ) =

αb
αc
χ
∑

j djfj (λ)

=
αb
αc

(

r∏
j=1

χfj (λ))dj =
αb
αc

∏
m,j=1

(
αm
αm0

)−djam,j ∏
m,j

(
αϕ(m)

αϕ(m0)

)djam,j

. (4)

We have a combination

0 = b−c−
∑
j

djfj = b−c−
∑
m,j

djam,j(m−m0) = b−c−
∑
m,j

djam,jm+(
∑
m,j

djam,j)m0.

The sum of all coefficients in the last sum is equal to 0. Since ϕ ∈ Gaff(M,h) we
obtain

αb
αc

∏
m,j

(
αm
αm0

)−djam,j

=
αϕ(b)

αϕ(c)

∏
m,j

(
αϕ(m)

αϕ(m0)

)−djam,j

. (5)
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It follows from equations 4 and 5 that

αbχ
b(λ)

αcχc(λ)
=
αϕ(b)

αϕ(c)
.

So the coefficients of the polynomials χvψ∗(h) and h are proportional. Then there
is an α ∈ K such that χvψ∗(h) = αh. Hence ψ∗(h) = αχ−vh ∈ I(Y ). Therefore, ψ∗

preserves I(Y ) and defines an automorphism ψ. It is a direct check that η(ψ) = ϕ.
So η is surjective.

Corollary 3. Let Y be a toral variety with a trivial maximal torus in Aut(Y ).
Suppose that rk E(Y ) = dimY + 1. Then Aut(Y ) is a finite group.

Proof. Indeed, the group H(Y ) is finite in this case. As mentioned before, the
sublattice M(Y ) is of full rank and generated by the finite set Supp h+(−Supp h).
Then any affine transformation of M is uniquely defined by the image of the set
Supp h + (−Supp h). Therefore, the group GAff(M,h) is finite. Then the group
Aut(Y ) is also finite.

It is natural to formulate the following question.

Conjecture 2. Let Y be a toral variety with a trivial maximal torus in Aut(Y ). Is
Aut(Y ) a finite group?

Note that this is not true for a general rigid variety. One can find a counterex-
ample in [7].

At the end, we give three examples illustrating Theorem 3.

Example 3. Let Y be the affine line A1 without two points. Then Y is isomorphic
to an open set of the torus K∗:

Y = {t ∈ K∗|t 6= 1} ⊆ K∗.

Hence, Y can be given in (K∗)2 as the set of solutions of the equation

h = t1(t2 − 1)− 1 = 0, (t1, t2) ∈ (K∗)2.

So Y is a toral variety. We have

K[Y ] = K[t±11 , t±12 ]/(t1(t2 − 1)− 1) ' K[t±12 ]t2−1,

where K[t±12 ]t2−1 denotes the localization of K[t±12 ] at t2 − 1. Hence, all invertible
elements of K[Y ] have the form λ(t2 − 1)atb2 = λta1t

b
2, where λ ∈ K∗. Therefore,

[t1], [t2] is a basis of E(Y ). So the rank of E(Y ) is equal to dim Y + 1 and the
embedding Y ↪→ (K∗)2 as a set of zeros

h = t1(t2 − 1)− 1 = t1t2 − t1 − 1 = 0, (t1, t2) ∈ (K∗)2

is a canonical embedding. We can apply Theorem 3 to find Aut(Y ).
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Figure 1: Supp (t1t2 − t1 − 1)

Let M ' Z2 be the lattice of characters of (K∗)2. The set Supp h consists of
points m0 = (0, 0), m1 = (1, 0),m2 = (1, 1); see Figure 1.

We see that the lattice M(Y ) contains elements (1, 0), (0, 1), so M(Y ) = M.
Therefore, H(Y ) is a trivial group.

A linear combination

a0m0 + a1m1 + a2m2 = (a1 + a2, a2)

with a0 + a1 + a2 = 0 is equal to zero if and only if a0 = a1 = a2 = 0. But then
equations (2) are trivial. By affine transformations of M we can permute all points
in Supp h. Therefore,

Aut(Y ) ' GAff(M,h) ' S3.

The answer looks natural since the affine line without two points is the projective
line without three points.

In this case, Aut(Y ) is generated by the automorphisms ψ1, ψ2, where

ψ1((t1, t2)) = (−t1t2, t−12 ), ψ((t1, t2)) = (−t2, t−11 t−12 ).

Example 4. Now let Y be the set of solutions of the equation

Y = {(t1, t2, t3) ∈ (K∗)3| h = t3(t21 + t22 − 1)− 1 = 0} ⊆ (K∗)3.

Then Y is a toral variety and

K[Y ] = K[t±11 , t±12 , t±13 /(t3(t21 + t22 − 1)− 1) = K[t±1
1 , t±12 ]t21+t22−1.

Therefore, [t1], [t2], [t3] is a basis of E(Y ) and the embedding of Y in (K∗)3 is a
canonical embedding.

We have h = t3(t21 + t22 − 1)− 1 = t21t3 + t22t3 − t3 − 1 and

Supph = {m0 = (0, 0, 0),m1 = (0, 0, 1),m2 = (2, 0, 1),m3 = (0, 2, 1)} ⊆M ' Z3.

The vectors (2, 0, 0), (0, 2, 0) and (0, 0, 1) form a basis of M(Y ). Then the group
H(Y ) ⊆ (K∗)3 consists of elements

H(Y ) = {(±1,±1, 1) ∈ (K∗)3} ' Z/2Z× Z/2Z.
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The group of invertible affine transformations of M preserving Supph is isomor-
phic to S3 and permutes points m1,m2,m3 preserving m0. The sum

a0m0 + a1m1 + a2m2 + a3m3 = (2a2, 2a3, a1 + a2 + a3)

with a0 + a1 + a2 + a3 = 0 is equal to zero if and only if a0 = a1 = a2 = a3 = 0. So
equations (2) are trivial and GAff(M,h) ' Aut(Y )/H(Y ) ' S3.

The group Aut(Y ) is generated by H(Y ) and the automorphisms ψ1 and ψ2 which
are defined by the formulas:

ψ1((t1, t2, t3)) = (t2, t1, t3), ψ2((t1, t2, t3)) = (−t−12 , it1t
−1
2 ,−t22t3).

One can check that ψ1 and ψ2 generate the subgroup in Aut(Y ) which is isomor-
phic to S3 and trivially intersects with H(Y ). So

Aut(Y ) ' H(Y ) o S3.

The automorphism ψ2 does not commute with the element (1,−1, 1) ∈ H(Y ).
Therefore, Aut(Y ) is not a direct product of H(Y ) and S3.

Remark 2. It is natural to ask if it is true that, under the conditions of Theorem
3, we have Aut(Y ) ' H(Y ) o Gaff(M,h)? The authors do not know the answer to
this question.
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