
MATHEMATICAL COMMUNICATIONS 517
Math. Commun. 19(2014), 517–529

Tension splines with application on image resampling

Tina Bosner1,∗, Bojan Crnković2 and Jerko Škifić3

1 Department of Applied Mathematics, Faculty of Science, University of Zagreb, Bijenička
30, HR–10 000 Zagreb, Croatia
2 Department of Mathematics, University of Rijeka, Radmile Matejčić 2, HR–51 000
Rijeka, Croatia
3 Department for Fluid Mechanics and Computational Engineering, Faculty of
Engineering, University of Rijeka, Vukovarska 58, HR–51 000 Rijeka, Croatia

Received October 31, 2013; accepted March 14, 2014

Abstract. Digital raster images often need to be represented in higher and lower resolu-
tions. Resampling of digital images is an essential part of image processing. Most efficient
and sufficiently accurate image resampling techniques can produce spurious oscillations
near sharp transitions of color. To improve that, we introduce tension splines applied
dimension by dimension.
The presented tension spline procedure provides an elegant solution to the image resampling
by constructing a smooth approximation with sharp non-oscillatory resolution of disconti-
nuities. The numerical results on real digital images are given to show effectiveness of the
proposed algorithm.

AMS subject classifications: 65M08, 65D18, 68U10

Key words: image zooming, image resampling, tension spline, interpolation, histospline

1. Introduction

Resampling is the process of interpolating the pixel values based on some original
raster image. This is used when the input and output image size do not line up
exactly. Efficient methods for resampling of the raster digital images are very im-
portant in many applications, ranging from medical imaging, gaming, to electronic
publishing. The algorithms need to be very efficient and sufficiently accurate, with
a minimum of numerical artefacts in the solution.

A common approach to image resampling, is to turn a discrete RGB image into
a continuous function and finally after geometric transformations back to the appro-
priate discrete image. The most commonly used methods are the nearest neighbour,
the bilinear and bicubic interpolation [7, 8]. The above mentioned methods use the
polynomial spline interpolation to preserve the image information as much as possi-
ble. The bicubic method is the most accurate and visually pleasing of the mentioned
methods, but it can produce spurious oscillations and reduced visual sharpness near
sharp color transitions.

∗Corresponding author. Email addresses: tinab@math.hr (T. Bosner), bojan.crnkovic@uniri.hr
(B. Crnković), jerko.skific@riteh.hr (J. Škifić)

http://www.mathos.hr/mc c©2014 Department of Mathematics, University of Osijek



518 T.Bosner, B. Crnković and J. Škifić

In the recent years, the methods primarily used for solving PDEs have been
adapted to problems in image processing and image resampling [4]. These methods
are computationally more demanding, but produce better results when compared to
commonly used methods.

We propose a new method for image resampling that is motivated by the image
capturing process of digital cameras and a reconstruction approach used in finite
volume methods that are primarily developed for solving PDEs and boundary value
problems. The new method is based on the reconstruction of surfaces using tension
histosplines. The basic idea of the proposed new method is to identify pixels with 2D
numerical cells (instead of nodes) and pixel values with cell averages. This method
then uses the co-monotone and co-convex tension spline to reconstruct a smooth
surface based on the cell averaged values of the pixels. The tension spline will
preserve sharpness of the edges in the reconstructed surface that approximates the
image. The spline must satisfy the co-convex and co-monoton condition to eliminate
or reduce oscillations, that would otherwise be present. After the reconstruction,
the image can be transformed to an appropriate discrete form. While some of the
methods are specialized for zooming of images by doubling the image size [1, 14], the
proposed method can be applied equally well on image upscaling and downscaling
and does not depend on the size of the original image.

The paper is organized as follows: in Section 2, the tension spline interpolatiom
and its numerical realization are briefly explained. In Section 3, spline interpolation
is applied to the 1D reconstruction problem. The basic idea of image resampling is
described in Section 4. Section 5 deals with numerical experiments, and it is followed
by the conclusion.

2. Co-monotone and co-convex tension spline interpolation

Suppose that point-wise values vi = v(xi), i = 0, . . . , n of a function v are given.
We are interested in a non–oscillatory spline approximation of the function v. To
achieve this, we use tension splines.

Definition 1. Let a = x0 < x1 < · · · < xn−1 < xn = b be a partition of [a, b], and
pi ∈ R, pi > 0 for i = 0, . . . , n− 1, tension parameters. A tension spline is a function

s such that

s(4)(x) − p2i s
(2)(x) = (D2 − p2i )D

2s(x) = 0,

for every x ∈ [xi, xi+1), i = 0, . . . , n− 1.

It is easy to check that

s|[xi,xi+1) ∈ span{1, x, epix, e−pix} = span{1, x, sinh (pix), cosh (pix)}.

The smoothness of the spline at the inner knot xi, i = 1, . . . , n − 1, can vary from
knot to knot, from being discontinuous up to having continuous second derivative.
The most common cases are C1 [10, 11] and C2 [10, 12] tension splines.

An interesting property of the tension spline is its behaviour when either all of its
tension parameters tend to zero or to infinity. For pi = 0, for all i, the tension spline is
equal to a cubic polynomial spline. For pi → ∞, for all i, the tension spline becomes



Tension splines with application on image resampling 519

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

(a) Polynomial cubic spline

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

(b) Tension spline (pi = 5)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

(c) Tension spline (pi = 20)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

(d) Tension spline (pi = 100)

Figure 1: Interpolation by the polynomial cubic spline and uniform tension splines

a linear polynomial spline (see [6]), thus justifying the name “spline under tension”.
For all other pi, a tension spline is “between” a cubic and a linear spline. In the next
example, the points (0, 0), (1, 0), (2, 0), (3, 1), (4, 0), (5, 0), (6, 0) are interpolated by a
polynomial cubic spline and several tension splines with uniform tension parameters
(see Figure 1).

An application of tension splines requires a stable way of calculating with them.
The Chebyshev theory [2, 22, 23] is an approach that leads to numerically stable
algorithms. By that theory, we can define a canonical complete Chebyshev (CCC)–
system for tension splines [3]:

C(x) =





cosh (p0x), for x ∈ [x0, x1),

cosh (p0x1)

cosh (p1x1)
· · ·

cosh (pi−1xi)

cosh (pixi)
· cosh (pix), for x ∈ [xi, xi+1),

which gives a basis that is a generalization of power basis for the polynomials:

u1(x) = 1,

u2(x) =

∫ x

a

dτ2,

u3(x) =

∫ x

a

dτ2

∫ τ2

a

C(τ3) dτ3,

u4(x) =

∫ x

a

dτ2

∫ τ2

a

C(τ3) dτ3

∫ τ3

a

dτ4

cosh2 (p(τ4) τ4)
.

So, the tension spline is piecewisely spanned by {u1, u2, u3, u4}.



520 T.Bosner, B. Crnković and J. Škifić

Further, the Chebyshev theory suggests that the most convenient basis for a
spline space are the B-splines [2, 22, 23], which possess a lot of nice properties, like
non–negativity, compact supports, the partition of unity, etc. For calculating with
splines as a linear combination of B-splines, we use algorithms based on the knot
insertion [2, 3, 19, 21]. Such algorithms are relatively simple and numerically very
stable. The algorithms in [3] use some specific functions and their limiting and
asymptotic behavior. Therefore, we can safely calculate with tension splines having
tension parameters ranging from pi = 0 for some i, up to pi almost as large as
the maximum number the floating point number representation allows (usually not
needed). The C1 tension splines are calculated by the generalized deBoor algorithm,
while the C2 tension splines are calculated from C1 by an Oslo type algorithm [3].
The generalized derivative formula [3, 18, 20] gives a straightforward way to calculate
the first and the second derivatives of a tension spline.

Our interest is the interpolation of function values at the knots by the C2 tension
splines. Beside n+1 interpolation conditions for the C2 tension spline, we need two
extra conditions to determine the spline uniquely. We add the first derivative end
conditions. For our purpose, we are also interested in a non–oscillatory tension spline
approximation of a function, which will determine the tension parameters (see [9]).
In this case, the most convenient criterions are:

a) the interpolating tension spline has to be monotone on some subinterval, if the
successive interpolation points on that subinterval are monotone;

b) the interpolating tension spline has to be convex (concave), if the successive
interpolation points on some subinterval are convex (concave).

In [13], B. J. McCartin suggests algorithms for co-convex interpolation and co-
monotone interpolation, which are not based on the B-spline representation. If we
define

mi :=
vi+1 − vi

hi

, i = 0, . . . , n− 1

b0 :=
v1 − v0

h0
− f ′(a)

bi :=
vi+1 − vi

hi

−
vi − vi−1

hi−1
, i = 1, . . . , n− 1

bn := f ′(b)−
vn − vn−1

hn−1
,

with hi := xi+1 − xi, these algorithms are based on the theorem [16] which can be
simplified as:

(i) if bi and bi+1 are positive (negative), then for pi−1, pi and pi+1 sufficiently
large s′′ is positive (negative) in [xi, xi+1];

(ii) for sufficiently large pi−1, pi and pi+1, s
′ in [xi, xi+1] has the same sign as mi.

Both claims are actually consequences of the fact that a tension spline approaches
(locally) a linear spline when (some) tension parameters grow, so if some pi satisfy
(i) or (ii), then the same will be true for any p̄i > pi.



Tension splines with application on image resampling 521

An inflection point of s is said to be extraneous on [xi, xi+1] if bibi+1 > 0. If
s′′(xi) 6= 0, then s′′(xi)bi > 0 is a necessary and sufficient condition for no extraneous
inflection points. In the co-convex interpolation, the parameter pi, i = 0, . . . , n− 1,
is iteratively altered until a large enough parameter is selected so as to enforce
s′′(xi)bi > 0, and therefore avoid extraneous inflection points in the selected subin-
terval, which is assured by (i) (see [15, 16]).

In the co-monotone interpolation, if the polygonal interpolant has a slope of
constant sign in three successive intervals, then the tension parameters in these
intervals are selected so that the first derivative of the tension spline has the same
sign in the middle interval. The existence of such tension parameters is guaranteed
by (ii) (see again [15, 16]). This algorithm also iteratively changes pi to enforce that
the possible extreme point of s′ on the interval [xi, xi+1] has the correct sign.

Our algorithm starts by putting all tension parameters equal to zero, i.e., it
starts from the cubic polynomial spline interpolation. Then it alters the tension
parameters to fulfill firstly the co-convex, and then the co-monotone conditions. In
the algorithms for co-convex and co-monotone interpolations, each iteration starts
by solving one strictly diagonally dominant tridiagonal linear system which is well
conditioned for every choice of tension parameters and a partition for which the
smallest and the largest subinterval do not differ too much [15]. The iterations stop
when the maximal relative distance between the new and the old tension parameter
becomes less than the given tolerance. The number of iterations is usually relatively
small, as in our examples below. For all other details of algorithms see [13].

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0  5  10  15  20  25

cubic
tension

Figure 2: Cubic spline interpolation and co-convex and co-monotone tension spline interpolation

Also, both algorithms keep pi equal to zero or small, if cubic interpolation sat-
isfies or “almost” satisfies the convex or monotone conditions (see Figure 2). The
exception is the case when the three successive interpolation points lie (or almost
lay) on the straight line. In that case the algorithm puts large tension parameters
(pi = 1000) to enforce almost a straight line between these three points. Finally,
the tension parameters obtained by previous algorithms are used to get the resulting
interpolating tension spline in the B-spline representation.



522 T.Bosner, B. Crnković and J. Škifić

3. Tension histospline

Consider the following reconstruction problem. Suppose that a = x0 < x1 < · · · <
xn−1 < xn = b and that instead of the point-wise values, the cell averages vi of the
function v,

vi =
1

∆xi

∫ xi

xi−1

v(x) dx, i = 1, . . . , n, (1)

with ∆xi := xi − xi−1, for all numerical cells Ii = [xi−1, xi] are known.
We are interested in the high order non–oscillatory approximation s of the func-

tion v such that
1

∆xi

∫

Ii

s(ξ) dξ = vi, (2)

for all i.
Requirement (2) is called a histopolation problem and the spline function s that

satisfies (2) is called a histospline. The solution to this problem is based on the
interpolation problem in Section 2. First, the primitive function of the given function
v,

V (x) =

∫ x

a

v(ξ) dξ (3)

is defined. Notice that since the cell averages of v are known (1), the values of V at
the cell boundaries are explicitly given by

V (xi) =

i∑

j=1

∫ xj

xj−1

v(ξ) dξ =

i∑

j=1

vj∆xj . (4)

Using the previously described spline interpolation procedure for the primitive
function V , we can obtain the tension spline S that interpolates the function V at
the cell edges xi−1 and xi. Finally, the function

s = S′ (5)

is the required non–oscillatory function that satisfies the condition (2). The co-
convex and co-monotone conditions for the interpolating spline S reduce oscillations
of the histospline s.

4. Application to image resampling

Although a simplified model, one can say that digital camera sensors “record” pho-
tons that are absorbed on non-overlapping, light sensitive areas of the sensor over a
relatively short time period. Instead to consider a pixel of an image as a grid point of
the rectilinear m×n grid, each pixel is treated as a 2D numerical cell and the value
of the pixel is interpreted as the cell averaged light intensity. No extra treatment of
raw image data is necessary. This interpretation leads to the histopolation approach
to image resampling. The histopolation approach agrees with the image capturing
process of digital cameras.



Tension splines with application on image resampling 523

Similarly to the reconstruction problem from the previous section, the value of
the pixel is the cell average vi,j of a function v in the numerical cell:

vi,j =
1

‖Ii,j‖

∫

Ii,j

v(x, y) dxdy. (6)

Our goal is to obtain the average values of pixels on some other m̃ × ñ grid that
shares the same boundaries as the original grid. The unknown function v will be
approximated by a tension histospline surface s. The spline surface s must satisfy
the reconstruction condition (6) for all cells in the rectilinear grid.

The histospline surface can be obtained as the tensor product of two univari-
ate methods which compute the tension histosplines. In this way, the 2D recon-
struction and resampling can be done dimension by dimension. This approach is
a computationally rational one and it is a straightforward generalization of the 1D
reconstruction problem.

It is enough to consider the problem in 1D and resample the image in one di-
rection. The original grid contains n numerical cells (pixels) in each row, while the
resampled grid contains ñ of them:

Ĩi = [x̃i−1, x̃i], i = 1 . . . ñ,

where x̃0 = x0 and x̃ñ = xn. To resample the image in one direction it is enough to
use the reconstructed histospline (5):

ṽi =
1

∆x̃i

∫ x̃i

x̃i−1

s(x) dx =
1

∆x̃i

(S(x̃i)− S(x̃i−1)) , i = 1, . . . , ñ. (7)

After resampling is done, for all the rows of the original image, the same resampling
procedure must be applied in the other direction.

From the right-hand side of equation (7) it is obvious that it is not necessary to
explicitly construct the histospline function s. To obtain the average pixel values
of the image pixels it is enough to evaluate interpolating tension splines at the new
cell boundaries, as introduced in Section 2. The interpolated pixel values need to
be quantized to fit the chosen discretization of pixel intensity values. Typically, 256
levels suffice to represent the pixel intensity.

5. Numerical tests

In order to evaluate the tension spline method (7), four different images were re-
sampled with the proposed method and compered with the bilinear, bicubic [7, 8]
and the biquadratic histospline [17] methods. It can be noted that the biquadratic
histospline is a special case of the tension histospline, with its tension parameters
set to zero. The resulting images are then compared with the reference image by
using Mean-Squared Error and Peak Signal-to-Noise Ratio [5] measures, commonly
used measures of image quality.



524 T.Bosner, B. Crnković and J. Škifić

Let A be the original m × n monochrome image and Ã its approximation. The
mean squared error (MSE) is defined as:

MSE =
1

mn

m∑

i=1

n∑

j=1

(
A(i, j)− Ã(i, j)

)2

,

where m and n are image width and height, respectively. For color images with
three RGB values per pixel the MSE is defined as follows:

MSE =
1

3

1

mn

3∑

c=1

m∑

i=1

n∑

j=1

(
A(i, j, c)− Ã(i, j, c)

)2

,

where c denotes the red, green or blue intensity value per pixel.

The peak signal–to–noise ratio (PSNR) is defined as:

PSNR = 10 · log10

(
A2

max

MSE

)
,

where Amax is the maximum pixel value of the image.

“Better” approximations have their MSE smaller, but their PSNR larger.

In order to compare the tension histospline’s computational cost to other meth-
ods, CPU times were recorded for all test images by running the programs on the
Intel(R) Core(TM) i7-3770 CPU 3.4 GHz processor.

5.1. Resampling a simple greyscale vector image

The vector image shown in Figure 3(a) is created with two different resolutions, i.e.,
10×10 and 40×40 pixels. The smaller image is then resampled to higher resolution
(Figure 3), while the corresponding MSE and PSNR values are given in Table 5.1.

Method MSE PSNR

tension histospline 199.57 25.13
biquadratic histospline 467.70 21.43
bicubic 579.47 20.50
bilinear 747.22 21.43

Table 1: Upsampling of the simple greyscale vector image from 10×10 to 40×40

Numerical results clearly show that the tension histospline, in contrast to other
tested methods, is capable of reproducing sharp edges with no apparent noise, at
the numerical cost of iterative calculation of co-convex and comonotone parameter
pi, which took on average 6.38 iterations for this example. Measured CPU times for
the tension histospline, biquadratic histospline, bicubic and bilinear methods were
4 ms, 0.05 ms, 0.036 ms and 0.02 ms, respectively.



Tension splines with application on image resampling 525

(a) Simple greyscale vector im-
age

(b) Bilinear (c) Bicubic

(d) Biquadratic histospline (e) Tension histospline

Figure 3: Upsampling of an image from 10×10 to 40×40

5.2. Resampling a smooth grayscale image

To illustrate the fact that the tension histospline behaves like the bicubic method
when interpolating smooth data, a simple image with smooth transition of colors,
shown in Figure 4, with resolution 874× 800 was upsampled with scale factor 2 by
the tension histospline and the bicubic method.

Figure 4: Grayscale palette

Both resulting approximations have no visual differences, therefore we put only
one image for this example. To demonstrate small numerical differences between
these two approximations, we calculated MSE between them, instead of comparing
each of the approximations with the original. The small value of the resulting MSE,



526 T.Bosner, B. Crnković and J. Škifić

which is equal to 0.0017, proves a lack of visual differences between them at the cost
of achieving co-monotonicity and co-convexicity in 6.23 iterations on average. The
recorded CPU times resulted in 6600 ms for the tension histospline and 3.2 ms for
the bicubic method.

5.3. Resampling grayscale vector image

The image shown in Figure 5 is a vectorized image converted to two raster images
with resolutions 412×425 and 1648×1702 pixels, respectively. The lower resolution
image is then upsampled to match the resolution of the higher resolution. Addi-
tionally, the higher resolution image is downsampled to match the resolution of the
lower resolution. Both processes were conducted with all four numerical methods.

Figure 5: Tiger

Method MSE PSNR

tension histospline 241.75 24.29
biquadratic histospline 309.95 23.21
bicubic 361.14 22.55
bilinear 424.30 21.85

Table 2: Upsampling of the tiger image from 412×425 to 1648×1702

Method MSE PSNR

tension histospline 26.20 33.94
biquadratic histospline 26.20 33.94
bicubic 134.79 26.83
bilinear 124.36 27.18

Table 3: Downsampling of the tiger image from 1648×1702 to 412×425

The choice of the numerical method exhibits no influence on the visual quality
of the resampled image and therefore the resulting images are not shown. However,



Tension splines with application on image resampling 527

a significant influence over the formal metrics is evident, as presented in Tables
2 and 3, where the results of the tension histospline method are better compared
to other presented methods. The average number of iterations needed to achieve
co-monotonicity and co-convexicity during upsampling was 17.75, while execution
times for tension histospline, biquadratic histospline, bicubic and bilinear methods
were 8550 ms, 414 ms, 5 ms and 3.1 ms, respectively.

5.4. Resampling a color image

The image shown in Figure 6(a) is a vectorized image converted to two raster images
with resolutions 648×859 and 2592×3434 pixels, respectively. The lower resolution
image is then upsampled to match the resolution of the higher resolution image.

(a) Coat of arms (b) Zoomed detail

Figure 6: Color image and a zoomed detail

Method MSE PSNR

tension histospline 70.78 29.63
biquadratic histospline 111.73 27.65
bicubic 130.54 26.97
bilinear 152.38 26.30

Table 4: Upsampling of the coat of arms from 648×859 to 2592×3434

The zoomed detail of the resampled images obtained by all four methods pre-
sented in Figure 7 shows significant differences in the visual quality of resampled
images. Tension histospline resampling generates more visually pleasing images,
especially around the sharp discontinuities in the image pixel intensities, at the av-
erage numerical cost of 12.82 iterations in order to satisfy the co-monotone and
co-convex criteria. The obtained CPU times for tension histospline, biquadratic his-
tospline, bicubic and bilinear methods were 59200 ms, 3913 ms, 15 ms and 0.85 ms,
respectively. Visual impressions are verified by the results of the formal metrics, as
presented in Table 4.



528 T.Bosner, B. Crnković and J. Škifić

(a) Reference image (b) Bilinear (c) Bicubic

(d) Biquadratic histospline (e) Tension histospline

Figure 7: Coat of arms zoom detail resampled from 648×859 to 2592×3434

6. Conclusion

Using the tension histospline to resample an image is a generalization of the quadratic
histospline procedure [17]. The tension histospline results on real and test images
show that this method gives very good results on image upsampling for arbitrary
scale factors. The resampled images have smaller MSE and they also look sharper
when compared to commonly used methods. The drawback of this approach is
the computational cost of the iterative process in the co-monotone and co-convex
interpolation algorithms, and in the calculations of the tension B-splines, which
are more complicated than the polynomial ones. Therefore, the tension histospline
method has approximately 10 up to 100 times higher execution time compared to
the biquadratic histospline method. Nevertheless, the higher computational cost
is justified by an obvious higher quality. Reducing the computational cost and
re-examining co-monotone and co-convex algorithms could be interesting for some
future research.

References

[1] S.Battiato, G.Gallo, F. Stanco, A locally adaptive zooming algorithm for digital
images, Image and Vision Computing 20(2002), 805–812.



Tension splines with application on image resampling 529

[2] T.Bosner, Knot insertion algorithms for Chebyshev splines, Ph.D. thesis, Depart-
ment of Mathematics, University of Zagreb, 2006.

[3] T.Bosner, M.Rogina, Non-uniform exponential tension splines, Numer. Algorithms
46(2007), 265–294.

[4] R.Gao, J. Song, X.Tai, Image Zooming Algorithm Based on Partial Differential
Equations, Int. J. Numer. Anal. Model. 6(2009), 284–292.

[5] R.C. Gonzalez, R.E.Woods, Digital Image Processing, Addison-Wesley, 3rd Edi-
tion, New York, 1992.

[6] C.Grandison, Behaviour of exponential splines as tensions increase without bound,
J. Approx. Theory 89(1997), 289–307.

[7] H.S.Hou, H.C.Andrews, Cubic splines for image interpolation and digital filtering,
IEEE Trans. Acoust., Speech, Signal Processing 26(1978) 508–517.

[8] R.Keys, Cubic convolution interpolation for digital image processing, IEEE Trans.
Acoust., Speech, Signal Processing 29 (1981), 1153–1160.

[9] B. I. Kvasov, Shape -Preserving Spline Approximation, World Scientific, Singapore,
2000.

[10] M.Marušić, Stable calculation by splines in tension, Grazer Math. Ber. 328(1996),
65–76.

[11] M.Marušić, A fourth/second order accurate collocation method for singularly per-
turbed two-point boundary value problems using tension splines, Numer. Math.
88(2001), 135–158.

[12] M.Marušić, M.Rogina, A collocation method for singularly perturbed two-point
boundary value problems with splines in tension, Adv. Comput. Math. 6(1996), 65–76.

[13] B. J.McCartin, Computation of exponential splines, SIAM J. Sci. Stat. Comput.
11(1990), 242–262.

[14] R.M.Pidatella, F. Stanco, C. Santaera , ENO/WENO interpolation methods for
zooming of digital images, Image and Vision Computing 20(2002), 805–812.

[15] S.Pruess, Properties of splines in tension, J. Approx. Theory 17(1976), 86–96.
[16] S.Pruess, Alternatives to the exponential spline in tension, Math. Comp. 33(1979),

1273–1281.
[17] N.Robidoux, A.Turcotte, M.Gong, A.Tousignant, Fast Exact Area Image Up-

sampling with Natural Biquadratic Histosplines, in: Proceedings of the 5th interna-
tional conference on Image Analysis and Recognition, (A. Campilho and M.Kamel,
Eds.), Springer-Verlag Berlin, Heidelberg, 2008, 85–96.

[18] M.Rogina, Basis of splines associated with some singular differential operators, BIT
32(1992), 496–505.

[19] M.Rogina, On construction of fourth order Chebyshev splines, Math. Commun.
4(1999), 83–92.

[20] M.Rogina, Algebraic Proof of the B-Spline Derivative Formula, in: Proceedings of
the Conference on Applied Mathematics and Scientific Computing, (Z. Drmač, M.
Marušić and Z. Tutek, Eds.), 2005, 273–282.

[21] M. Rogina, T. Bosner, On Calculating with Lower Order Chebyshev Splines, in:
Curves and Surfaces Design, (P. J. Laurent, P. Sabloniere and L. L. Schumaker, Eds.),
Nashville, 2000, 343–353.

[22] LL. Schumaker, On Tchebycheffian Spline Functions, J. of Approx. Theory
18(1976), 278–303.

[23] L.L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New York,
1981.


