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Abstract. We study the problem of `p-linear independence of orbits of unitary dual in-
tegrable representations of countable discrete, not necessarily abelian groups. Under the
assumption that the system is Bessel, we prove that for p ∈ 〈1, 2〉 the system is `p(G)-
linearly independent precisely when the projection onto the kernel of the corresponding
bracket operator is a projection of uniqueness for `p(G). The existence of such projec-
tions for any infinite countable discrete group is guaranteed by the result of Cecchini and
Figà–Talamanca.
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1. Introduction

Translation, modulation and dilation are three basic operators in harmonic analysis,
used for the construction of Gabor and wavelet systems. All these operators can be
considered as actions of a certain group, for example Zn or Rn, on L2(Rn). These
are, nevertheless, just a few examples of reproducing function systems that can be
represented as orbits of a group representation, and the concept of dual integrability
plays an important role in the study of such systems. The concept was introduced
in [8] in the abelian setting; for a locally compact abelian (LCA) group G, a unitary
representation Π of G on a separable Hilbert space H is called dual integrable if there
exists a function [·, ·] ≡ [·, ·]Π : H×H→ L1(Ĝ; dξ) called the bracket, such that

〈ϕ,Π(g)ψ〉 =

∫
Ĝ

[ψ,ψ](ξ)e−g(ξ)dξ, (1)

for all g ∈ G, and all ϕ,ψ ∈ H. If we return to translation, modulation and dila-
tion, considering each of these operators separately, the underlying group would be
abelian; however, if we consider their combination, they in general do not commute
(recall also that there are still important cases in which they do; see for instance
[8], Section 4). In recent years, the concepts of dual integrable representations and
bracket have been introduced and studied in the non-abelian setting for certain
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classes of groups, including discrete and compact groups, see [1], [2], [9], and for an
overview of the subject, see [7]. Most recently, in our collaboration [18], definition
has been extended to the setting of all locally compact groups. In this paper, due
to the nature of the problem, we shall consider only the case of countable discrete
groups, and refer only to the results of [2].

If Π is a dual integrable representation, then for any ψ ∈ H the properties of
orbit

Bψ = {Π(g)ψ : g ∈ G} (2)

can be analyzed in terms of [ψ,ψ]. While in the abelian case [ψ,ψ] is a function on the

dual group Ĝ, and the theory is based on the Fourier analysis on LCA groups, in the
non-abelian case the study is based on the theory of non-commutative integration.
In that case [ψ,ψ] is no longer a function, but an operator (closed, densely defined,
and generally unbounded) belonging to a certain non-commutative L1 space, with
the appropriate analogues holding for almost all of its main properties (see [2] and
[22]).

Considering the systems of type (2), of particular importance from the appli-
cation point of view are systems which allow redundancy. In infinite-dimensional
Hilbert spaces, redundancy can be expressed through various levels of linear inde-
pendence. The question of `p-linear independence for integer translates of a square
integrable function for p < 2 and p > 2 was studied in [19] and [20], respectively,
and in [21] for orbits of dual integrable representations of countable discrete abelian
groups (see also the discussion in [14], 1.7). If Π represents Z-translations on L2(R),
then [ψ,ψ] =: pψ is the periodization function. The set of zeroes of pψ plays an
important role in the study of (2); for instance, condition pψ > 0 a.e. completely
characterizes `2(Z)-linear independence of {ψ(· − k) : k ∈ Z} for ψ ∈ L2(R). In
contrast with the p = 2 case, this condition no longer characterizes `p(Z)-linear
independence if p < 2, neither for integer translates, nor for orbits of any infinite
countable discrete abelian group. More precisely, a characterization for Bessel sys-
tems was established in terms of `p-sets of uniqueness (see [19] and [21]), the subsets

of Ĝ which do not contain the support of any nonzero function with the Fourier
transform in `p(G); we note, however, that the problem is still open in general.

The purpose of this paper is to formulate and prove an analogue of this result
in the non-commutative setting. We prove that for p ∈ [1, 2] the Bessel system
Bψ = {Π(g)ψ : g ∈ G} is `p(G)-linearly independent precisely when the projection
onto the kernel of [ψ,ψ] is a projection of uniqueness for `p(G). The existence of
such projections for p < 2 follows from the result of Cecchini and Figà-Talamanca,
[4].

2. Preliminaries

In this section, we introduce the setting. For more details concerning non-commutative
Lp spaces, we refer to [16] and [25], and for the properties of operators and operator
algebras, we refer to [10].

Let G be a locally compact group and consider the left Haar measure on G. For
p ∈ [1,+∞〉, we shall denote by Lp(G) the standard Lebesgue spaces with respect
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to this measure; moreover, we shall use notation `p(G) if G is discrete. Recall that
in that case for any p, q ∈ [1,+∞] we have

p 6 q ⇒ `p(G) ⊆ `q(G). (3)

Let H be a separable Hilbert space, B(H) the algebra of bounded operators on
H and U(H) the group of unitary operators on H. A unitary representation Π of G
on H is a homomorphism Π : G → U(H), which is continuous with respect to the
strong operator topology. As is well-known, the latter is equivalent to functions

g 7→ 〈Π(g)ϕ,ψ〉

being continuous, for every ϕ,ψ ∈ H. A closed subspace V of H is called Π-invariant
if Π(G)(V) ⊆ V. The smallest nontrivial Π-invariant subspaces are of form

〈ψ〉 = span{Π(g)ψ : g ∈ G}; (4)

we refer to these spaces as cyclic subspaces (generated by ψ).
On any locally compact group, we can consider the left and the right regular

representation, λG : G→ U(L2(G)) and ρG : G→ U(L2(G)), defined by

λG(g)f(x) = f(g−1x), ρG(g)f(x) = ∆1/2(g)f(xg), x ∈ G, g ∈ G. (5)

Here, ∆ denotes the modular function on G; G is unimodular if ∆ ≡ 1 (recall that
discrete groups are unimodular).

Suppose now thatG is a countable discrete group. We denote by L (G) and R(G)
the left and the right von Neumann algebra associated to G, defined as the closure
with respect to weak operator topology of span{λ(g) : g ∈ G} and span{ρ(g) : g ∈
G}, respectively. As in [2], we shall refer to the elements of span{λ(g) : g ∈ G} as
trigonometric polynomials. We consider the standard normalized trace τ on L (G),
defined by

τ(F ) = 〈Fδe, δe〉, F ∈ L (G). (6)

Here, {δg} denotes the canonical base on `2(G) and e denotes the identity element of
G. Trace τ defined by (6) is normal, faithful and finite. For 1 6 p <∞, Lp(L (G))
space is defined as the completion of L (G) with respect to norm defined by

‖F‖p = (τ(|F |p))
1
p , F ∈ L (G),

where |F | is the selfadjoint operator defined as |F | = (F ∗F )1/2. Moreover, L∞(L (G))
is identified with L (G), equipped with the operator norm. These spaces are Banach
spaces; the space is Hilbert if p = 2, with the scalar product defined by

〈F,H〉2 = τ(H∗F ). (7)

If 1 6 r, p, q 6 ∞ such that 1
r = 1

p + 1
q , F ∈ Lp(L (G)) and H ∈ Lq(L (G)), then

FH ∈ Lr(L (G)) and

‖FH‖r 6 ‖F‖p‖H‖q. (8)
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For F ∈ L (G), the Fourier coefficients are defined via

F̂ (g) = τ(λ(g)∗F ), g ∈ G, (9)

and F acts on `2(G) as a convolution operator:

Fζ(g′) =
∑
g∈G

F̂ (g)ζ(g−1g′), ∀ζ ∈ `2(G), ∀g′ ∈ G. (10)

Since τ is finite, we have

1 6 p 6 q 6 +∞ ⇒ Lq(L (G)) ⊆ Lp(L (G)). (11)

Fourier coefficients are defined for any F ∈ L1(L (G)); we have F̂ ∈ `∞(G), and the
theorem of uniqueness holds (see Lemma 2.1. in [2]). Moreover, since {λ(g) : g ∈ G}
forms an orthonormal basis for L2(L (G)), the analogue of Plancherel’s theorem can
be proved (Lemma 2.2 in [2]).

Following [2], a unitary representation Π : G→ U(H) will be called dual integrable
if there exists a map [·, ·] : H×H→ L1(L (G)) such that

〈ϕ,Π(g)ψ〉 = τ([ϕ,ψ]λ(g)∗), (12)

for all ϕ,ψ ∈ H, and all g ∈ G. For any ψ ∈ H, [ψ,ψ] is a positive operator
which belongs to L1(L (G)) (thus, it is closed and densely defined, but generally not
bounded), and ‖[ψ,ψ]‖1 = ‖ψ‖2H. The appropriate analogues of the main properties
of [·, ·] hold in the non-abelian setting, except for property (ii) in Corollary 2.6, [8]
(for more details, see [22]).

Throughout the paper, for a closed densely defined linear operator T , we shall
denote by N(T ) and R(T ) its kernel and range, respectively. Let us denote by Nψ
the kernel of [ψ,ψ]. By a projection, we mean an orthogonal projection; if P is
a projection onto some closed subspace K, we shall denote it by PK . Projections
can be compared using the relation 6 between positive operators. We say that P
is a subprojection of Q if P 6 Q, and this is equivalent to R(P ) ⊆ R(Q), as well
as to PQ = P and QP = P (see, for instance, Proposition 2.5.2 in [10]). For
a closed densely defined operator F , the left support is the smallest projection P
which satisfies PF = F , and it is actually the projection onto R(F ); analogously, the
right support is the smallest projection such that FP = F , and it is the projection
onto N(F )⊥.

Since [ψ,ψ] is a closed operator, Nψ is a closed subspace of L2(G). Moreover,
since [ψ,ψ] is self-adjoint, P

R([ψ,ψ])
= PN⊥ψ . Since [ψ,ψ] ∈ L1(L (G)), we know that

PN⊥ψ ∈ L (G) and Nψ and N⊥ψ are right-invariant subspaces of L2(G).

One of the important consequences of the dual integrability of Π is the existence
of an isometric isomorphism Sψ : 〈ψ〉 → L2(L (G), [ψ,ψ]) such that

Sψ[Π(g)ψ] = λ(g), ∀g ∈ G, (13)

where L2(L (G), [ψ,ψ]) is defined as the completion of L (G)/Nψ with respect to the
scalar product defined by

〈F,H〉2,ψ = τ(H∗F [ψ,ψ]) = 〈F [ψ,ψ]
1
2 , H[ψ,ψ]

1
2 〉2,
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and Nψ = {F ∈ L (G) : F [ψ,ψ]1/2 = 0} (see, for instance, [2], Proposition 3.4 for
the result in the context of discrete groups).

3. Main result

We first introduce the main concepts.

Definition 1. Let K be a subset of the set of all sequences of complex numbers. We
say that a sequence {xn} in a Hilbert space H is K-linearly independent if

(cn) ∈ K,
∞∑
n=1

cnxn = 0 in H ⇒ cn = 0, ∀n ∈ N. (14)

In our case, K = `p(G), for p ∈ [1, 2]. More precisely, we would like to characterize
`p(G)-linear independence of Bψ = {Π(g)ψ : g ∈ G}. Observe that, in general,∑
g∈G cgΠ(g)ψ does not have to converge, unless (cg) ∈ `1(G). However, it converges

for every (cg) ∈ `2(G) if the system Bψ is Bessel, i.e., if there exists a constant B > 0
such that ∑

g∈G
|〈ϕ,Π(g)ψ〉|2 6 B‖ϕ‖2, ∀ϕ ∈ H. (15)

Recall also that in this case, the series converges unconditionally (see, for example,
Section 3.2 in [5]).

Remark 1. By Theorem A (iii) in [2], it follows that Bψ = {Π(g)ψ : g ∈ G} is a
Bessel system if and only if [ψ,ψ] 6 BI, where I denotes the identity operator on
`2(G); hence, [ψ,ψ] is bounded. Moreover, by the fact that [ψ,ψ] ∈ L1(L (G)), it
follows that [ψ,ψ] is affiliated with the von Neumann algebra L (G), i.e., it commutes
with all elements of the commutant of L (G) (which is actually R(G)). It follows
by the Double Commutant Theorem that [ψ,ψ] ∈ L (G) (see also [3], 2.3).

In [4], Cecchini and Figà-Talamanca proved the following result, valid for all lo-
cally compact noncompact unimodular groups G such that that L (G) is not purely
atomic, i.e., it is not generated, as a von Neumann algebra, by its minimal projec-
tions; this condition is fulfilled if G is discrete.

Theorem 1 ([4]). Let L (G) = U ⊕B, where B is the von Neumann algebra gen-
erated by the minimal projections. Let 1 < p < 2, P ∈ U, m(P ) > 0. Then there

exists Q ∈ U, Q 6 P such that if T ∈ L1(Γ), QT = T and T̂ ∈ Lp, it follows that
T = 0. Furthermore, Q can be chosen in such a way that m(Q) is arbitrarily close
to m(P ).

The notation and methods used in [4] are based on the theory of integration
with respect to a gage space developed by Segal in [17], and the Fourier transform
on locally compact unimodular groups developed by Stinespring, [23] and Kunze,
[12]. The latter is defined as an operator of left convolution λ(f) by f acting on
L2(G), for any measurable function f on G such that λ(f) is closed and densely
defined operator with certain additional properties. Space L1(Γ) is the L1 space over
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the dual gage space, Γ = (L2(G),L (G),m), where the dual gage m is the unique
gage on L (G) (the von Neumann algebra generated by {λ(g) : g ∈ G}), such that
whenever f is a continuous positive definite function in L1(G), then λ(f) ∈ L1(Γ)
and m(λ(f)) = f(e) (see Theorem 9.2 in [23]; see also Theorem 1.7 in [17] and the
definition of m as in [4], p. 39). The norm on L1(Γ) is defined by ‖T‖1 = m(|T |),
and T 7→ T̂ , T̂ (x) = m(λ(x)∗T ), is the inverse Fourier transform considered by
Stinespring. Mapping f 7→ λ(f) is a unitary operator from L2(G) onto L2(Γ) (for
f ∈ L2(G), λ(f) is the closed operator on L2(G) defined by λ(f)g = f ∗ g for
g ∈ L1(G)∩L2(G); see [4] and Corollary 9.3 in [23]), and L2(Γ) is the Hilbert space
with the scalar product defined by 〈T, S〉 = m(TS∗). A different approach (related to
our setting), in terms of measurability with respect to a trace ϕ0 on a von Neumann
algebra was developed by Nelson in [15], and instead of Lq(Γ), we can consider Lq

space over L (G) with respect to ϕ0; see, for example, the discussion in [24], p. 548,
and [25], pp. 23-24, and see also [13], 2.3. If we now return to our setting, described
in Section 2, note that for τ defined by (6) we have m(λ(f)) = f(e) = τ(λ(f)) (recall
(6) and (10)), for all continuous positive definite functions in L1(G). The set λ(f)
of all such f is a self-adjoint algebra which is weakly dense in L (G) (recall also
that the strong closure coincides with the weak closure; see [23], p. 19). Note that

for Φ ∈ L2(L (G)), Φ̂ is actually the inverse Fourier transform in the sense of [23].
According to these remarks, we define the following concept.

Definition 2. Let G be a countable discrete group and let p ∈ [1, 2]. We say that
P ∈ L (G) is a projection of uniqueness for `p(G) if

Φ ∈ L1(L (G)), Φ̂ ∈ `p(G), PΦ = Φ ⇒ Φ = 0. (16)

There is another interpretation of the projections of uniqueness, as noted in [4].
Since P ∈ L (G), its range is a right-invariant subspace of L2(G), and the existence
of projections of uniqueness for `p(G) means that there exist nontrivial closed right-
invariant subspaces of L2(G) which do not contain any nontrivial element of `p(G).
We note also that the result of [4] extends the result of Katznelson, [11] and Figà-
Talamanca and Gaudry, [6].

Remark 2. If G is discrete, then `p(G) ⊆ `2(G) for all p ∈ [1, 2]. Hence, it follows

from Φ̂ ∈ `p(G) (by applying Lemma 2.1 and Lemma 2.2 in [2]) that Φ ∈ L2(L (G)).

We now state the main result.

Theorem 2. Suppose that Π is a unitary dual integrable representation of a count-
able discrete group G on a separable Hilbert space H. Let 1 6 p 6 2 and ψ ∈ H,
ψ 6= 0 such that Bψ = {Π(g)ψ : g ∈ G} is a Bessel system. The following are
equivalent:

(i) Bψ is `p(G)-linearly independent,

(ii) the linear span of the right translates of ([ψ,ψ]
1
2 )̂ is dense in `q(G),

(iii) PNψ is a projection of uniqueness for `p(G).
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Lemma 1. Let 1 6 p 6 2 and ψ ∈ H, ψ 6= 0. The system Bψ = {Π(g)ψ : g ∈ G}
is `p(G)-linearly dependent if and only if there exists 0 6= Φ ∈ L2(L (G)) such that

Φ̂ ∈ `p(G) and
∑
g∈G Φ̂(g)λ(g) = 0 in L2(L (G), [ψ,ψ]).

Proof. By definition, Bψ is `p(G)-linearly dependent if there exists a nontrivial
(cg) ∈ `p(G) such that

∑
g∈G cgΠ(g)ψ = 0 in H. It follows from Lemma 2.2 in [2]

and Remark 2 that this is equivalent to the existence of 0 6= Φ ∈ L2(L (G)) such

that cg = Φ̂(g), for all g ∈ G and∑
g∈G

Φ̂(g)Π(g)ψ = 0. (17)

Since in (17) we actually consider the limit in L2(L (G)) of a sequence of trigono-
metric polynomials and the isometric isomorphism Sψ maps

∑
g∈Ω cgΠ(g)ψ, for any

finite Ω ⊆ G, into a trigonometric polynomial
∑
g∈Ω cgλ(g), by continuity of Sψ and

S−1
ψ , it follows that (17) is equivalent with∑

g∈G
Φ̂(g)λ(g) = 0 (18)

in L2(L (G), [ψ,ψ]), which proves the claim.

Proof. (Theorem 2) (ii)⇒ (i) Suppose that Bψ = {Π(g)ψ : g ∈ G} is `p(G)-linearly
dependent. By Lemma 1, there exists a nontrivial (cg) ∈ `p(G) such that∑

g∈G
cgλ(g)[ψ,ψ]

1
2 = 0

in L2(L (G)). Specifically, for any H ∈ L2(L (G))) we have〈∑
g∈G

cgλ(g)[ψ,ψ]
1
2 , H

〉
2

= 0.

Hence, for any g′ ∈ G (take H = λ(g′) ∈ L2(L (G))), we have〈∑
g∈G

cgλ(g)[ψ,ψ]
1
2 , λ(g′)

〉
2

=
∑
g∈G

cg〈λ(g)[ψ,ψ]
1
2 , λ(g′)〉2

=
∑
g∈G

cgτ(λ(g′)∗λ(g)[ψ,ψ]
1
2 )

=
∑
g∈G

cgτ((λ(g−1)λ(g′))∗[ψ,ψ]
1
2 )

=
∑
g∈G

cg([ψ,ψ]
1
2 )̂(g−1g′).

Note that ([ψ,ψ]1/2)̂ ∈ `2(G) ⊆ `q(G). Therefore, (ag) ∈ `p(G) = (`q(G))∗, where

ag = cg−1 , g ∈ G, annihilates span{ρ(g)([ψ,ψ]
1
2 )̂ : g ∈ G} and, thus, this set is not

dense is `q(G).
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(iii) ⇔ (i) Suppose that Bψ is `p(G)-linearly dependent. By Lemma 1, there ex-

ists 0 6= Φ ∈ L2(L (G)) such that Φ̂ ∈ `p(G) and
∑
g∈G Φ̂(g)λ(g)[ψ,ψ]

1
2 = 0 in

L2(L (G)). Using Lemma 2.2 in [2], we first conclude that∑
g∈G

Φ̂(g)λ(g) = Φ in L2(L (G)). (19)

Moreover, since Bψ is Bessel, using Remark 1 and (8), we have∑
g∈G

Φ̂(g)λ(g)[ψ,ψ]1/2 = Φ[ψ,ψ]1/2 in L2(L (G)). (20)

Hence, Φ[ψ,ψ]
1
2 = 0; consequently, [ψ,ψ]1/2Φ∗ = 0. It follows that R(Φ∗) ⊆ Nψ

(recall that Nψ = N([ψ,ψ]1/2); see, for example, [10], 2.5), that is, P
R(Φ)∗

6 PNψ .

Since P
R(Φ)∗

is the left support of Φ∗, we have

PNψΦ∗ = Φ∗. (21)

Using the definition of Fourier coefficients and the traciality of τ , it follows that

Φ̂∗(g) = τ(Φ∗λ(g)∗) = 〈(λ(g)Φ)∗δe, δe〉 = 〈λ(g)Φδe, δe〉 = Φ̂(g−1),

for all g ∈ G; consequently, Φ̂∗ ∈ `p(G). We have, thus, proved that PNψ is not a
projection of uniqueness for `p(G).

Suppose now that PNψ is not a projection of uniqueness for `p(G). Then there

exists 0 6= Φ ∈ L2(L (G)) such that Φ̂ ∈ `p(G) and PNψΦ = Φ. It follows that

Nψ = R(PNψ ) ⊇ R(Φ).

Passing to the orthogonal complements (recall that Φ is a closed, densely defined
operator, and [ψ,ψ] is, moreover, bounded), we have

N(Φ∗) ⊇ N⊥ψ = R([ψ,ψ]1/2); (22)

therefore, Φ∗[ψ,ψ]
1
2 = 0, with Φ̂∗ ∈ `p(G) \ {0}. Using again Lemma 2.2 in [2]

and (8), it follows that
∑
g∈G Φ̂∗(g)λ(g) = 0 in L2(L (G), [ψ,ψ]1/2); hence, Bψ is

`p(G)-linearly dependent.
(ii) ⇒ (iii) Suppose that PNψ is not a projection of uniqueness for `p(G), and

take the corresponding Φ ∈ L2(L (G)). Similarly as before, we conclude that
Φ∗[ψ,ψ]1/2 = 0, and hence, {ρ(g)([ψ,ψ]1/2)̂ : g ∈ G} is not dense in `q(G) (the
same arguments are used as in (i)⇒ (ii)).

Remark 3. As in the abelian case, the theorem has the following consequences and
extensions.

(a) Since there are no nontrivial projections of uniqueness for `2(G), Theorem 2
implies that the Bessel system Bψ is `2(G)-linearly independent precisely when
Nψ = {0}.
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(b) Observe also that we could actually prove (iii) ⇒ (i) similarly to (ii) ⇒ (i),
without using the assumption that Bψ is Bessel; hence, this implication is true
in the general case. The converse, (i)⇒ (iii), is much more difficult, and the
problem is open even in the case of integer translates on L2(R).

(c) If p = 1, the series always converges; hence Theorem 2 holds for p = 1 without
the assumption that Bψ is Bessel.
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[7] E. Hernández, P. M. Luthy, H. Šikić, F. Soria, E. N. Wilson, Spaces gener-
ated by orbits of unitary representations: a tribute to Guido Weiss, J. Geom. Anal.
31(2021), 8735–8761.
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