Some representations of unlimited natural numbers

Djamel Bellaouar ${ }^{1, *}$ and Abdelmadjid Boudaoud ${ }^{2}$
${ }^{1}$ Department of Mathematics, University 08 Mai 1945 Guelma, B. P. 401-Guelma, 24000 , Guelma, Algeria
${ }^{2}$ Laboratory of Pure and Applied Mathematics (LMPA), University of M'sila, Msila 28 000, Algeria

Received June 7, 2023; accepted September 10, 2023

Abstract

Based on the authors' article [5] and the work of Hrbáček [11], we prove that every unlimited natural number ω is of the form $\omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$ in at least k different ways ($k \geq 1$ is limited), where $\omega_{i} \in \mathbb{N}$ is unlimited and ω_{i} / ω_{j} is appreciable for $1 \leq i, j \leq 4$. Other similar representations of unlimited natural numbers are also presented.

AMS subject classifications: 26E35, 03H05, 03H15, 11A51
Keywords: factoring of integers, nonstandard analysis, unlimited integers

1. Introduction

The study of which integers are represented by a given quadratic form is one of the most celebrated in the theory of numbers. In Guy [10, D4, p. 229], Waring's problem is that of representation of positive integers as a sum of a fixed number s of nonnegative k-th powers, i.e., whether for a given k there is any fixed $s=s(k)$ such that

$$
n=x_{1}^{k}+x_{2}^{k}+\cdots+x_{s}^{k}
$$

is solvable for any n. In 1640, Fermat stated his conjecture that every prime number $p \equiv 1(\bmod 4)$ can be written in the form $p=x^{2}+y^{2}$. A century later, Euler proved Fermat's conjecture and worked seriously on related problems and generalizations. In 1770, Lagrange and Euler (see, e.g., Adler [1, Theorem 8.22, p. 234]) proved that every positive integer is a sum of four squares. In 1798, Legendre and Gauss ([1, Theorem 8.25, p. 236]) classified the integers that could be represented as a sum of three squares. More precisely, they proved that a positive integer can be represented as a sum of three squares if and only if it is not of the form $4^{m}(8 k+7)$. This result is deeper and more difficult than either of the two-square or four-square theorems. Motivated by Lagrange's result, it is natural to ask about the collection of quadratic forms that represent all positive integers, or more generally, to fix in advance a collection S of integers, and ask about quadratic forms that represent all numbers in S. In this context, Iwaniec [12] considered a more general problem of the number of representations of an integer n by a positive definite quadratic form $Q\left(x_{1}, \ldots, x_{s}\right)$.

[^0]For example, in [1, p. 259], it is shown that each nonnegative integer is either of the form $x^{2}+y^{2}+z^{2}$ or of the form $x^{2}+y^{2}+2 z^{2}$, where x, y and z are positive integers.

In the context of nonstandard analysis [6], we shall need the following definition and principle which are used throughout this paper.
Definition 1. Two positive real numbers x and y are of the same order, written $x \sim y$, if x / y is appreciable. Or, equivalently, there exist standard real numbers $r_{1}, r_{2} \in \mathbb{R}_{+}$such that $r_{1}<x / y<r_{2}$.

Principle 1. [Cauchy's principle [6, p. 19]] No external set is internal.
For details about internal and external sets, one can see [3, definitions 2.2, 2.3] and $[6, \mathrm{pp} .5,6]$. Furthermore, we explain here how to apply this principle. Let ω be unlimited. The set $\{n \in \mathbb{N}: \omega>n\}$ is internal and contains all limited positive integers. By Cauchy's principle, $\omega>n_{0}$ for some unlimited positive integer n_{0}.

As a continuation of our previous works [3, 4, 5] and Hrbáček's work [11], we prove in the present paper that every unlimited positive integer n can be written in the form:

$$
\left\{\begin{array}{l}
n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4} \tag{2}\\
\omega_{i} \sim \omega_{j} \text { for } 1 \leq i, j \leq 4,
\end{array}\right.
$$

where $\omega_{i} \in \mathbb{N}$ for $1 \leq i \leq 4$. Note that the second condition of $\left(\mathrm{A}_{2}\right)$ implies that each ω_{i} is unlimited. As a consequence, if $k \geq 2$ is a limited positive integer, then we can generalize the above form as follows:

$$
\left\{\begin{array}{l}
n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}+\cdots+\omega_{2 k-1} \cdot \omega_{2 k} \tag{k}\\
\omega_{i} \sim \omega_{j} \text { for } 1 \leq i, j \leq 2 k
\end{array}\right.
$$

Moreover, we present some families of unlimited positive integers which can be represented as in $\left(\mathrm{A}_{2}\right)$ by giving the values of $\omega_{i}(1 \leq i \leq 4)$ in terms of n. Other similar types of representation of unlimited natural numbers are also discussed.

To start with our main results, we need the following lemmas:
Lemma 1. Let $a, b, c, d \in \mathbb{R}_{+}$.
(1) $a \sim a$. If $a \sim b$, then $b \sim a$. If $a \sim b$ and $b \sim c$, then $a \sim c$.
(2) If $a \sim b$ and $r, s \in \mathbb{R}^{+}$are appreciable, then $r \cdot a \sim s \cdot b$.
(3) If $a \sim c$ and $b \sim d$, then $a+b \sim c+d$.
(4) If $a \sim c$ and $b \sim d$, then $a \cdot b \sim c \cdot d$.
(5) If $a \sim b$ and $n \in \mathbb{N}^{+}$is standard, then $a^{n} \sim b^{n}$ and $\sqrt[n]{a} \sim \sqrt[n]{b}$.

Proof. Proof of (3). We have $r_{1} \cdot c<a<r_{2} \cdot c$ and $s_{1} \cdot d<b<s_{2} \cdot d$ for some standard $r_{1}, r_{2}, s_{1}, s_{2} \in \mathbb{R}^{+}$. Hence $u_{1} \cdot(c+d) \leq r_{1} \cdot c+s_{1} \cdot d<a+b<r_{2} \cdot c+s_{2} \cdot d \leq u_{2} \cdot(c+d)$ for $u_{1}=\min \left\{r_{1}, s_{1}\right\}$ and $u_{2}=\max \left\{r_{2}, s_{2}\right\}$.

To state the second lemma, we need the result known as Bertrand's postulate: For every $n \in \mathbb{N}, n \geq 2$, there is a prime p such that $n<p<2 n$.

Lemma 2. For every $x \in \mathbb{R}, x \geq 2$, there is a prime p such that $x<p<2 x$.
Proof. Recall that $[x]$ denotes the integer part of the real number x. There is a prime p such that $[x]<p<2[x]$. Then $x<[x]+1 \leq p<2[x] \leq 2 x$.

2. Unlimited integers of the form $\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$

One of the main results is the following:
Theorem 1. Every unlimited $\omega \in \mathbb{N}$ can be written in the form $\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \sim \sqrt{\omega}$ and $\omega_{i}>0$ for $1 \leq i \leq 4$.

Proof. By Bertrand's postulate, there is a prime number p_{1} such that $\frac{\sqrt{\omega}}{2}<p_{1}<$ $\sqrt{\omega}$ and a prime number p_{2} such that $\frac{\sqrt{\omega}}{4}<p_{2}<\frac{\sqrt{\omega}}{2}$.

The Diophantine equation $p_{1} \cdot x+p_{2} \cdot y=\omega$ has a particular solution x_{0}, y_{0} in integers (Euclid's algorithm) since gcd $\left(p_{1}, p_{2}\right)=1$. Moreover, all solutions are given by $x_{t}=x_{0}+t \cdot p_{2}$ and $y_{t}=y_{0}-t \cdot p_{1}$, where t is an arbitrary integer. Now, we can choose t so that

$$
\begin{equation*}
\frac{\sqrt{\omega}}{4}<x_{t}<\frac{3 \sqrt{\omega}}{4} \tag{1}
\end{equation*}
$$

In fact, let t^{*} be the largest integer for which $x_{t^{*}} \leq \sqrt{\omega} / 4$. Then clearly $x_{t^{*}+1}>$ $\sqrt{\omega} / 4$ and since $x_{t^{*}+1}=x_{t^{*}}+p_{2}$, it follows that

$$
x_{t^{*}+1}-\frac{\sqrt{\omega}}{4} \leq x_{t^{*}+1}-x_{t^{*}}=p_{2}<\frac{\sqrt{\omega}}{2}
$$

and so $x_{t^{*}+1}<\frac{\sqrt{\omega}}{4}+\frac{\sqrt{\omega}}{2}=\frac{3 \sqrt{\omega}}{4}$. Thus, we let $t=t^{*}+1$. This proves (1). For this t we get $\frac{\omega}{8}<p_{1} \cdot x_{t}<\frac{3 \omega}{4}$ and hence $\omega / 4<p_{2} \cdot y_{t}=\omega-p_{1} \cdot x_{t}<7 \omega / 8$. It follows that $\frac{\sqrt{\omega}}{2}<y_{t}<\frac{7 \sqrt{\omega}}{2}$. We let $\omega_{1}=p_{1}, \omega_{2}=x_{t}, \omega_{3}=p_{2}$ and $\omega_{4}=y_{t}$. This completes the proof.

We now consider the basic question: Can every unlimited natural number n be represented in the form $n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \sim \omega_{j}$ holds for all $1 \leq i, j \leq 4$ in at least k different ways ($k \geq 1$ limited)? For the answer, fix a standard k. By Bertrand's postulate, there is a prime number p_{1} such that $\frac{\sqrt{\omega}}{2 k}<p_{1}<\frac{\sqrt{\omega}}{k}$ and a prime number p_{2} such that $\frac{\sqrt{\omega}}{4 k}<p_{2}<\frac{\sqrt{\omega}}{2 k}$, so $p_{1} \sim \sqrt{\omega}$ and $p_{2} \sim \sqrt{\omega}$. The Diophantine equation $p_{1} \cdot x+p_{2} \cdot y=\omega$ has a solution x_{0}, y_{0} in integers. Moreover, every solution is of the form $x_{t}=x_{0}+t \cdot p_{2}, y_{t}=y_{0}-t \cdot p_{1}$ for some $t \in \mathbb{Z}$. We can now choose t so that $\frac{\sqrt{\omega}}{4 k}<x_{t}<\frac{3 \sqrt{\omega}}{4 k}$, so $x_{t} \sim \sqrt{\omega}$. For this t we get $\frac{\omega}{8 k^{2}}<p_{1} \cdot x_{t}<\frac{3 \omega}{4 k^{2}}$ and hence

$$
\frac{\left(4 k^{2}-3\right) \omega}{4 k^{2}}<p_{2} \cdot y_{t}=\omega-p_{1} \cdot x_{t}<\frac{\left(8 k^{2}-1\right) \omega}{8 k^{2}}
$$

It follows that $\frac{\left(4 k^{2}-3\right) \sqrt{\omega}}{2 k}<y_{t}<\frac{\left(8 k^{2}-1\right) \sqrt{\omega}}{2 k}$. Different values of k give different values of the quadruple $p_{1}, p_{2}, x_{t}, y_{t}$.

Proposition 1. Let $k \geq 1$ be limited. Every unlimited positive integer ω can be represented as $\omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$ in at least k different ways with the same values of ω_{1}, ω_{3} for all k, where $\omega_{i} \in \mathbb{N}$ is unlimited for $1 \leq i \leq 4$.

Proof. Let p_{1}, p_{2}, p_{3} be distinct unlimited primes such that $\omega \geq p_{1} p_{2} p_{3}$ (such prime numbers exist by Cauchy's principle and the fact that there are infinitely many primes, since ω is greater than any product of three standard prime numbers). Since $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$, we conclude that there exist integers x_{0} and y_{0} such that $p_{1} \cdot x_{0}+p_{2} \cdot y_{0}=1$. Therefore, the integer solutions of $p_{1} \cdot x+p_{2} \cdot y=\omega$ are given by $x_{t}=\omega x_{0}-p_{2} t$ and $y_{t}=\omega y_{0}+p_{1} t$, where $p_{1} \cdot x_{0}+p_{2} \cdot y_{0}=1$ and $t \in \mathbb{Z}$. Thus, this equation has positive solutions if $\omega x_{0}>p_{2} t$ and $\omega y_{0}>-p_{1} t$, from which it follows that

$$
\begin{equation*}
\frac{-\omega y_{0}}{p_{1}}<t<\frac{\omega x_{0}}{p_{2}} \tag{2}
\end{equation*}
$$

Now let $k \geq 1$ be limited. Since $\omega>p_{1} p_{2} k$, or equivalently $\omega\left(p_{1} x_{0}+p_{2} y_{0}\right)>$ $p_{1} p_{2} k$, we conclude that

$$
\begin{equation*}
\frac{-\omega y_{0}}{p_{1}}<\left[\frac{-\omega y_{0}}{p_{1}}\right]+k<\frac{\omega x_{0}}{p_{2}} \tag{3}
\end{equation*}
$$

Therefore, inequalities (2) hold for at least k different values of t with $t=\left[-\omega y_{0} / p_{1}\right]+$ i for $1 \leq i \leq k$.

Next, note that x_{t} and y_{t} are not both limited; otherwise $p_{3} \leq \frac{x_{t}}{p_{2}}+\frac{y_{t}}{p_{1}} \cong 0$, which is a contradiction. In fact, without loss of generality, assume that x_{t} is unlimited with $x_{0}>0$, i.e., $y_{0}<0$ and we show that y_{t} is also unlimited.

Let $a \geq 1$ be limited. Since $\omega\left(p_{1} x_{0}+p_{2} y_{0}\right)>a p_{2}$, we deduce that $p_{2}\left(a-\omega y_{0}\right)<$ $p_{1} \omega x_{0}$. Moreover, as in the proof of (3), we can prove that $\frac{a-\omega y_{0}}{p_{1}}+t^{\prime}<\frac{\omega x_{0}}{p_{2}}$ for every limited $t^{\prime} \geq 1$. Indeed, the last inequality holds since $\omega\left(p_{1} x_{0}+p_{2} y_{0}\right)>p_{2}\left(a+t^{\prime} p_{1}\right)$, and so the following inequalities:

$$
\begin{equation*}
\frac{a-\omega y_{0}}{p_{1}}<t<\frac{\omega x_{0}}{p_{2}} \tag{4}
\end{equation*}
$$

hold at least for k different values of t. It follows from the left-hand side of (4) that $p_{1} t>a-\omega y_{0}$. Thus, $y_{t}=\omega y_{0}+p_{1} t>a$, which shows that y_{t} is unlimited. We let $\omega_{1}=p_{1}, \omega_{2}=x_{t}, \omega_{3}=p_{2}$ and $\omega_{4}=y_{t}$, which are unlimited positive integers. This completes the proof.

Remark 1. One can give a proof of Proposition 1 as follows: By Bertrand's postulate there exist prime numbers p_{1} and p_{2} such that $\frac{\sqrt[3]{\omega}}{2}<p_{1}<\sqrt[3]{\omega}$ and $\frac{\sqrt[3]{\omega}}{4}<p_{2}<$ $\frac{\sqrt[3]{\omega}}{2}$. The solutions of the equation $p_{1} x+p_{2} y=\omega$ are of the form $x_{t}=x_{0}-t p_{2}$ and $y_{t}=y_{0}+t p_{1}$, where t is an integer. Fixt so that $(\sqrt[3]{\omega})^{2}-\sqrt[3]{\omega}<y_{t}<(\sqrt[3]{\omega})^{2}$. If $k \geq 0$ is standard, then $y_{t+k}=y_{t}+k p_{1}$, so y_{t+k} is unlimited and $y_{t+k}<(\sqrt[3]{\omega})^{2}+k \sqrt[3]{\omega}$, so that $p_{1} x_{t+k}=\omega-p_{2} y_{t+k}>\omega-\sqrt[3]{\omega}\left((\sqrt[3]{\omega})^{2}+k \sqrt[3]{\omega}\right) / 2>\omega / 4$ and $x_{t+k}>(\sqrt[3]{\omega})^{2} / 4$ is also unlimited. We can let $\omega_{1}=p_{1}, \omega_{2}=x_{t+k}, \omega_{3}=p_{2}, \omega_{4}=y_{t+k}$ and $k \geq 0$.

Corollary 1. Let $k \geq 2$ be a standard natural number. Every unlimited $\omega \in \mathbb{N}$ can be written in the form $\left(\mathrm{A}_{k}\right)$.

Proof. By induction. Note that $\omega_{2 k-1} \cdot \omega_{2 k} \sim \omega$, so Theorem 1 enables the inductive step by writing $\omega_{2 k-1} \cdot \omega_{2 k}=\omega_{2 k-1}^{\prime} \cdot \omega_{2 k}^{\prime}+\omega_{2 k+1} \cdot \omega_{2 k+2}$ with $\omega_{2 k-1}^{\prime}, \omega_{2 k}^{\prime}, \omega_{2 k+1}, \omega_{2 k+2} \sim$ $\sqrt{\omega}$.

Lemma 3. Every unlimited $\omega \in \mathbb{N}$ can be written in the form $\omega=\omega_{1}^{2} \cdot \omega_{3}+\omega_{4} \cdot \eta$, where $\omega_{1}, \omega_{3}, \omega_{4} \sim \sqrt[3]{\omega}$ and $\eta \sim \sqrt[3]{\omega^{2}}$.

Proof. We closely follow the proof of Theorem 1. We fix prime numbers p_{1} such that $\frac{\sqrt[3]{\omega}}{2}<p_{1}<\sqrt[3]{\omega}$ and p_{2} such that $\frac{\sqrt[3]{\omega}}{4}<p_{2}<\frac{\sqrt[3]{\omega}}{2}$. The general solution of the Diophantine equation $p_{1}^{2} \cdot x+p_{2} \cdot y=\omega$ has the form $x_{t}=x_{0}+t \cdot p_{2}, y_{t}=y_{0}-t \cdot p_{1}^{2}$, $t \in \mathbb{Z}$. We can now choose t so that $\frac{\sqrt[3]{\omega}}{4}<x_{t}<\frac{3 \sqrt[3]{\omega}}{4}$. For this t we get $\frac{\omega}{16}<p_{1}^{2} \cdot x_{t}$ $<\frac{3 \omega}{4}$ and hence $\frac{\omega}{4}<p_{2} \cdot y_{t}=\omega-p_{1}^{2} \cdot x_{t}<\frac{15 \omega}{16}$. It follows that $\frac{\sqrt[3]{\omega^{2}}}{2}<y_{t}<\frac{15 \sqrt[3]{\omega^{2}}}{4}$. We let $\omega_{1}=p_{1}, \omega_{3}=x_{t}, \omega_{4}=p_{2}, \eta=y_{t}$.

Theorem 2. Every unlimited $\omega \in \mathbb{N}$ can be written in the form

$$
\omega=\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5} \cdot \omega_{6}+\omega_{7} \cdot \omega_{8} \cdot \omega_{9}
$$

where $\omega_{i}>0$ and $\omega_{i} \sim \sqrt[3]{\omega}$ for $1 \leq i \leq 9$.
Proof. Use Theorem 1 to write $\eta=\omega_{5} \cdot \omega_{6}+\omega_{8} \cdot \omega_{9}$ where $\omega_{5}, \omega_{6}, \omega_{8}, \omega_{9} \sim \sqrt{\eta} \sim \sqrt[3]{\omega}$, then substitute into the expression from Lemma 3 and let $\omega_{2}=\omega_{1}, \omega_{7}=\omega_{4}$.

Corollary 2. Let $k \geq 3$ be a standard natural number. Every unlimited $\omega \in \mathbb{N}$ can be written in the form

$$
\begin{equation*}
\omega=\sum_{i=1}^{k} \omega_{i, 1} \cdot \omega_{i, 2} \cdot \omega_{i, 3} \tag{5}
\end{equation*}
$$

where $\omega_{i, j}>0$ and $\omega_{i, j} \sim \sqrt[3]{\omega}$ for $1 \leq i \leq k, 1 \leq j \leq 3$.
Proof. By induction, starting with $k=3$ and using the observation that $\eta=$ $\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5} \cdot \omega_{6} \sim \omega$ and hence, by Theorem 2 , it can be expressed as $\eta=$ $\omega_{1}^{\prime} \cdot \omega_{2}^{\prime} \cdot \omega_{3}^{\prime}+\omega_{4}^{\prime} \cdot \omega_{5}^{\prime} \cdot \omega_{6}^{\prime}+\omega_{7}^{\prime} \cdot \omega_{8}^{\prime} \cdot \omega_{9}^{\prime}$, where $\omega_{i}^{\prime}>0$ and $\omega_{i}^{\prime} \sim \sqrt[3]{\omega}$ for $1 \leq i \leq 9$.

Lemma 3 generalizes as follows. Note that $r=2$ gives Theorem 1.
Lemma 4. Let $r \geq 2$ be a standard natural number. Every unlimited $\omega \in \mathbb{N}$ can be written in the form $\omega=\omega_{1}^{r-1} \cdot \omega_{3}+\omega_{4} \cdot \eta$ where $\omega_{1}, \omega_{3}, \omega_{4} \sim \sqrt[r]{\omega}$ and $\eta \sim \sqrt[r]{\omega^{r-1}}$.
Proof. We fix prime numbers p_{1} such that $\frac{\sqrt[r]{\omega}}{2}<p_{1}<\sqrt[r]{\omega}$ and p_{2} such that $\frac{\sqrt[r]{\omega}}{4}<p_{2}<\frac{\sqrt[r]{\omega}}{2}$. The general solution of the Diophantine equation $p_{1}^{r-1} \cdot x+p_{2} \cdot y=\omega$ has the form $x_{t}=x_{0}+t \cdot p_{2}, y_{t}=y_{0}-t \cdot p_{1}^{r-1}, t \in \mathbb{Z}$. We can now choose t so that $\frac{r}{\omega}<x_{t}<\frac{3 \sqrt[r]{\omega}}{4}$. For this t we get $\frac{\omega}{2^{r+1}}<p_{1}^{r-1} \cdot x_{t}<\frac{3 \omega}{4}$ and hence $\frac{\omega}{4}<$ $p_{2} \cdot y_{t}=\omega-p_{1}^{r-1} \cdot x_{t}<\frac{\left(2^{r+1}-1\right) \omega}{2^{r+1}}$. It follows that $\frac{1}{2} \cdot \sqrt[r]{\omega^{r-1}}<y_{t}<\frac{2^{r+1}-1}{2^{r-1}} \cdot \sqrt[r]{\omega^{r-1}}$. We let $\omega_{1}=p_{1}, \omega_{3}=x_{t}, \omega_{4}=p_{2}, \eta=y_{t}$.

Theorem 3. Let $r \geq 2$ and $k \geq r$ be standard natural numbers. Every unlimited ω $\in \mathbb{N}$ can be written in the form $\omega=\sum_{i=1}^{k} \prod_{j=1}^{r} \omega_{i, j}$, where $\omega_{i, j}>0$ and $\omega_{i, j} \sim \sqrt[r]{\omega}$ for $1 \leq i \leq k, 1 \leq j \leq 3$.

Proof. By induction on r. For $r=2$, this is Corollary 1. Assume the theorem is true for $r-1$. Then $k-1 \geq r-1$ and we can write $\eta=\sum_{i=1}^{k-1} \prod_{j=1}^{r-1} \omega_{i, j}$ with all $\omega_{i, j}$ $\sim \sqrt[r-1]{\eta}=\sqrt[r]{\omega}$ and substitute the result into the formula from Lemma 4.

Next, we present an explicit method to prove that all numbers that are similar in structure to $n!$ can be written in the form $\left(\mathrm{A}_{2}\right)$.

Theorem 4. Let $\left(a_{i}\right)_{1 \leq i \leq k}$ be a sequence of positive integers such that a_{1} is limited, k is unlimited and $a_{i+1}-a_{i}$ is limited positive for $i=1,2, \ldots, k-1$, and let $n=$ $a_{1} a_{2} \cdots a_{k}$. There exist two unlimited positive integers R_{1} and R_{2} such that $n=$ $R_{1} \cdot R_{2}$ with $R_{1} \sim R_{2}$.

Proof. Let λ be a limited positive integer such that $0<a_{i+1}-a_{i} \leq \lambda$ for $1 \leq i \leq$ $k-1$. Indeed, such number exists since the set $\left\{a_{i+1}-a_{i}: i<k\right\}$ is internal, so it has a maximal element $a_{i^{*}+1}-a_{i^{*}}$ which is limited.

Now, we show that there exists a unique unlimited positive integer t such that

$$
\left\{\begin{array}{l}
a_{1} a_{2} \cdots a_{t-1} a_{t}<a_{t+1} a_{t+2} \cdots a_{k-1} a_{k} \tag{6}\\
a_{1} a_{2} \cdots a_{t} a_{t+1} \geq a_{t+2} \cdots a_{k-1} a_{k}
\end{array}\right.
$$

Otherwise,

$$
\left\{\begin{array}{c}
a_{1}<a_{2} a_{3} \cdots a_{k-1} a_{k} \tag{7}\\
a_{1} a_{2}<a_{3} a_{4} \cdots a_{k-1} a_{k} \\
\vdots \\
a_{1} a_{2} \cdots a_{k-3} a_{k-2}<a_{k-1} a_{k} \\
a_{1} a_{2} \cdots a_{k-2} a_{k-1}<a_{k}
\end{array}\right.
$$

But the last inequality of (7) leads to a contradiction because $a_{k-2} a_{k-1}>a_{k}$. Indeed, the numbers a_{k-2}, a_{k-1} and a_{k} are unlimited with $0<a_{k}-a_{k-1}<\lambda$ and $0<a_{k}-a_{k-2}<2 \lambda$, which implies that $a_{k-1}=a_{k}-\lambda_{1}$ and $a_{k-2}=a_{k}-\lambda_{2}$ for some limited integers λ_{1} and λ_{2}, since λ is limited. Therefore,

$$
a_{k-1} a_{k-2}=a_{k}^{2}\left(1-\frac{\lambda_{1}}{a_{k}}\right)\left(1-\frac{\lambda_{2}}{a_{k}}\right)=a_{k}^{2}(1-\phi)>a_{k}
$$

where $\phi \cong 0$. A contradiction. This proves (6).
Next, from (6) we also have

$$
\begin{equation*}
\frac{1}{a_{t+1}} \leq \frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}}<a_{t+1} \tag{8}
\end{equation*}
$$

There are three cases to consider:
Case 1. $a_{1} a_{2} \cdots a_{t-1} a_{t} / a_{t+2} \cdots a_{k-1} a_{k}$ is appreciable. Since $a_{i+1}-a_{i} \leq \lambda$ with λ limited, i.e., the elements $\left(a_{i}\right)_{1 \leq i \leq k}$ are increasing by a limited quantity, there exists a positive integer i_{0} with $i_{0} \leq t$ such that $a_{i_{0}}$ and $\sqrt{a_{t+1}}$ have the same order, that is, $a_{i_{0}} / \sqrt{a_{t+1}}$ is appreciable. We put $R_{1}=a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1} / a_{i_{0}}$ and $R_{2}=a_{t+2} \cdots a_{k-1} a_{k} a_{i_{0}}$. It is clear that $n=R_{1} \cdot R_{2}$, where

$$
\frac{R_{1}}{R_{2}}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1}}{a_{i_{0}}^{2} a_{t+2} \cdots a_{k-1} a_{k}}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot \frac{a_{t+1}}{a_{i_{0}}^{2}}
$$

is appreciable since $a_{t+1} \sim a_{i_{0}}^{2}$.
Case 2. $a_{1} a_{2} \cdots a_{t-1} a_{t} / a_{t+2} \cdots a_{k-1} a_{k} \cong 0$. Here by (8), there exists an unlimited positive integer $l \leq a_{t+1}$ such that $\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot l$ is appreciable. We have the following subcases:

Case 2.1. $a_{t+1} / l=A$ with A appreciable. Here, we put $R_{1}=a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1}$ and $R_{2}=a_{t+2} \cdots a_{k-1} a_{k}$, in which case $n=R_{1} \cdot R_{2}$, where

$$
\frac{R_{1}}{R_{2}}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1}}{a_{t+2} \cdots a_{k-1} a_{k}}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot l A
$$

which is appreciable.
Case 2.2. a_{t+1} / l is unlimited. As above, let i_{0} be a positive integer with $i_{0} \leq t$ such that $a_{i_{0}}$ and $\sqrt{a_{t+1} / l}$ have the same order. We put $R_{1}=a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1} / a_{i_{0}}$ and $R_{2}=a_{t+2} \cdots a_{k-1} a_{k} a_{i_{0}}$. It follows that $R_{1} / R_{2}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot \frac{a_{t+1}}{a_{i_{0}}^{2} l}$ is appreciable since $a_{t+1} / l \sim a_{i_{0}}^{2}$.

Case 3. $a_{1} a_{2} \cdots a_{t-1} a_{t} / a_{t+2} \cdots a_{k-1} a_{k} \cong+\infty$. In this case, by (8), there exists an unlimited positive integer $m \leq a_{t+1}$ such that $\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot \frac{1}{m}$ is appreciable. We also have the following subcases:

Case 3.1. $a_{t+1} / m=A$ with A appreciable. Here we put $R_{1}=a_{1} a_{2} \cdots a_{t-1} a_{t}$ and $R_{2}=a_{t+2} \cdots a_{k-1} a_{k} a_{t+1}$, where $n=R_{1} \cdot R_{2}$ and $R_{1} / R_{2}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k} a_{t+1}}=$ $\left(\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot \frac{1}{m}\right) \cdot \frac{1}{A}$ which is appreciable.

Case 3.2. $a_{t+1} / m=\omega$ with ω unlimited. Let i_{0}, j_{0} be two positive integers not exceeding t with $i_{0} \neq j_{0}$ such that $a_{i_{0}} \sim m$ and $a_{j_{0}} \sim \sqrt{\omega}$. Then we put $R_{1}=a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1} / a_{i_{0}} a_{j_{0}}$ and $R_{2}=a_{t+2} \cdots a_{k-1} a_{k} a_{i_{0}} a_{j_{0}}$. We also observe that $n=R_{1} \cdot R_{2}$, where

$$
\frac{R_{1}}{R_{2}}=\frac{a_{1} a_{2} \cdots a_{t-1} a_{t} a_{t+1}}{a_{i_{0}}^{2} a_{j_{0}}^{2} a_{t+2} \cdots a_{k-1} a_{k}}=\left(\frac{a_{1} a_{2} \cdots a_{t-1} a_{t}}{a_{t+2} \cdots a_{k-1} a_{k}} \cdot \frac{1}{m}\right) \cdot \frac{m a_{t+1}}{a_{i_{0}}^{2} a_{j_{0}}^{2}}
$$

is appreciable since $m a_{t+1}=m^{2} \omega \sim a_{i_{0}}^{2} a_{j_{0}}^{2}$.
This completes the proof.
Applying Theorem 4, we obtain the following corollaries.
Corollary 3. Let n be as in Theorem 4. Then n is of the form $\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \in \mathbb{N}$ is unlimited and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.

Proof. Since $n=R_{1} \cdot R_{2}$ with $R_{1} \sim R_{2}$, we conclude that if one of these numbers is even, say R_{1}, then $n=\left(R_{1} / 2\right) \cdot R_{2}+\left(R_{1} / 2\right) \cdot R_{2}$. If R_{1} and R_{2} are both odd, then $n=\left(\frac{R_{1}-1}{2}\right) R_{2}+\left(\frac{R_{1}-1}{2}+1\right) \cdot R_{2}$, as required.

Corollary 4. Let n be unlimited. Then n ! is of the form $n!=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \in \mathbb{N}$ is unlimited and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.

Proof. By definition $n!=a_{1} a_{2} \cdots a_{n}$, where $a_{i}=i(1 \leq i \leq n)$, that is, $\left(a_{i}\right)_{1 \leq i \leq n}$ satisfy conditions of Theorem 4 . Then the result follows by applying Corollary 3 .

The proof of Theorem 4 can be adapted straightforwardly to obtain the following corollary.

Corollary 5. Let k be unlimited and let $\left(a_{i}\right)_{1 \leq i \leq k}$ be a sequence of positive integers such that a_{1} is limited and $a_{i+1}=s_{i} \cdot a_{i}$, where $s_{i}>1$ is limited for $i=1,2, \ldots, k-1$, and let $n=a_{1} a_{2} \cdots a_{k}$. Then there exist two unlimited positive integers R_{1} and R_{2} such that $n=R_{1} \cdot R_{2}$, where $R_{1} \sim R_{2}$.

3. Other similar representations

In this subsection, we provide some other representations of unlimited natural numbers. First, we need the following lemma:

Lemma 5 (see [9]). Let $n!=\prod_{p \leq n} p^{v_{p}(n!)}$ be the prime factorization of $n!$. If $v_{p}(n!)>v_{q}(n!)$, then $p^{v_{p}(n!)}>q^{v_{q}(n!)}$.

Remark 2. By Nathanson [16, Theorem 1.12, p. 29], for every positive integer n and prime $p, v_{p}(n!)=\sum_{\alpha=1}^{+\infty}\left[\frac{n}{p^{\alpha}}\right]=\sum_{\alpha=1}^{\left[\frac{\log n}{\log p}\right]}\left[\frac{n}{p^{\alpha}}\right]$. It follows that for primes p and q with $p<q$ we have $v_{p}(n!) \geq v_{q}(n!)$. In particular, if $n \geq 4, p=2$ and $q \geq 3$, then clearly $v_{p}(n!)=v_{2}(n!)>v_{q}(n!)$. Hence by Lemma 5, $2^{v_{2}(n!)}>q^{v_{q}(n!)}$.

Theorem 5. Let n be unlimited. Then $n!$ can be written as $R_{1} \cdot R_{2}$ where, R_{1}, R_{2} are two unlimited positive integers with $R_{1} \sim \sqrt[3]{n!} \sim\left[(n!)^{\frac{1}{3}}\right]$.

Proof. By Stirling's formula we have $n!=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+\phi_{1}\right), \phi_{1} \cong 0$ (see [7, p. 49]). On the other hand, in 1808, Legendre determined the exact power t of the prime p that divides n ! (so p^{t+1} does not divide $n!$) [18, p. 18], namely,

$$
t=\sum_{\alpha=1}^{\infty}\left[\frac{n}{p^{\alpha}}\right]=\frac{n-\left(a_{0}+a_{1}+. .+a_{r}\right)}{p-1}
$$

where the integers $a_{0}, a_{1}, \ldots, a_{r}$ are the digits of n in base p, that is, $n=a_{r} p^{r}+$ $a_{r-1} p^{r-1}+\cdots+a_{1} p+a_{0}$ such that $0 \leq a_{i} \leq p-1$ for $i=0,1, \ldots, r$.

Now, assume that $n!=\prod_{i=1}^{m} p_{i}^{\alpha_{i}}$, where $2=p_{1}<p_{2}<\cdots<p_{m}$ are primes and $\alpha_{i} \geq 1$ for all i. We have $\left[(n!)^{\frac{1}{3}}\right]=(n!)^{\frac{1}{3}}\left(1+\phi_{2}\right), \phi_{2} \cong 0$. By the formula above, the exponent α_{2} of 3 satisfies $\alpha_{2} \leq n / 2$. Since $\left[(n!)^{\frac{1}{3}}\right] / p_{2}^{\alpha_{2}}=\left[(n!)^{\frac{1}{3}}\right] / 3^{\alpha_{2}} \geq$ $\left[(n!)^{\frac{1}{3}}\right] / 3^{n / 2}$, it is easily seen that $\left[(n!)^{\frac{1}{3}}\right] / p_{2}^{\alpha_{2}} \cong+\infty$. Then there exists a positive integer k such that

$$
p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}} \leq\left[(n!)^{\frac{1}{3}}\right]<p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}} \cdot p_{k+1}^{\alpha_{k+1}}
$$

Since in the prime factorization of n ! we have $\alpha_{1}>\alpha_{k+1}$, it follows from Lemma 5 that $p_{1}^{\alpha_{1}}>p_{k+1}^{\alpha_{k+1}}$. Hence there exists an integer s with $0 \leq s<\alpha_{1}$ such that

$$
p_{1}^{s} \cdot p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}} \leq\left[(n!)^{\frac{1}{3}}\right]<p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}} \cdot p_{1}^{s+1}
$$

Therefore, $1 \leq\left[(n!)^{\frac{1}{3}}\right] / p_{1}^{s} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}<2$, that is, $\left[(n!)^{\frac{1}{3}}\right] \sim p_{1}^{s} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}$. Hence, $n!=p_{1}^{s} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}} \cdot p_{1}^{\alpha_{1}-s} p_{k+1}^{\alpha_{k+1}} \cdots p_{m}^{\alpha_{m}}$, which is of the form $R_{1} \cdot R_{2}$, where $R_{1}=p_{1}^{s} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}$ and $R_{2}=p_{1}^{\alpha_{1}-s} p_{k+1}^{\alpha_{k+1}} \cdots p_{m}^{\alpha_{m}}$. This completes the proof.

Corollary 6. n ! is of the form $\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5} \cdot \omega_{6}$, where $\omega_{i} \in \mathbb{N}$ is unlimited with $\omega_{i} \sim \sqrt[3]{n!}$ for $1 \leq i, j \leq 6$.

Proof. Since $n!=R_{1} \cdot R_{2}$, where $R_{1} \sim \sqrt[3]{n!}$, we have $R_{2} \sim \sqrt[3]{(n!)^{2}}$. Use Theorem 1 to write $R_{2}=\omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5}$ where $\omega_{2}, \omega_{3}, \omega_{4}, \omega_{5} \sim \sqrt{R_{2}}=\sqrt[3]{n!}$.

Consider the sequence of Fibonacci numbers $\left(F_{n}\right)$, where $F_{1}=F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}, n \geq 2$. It is well-known that the generalized Fibonacci sequence is defined by $G_{n}=G_{n-1}+G_{n-2}$, where $G_{1}=a$ and $G_{2}=b(a, b \in \mathbb{N}$ and $n \geq 3)$, see Koshy [14, page 109].

Theorem 6. Let n be unlimited. If a and b are limited, then $G_{3 n}^{2}-G_{n}^{2}$ is of the form $\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5} \cdot \omega_{6}$, where $\omega_{i} \in \mathbb{N}$ is unlimited with $\omega_{i} \sim \omega_{j}$ for $1 \leq i$, $j \leq 6$.

Proof. By [14, Theorem 7.1, p. 109], we have

$$
\begin{equation*}
G_{n}=a F_{n-2}+b F_{n-1} . \tag{9}
\end{equation*}
$$

Moreover, the terms of this sequence verify the following equality: $G_{m+n}^{2}-G_{m-n}^{2}=$ $G_{m+1} G_{m} F_{2 n}+G_{m-1} G_{m} F_{2 n}$ (see [14, Identity $\left.3, \mathrm{p} .214\right]$. In particular, for $m=2 n$ we get $G_{3 n}^{2}-G_{n}^{2}=G_{2 n+1} G_{2 n} F_{2 n}+G_{2 n-1} G_{2 n} F_{2 n}$, which is of the form $\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+$ $\omega_{4} \cdot \omega_{5} \cdot \omega_{6}$, where $\omega_{i} \in \mathbb{N}$ are unlimited $(1 \leq i \leq 6)$. Applying (9) we have $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 6$.

Note that Corollary 5 and Theorem 6 are interesting because it is not known whether every unlimited ω is of the form $\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+\omega_{4} \cdot \omega_{5} \cdot \omega_{6}$ with $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 6$.

Proposition 2. There are infinitely many unlimited positive integers n such that $F_{n}=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4} \in \mathbb{N}$ are unlimited, pairwise relatively prime with $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.

Proof. Let k be a positive integer with $3 \nmid(k+1)$ and let $n=2 k$. Applying Andrica [2, Equation (2), p. 194] $\left(F_{m+n}=F_{m+1} \cdot F_{n}+F_{m} \cdot F_{n-1}\right)$, if $m=n+1$, then $F_{2 n+1}=F_{n+2} \cdot F_{n}+F_{n+1} \cdot F_{n-1}$. Let $x, y \in\{n-1, n, n+1, n+2\}$. We can verify easily that $\operatorname{gcd}(x, y)=1$ or 2 , and by Koshy [14, Theorem 16.3, p. 198] we have $\operatorname{gcd}\left(F_{x}, F_{y}\right)=F_{\operatorname{gcd}(x, y)}=1$ since $F_{1}=F_{2}=1$. On the other hand, we see that F_{x} / F_{y} is appreciable since $|x-y| \leq 3$.

Theorem 7. Every unlimited positive integer n can be written in the form $\left(\mathrm{A}_{2}\right)$, where $\omega_{i} \in \mathbb{Z}$ is unlimited and $\left|\omega_{i} / \omega_{j}\right| \in\{1 / 2,1,2\}$ for $1 \leq i, j \leq 4$.

The proof is based on the fact that a positive integer n can be represented as the difference of two squares if and only if n is not of the form $4 k+2$ (see, e.g. Dujella [8]).

Proof of Theorem 7. Let n be an unlimited positive integer. If n is not of the form $4 k+2$, then $n=x^{2}-y^{2}$ for some positive integers x, y with x unlimited, and if n is of the form $4 k+2$, then $n=2 m$ with m odd, i.e., m is not of the form $4 k+2$. Thus, n is of the form $2 x^{2}-2 y^{2}$. In both cases, n is of the form $\lambda\left(x^{2}-y^{2}\right)$, where $\lambda \in\{1,2\}$. There are two cases to consider:

Case 1. x and y are of the same order. In this case we have nothing to prove and we can put $\omega_{1}=\lambda x, \omega_{2}=x, \omega_{3}=-\lambda y$ and $\omega_{4}=y$.

Case 2. $y / x \cong 0$. We distinguish two cases:
Case 2.1. Assume that $x+y$ is even. Then

$$
n=\lambda(x-y)(x+y)=\lambda(x-y)\left(\frac{x+y}{2}\right)+\lambda(x-y)\left(\frac{x+y}{2}\right)
$$

which is of the form $\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \in \mathbb{Z}$ is unlimited and $\left|\omega_{i} / \omega_{j}\right| \in\{1 / 2,1,2\}$ for $1 \leq i, j \leq 4$.

Case 2.2. Assume that $x+y$ is odd. Then

$$
\begin{aligned}
n & =\lambda(x-y)(x+y-1)+\lambda(x-y) \\
& =\lambda(x-y)\left(\frac{x+y-1}{2}\right)+\lambda(x-y)\left(\frac{x+y-1}{2}\right)+\lambda(x-y) \\
& =\lambda(x-y)\left(\frac{x+y-1}{2}\right)+\lambda(x-y)\left(\frac{x+y+1}{2}\right)
\end{aligned}
$$

which is also of the form $\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$ with $\omega_{i} \in \mathbb{Z}$ unlimited and $\left|\omega_{i} / \omega_{j}\right| \in\{1 / 2,1,2\}$ for $1 \leq i, j \leq 4$. This completes the proof.
Theorem 8. Every unlimited positive integer is either of the form $\omega_{1}^{2}-\omega_{2}^{2}$, where $\omega_{1}, \omega_{2} \in \mathbb{N}$ are unlimited with $\omega_{1} / \omega_{2} \cong 1$, or of the form $\omega_{1}^{2} / 2-\omega_{2}^{2} / 2$, where $\omega_{1}, \omega_{2} \in$ \mathbb{N} are even and unlimited with $\omega_{1} / \omega_{2} \cong 1$.

Proof. We distinguish two cases:
Case 1. Assume that n is not of the form $4 k+2$. Then $n=a^{2}-b^{2}$ for some positive integers a, b. This means that either n is odd or it is of the form $4 k$. If it is odd, then $n-1$ and $n+1$ are both even, in which case

$$
\begin{equation*}
n=\left(\frac{n+1}{2}\right)^{2}-\left(\frac{n-1}{2}\right)^{2} \tag{10}
\end{equation*}
$$

On the other hand, if n is divisible by 4 , then $n=\left(\frac{n}{4}+1\right)^{2}-\left(\frac{n}{4}-1\right)^{2}$. In both cases, n is of the form $\omega_{1}^{2}-\omega_{2}^{2}$, where $\omega_{1}, \omega_{2} \in \mathbb{N}$ are unlimited and $\omega_{1} / \omega_{2} \cong 1$.

Case 2. Assume that $n=4 k+2$, then $n=2 m$ with m odd. Since m satisfies (10), we conclude that $n=(m+1)(m+1) / 2-(m-1)(m-1) / 2$, which is of the
form $\omega_{1}^{2} / 2-\omega_{2}^{2} / 2$, where $\omega_{1}, \omega_{2} \in \mathbb{N}$ are unlimited and $\omega_{1} / \omega_{2} \cong 1$. This completes the proof.

Proposition 3. Let p be a limited prime number such that $p \equiv 1(\bmod 4)$. There exist infinitely many positive integers n such that n is of the form $\left(\mathrm{A}_{2}\right)$ with $\omega_{1} / \omega_{2}=$ $\omega_{3} / \omega_{4}=p$.

Proof. Let a and b be two limited positive integers such that $p=a^{2}+b^{2}$ and $\operatorname{gcd}(a, b)=1$. Consider the Diophantine equation $a \cdot x+b \cdot y=1$. Then there are limited integers x_{0} and y_{0} for which $a \cdot x_{0}+b \cdot y_{0}=1$ and all solutions are given by $x_{t}=x_{0}+b t$ and $y_{t}=y_{0}-a t$, where $t \in \mathbb{Z}$. For $t \cong \infty$ we see that $\left|x_{t}\right| \sim\left|y_{t}\right|$. For each such values of t it follows from Lagrange's identity (Jarvis [13, Lemma 1.18, p. 9]) that $p\left(x_{t}^{2}+y_{t}^{2}\right)=\left(a x_{t}+b y_{t}\right)^{2}+\left(a y_{t}-b x_{t}\right)^{2}=1+k^{2}$, where $k=a y_{t}-b x_{t}$. Thus, $1+k^{2}=p x_{t}^{2}+p y_{t}^{2}$. The proof is finished if we put $n=1+k^{2}, \omega_{1}=p\left|x_{t}\right|$, $\omega_{2}=\left|x_{t}\right|, \omega_{3}=p\left|y_{t}\right|$ and $\omega_{4}=\left|y_{t}\right|$.

Proposition 4. Every unlimited positive integer n can be written as one of the following four forms:
(1) $n=\lambda \omega_{1}^{2}+\omega_{2}^{2}+\omega_{2}^{2}$, where $\lambda \in\{1,2\}$ and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 3$.
(2) $n=(\lambda+1) \omega_{1}^{2}+\omega_{2}^{2}-\omega_{3} \cdot \omega_{4}$, where $\lambda \in\{1,2\}$ and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.
(3) $n=(\lambda+2) \omega_{1}^{2}-\omega_{2} \cdot \omega_{3}-\omega_{4} \cdot \omega_{5}$, where $\lambda \in\{1,2\}$ and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 5$.
(4) $n=2 \omega_{1}^{2}+2 \omega_{2}^{2}-\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.

Proof. Let n be an unlimited positive integer. From [1, Theorem 8.25, p. 236], n can be written in the form $x^{2}+y^{2}+\lambda z^{2}$, where $\lambda=1$ or $\lambda=2$.

First, assume that $z=\max \{x, y, z\}$. We distinguish the following cases:
Case 1. x and y are of the same order as z. In this case, we have nothing to prove and we can put $\omega_{1}=z, \omega_{2}=y$ and $\omega_{3}=x$. Then n is in form (1).

Case 2. $x / z \cong 0$ and y / z is appreciable. Here, $n=(x+z)(x-z)+y^{2}+$ $(\lambda+1) z^{2}$. Hence, $\omega_{1}=z, \omega_{2}=y, \omega_{3}=x+z$ and $\omega_{4}=z-x$. Thus, n is in form (2).

Case 3. $y / z \cong 0$ and x / z is appreciable. This case is very similar to that of Case 2 with x, y exchanged. Thus, n is in form (2).

Case 4. $x / z \cong 0$ and $y / z \cong 0$. Then, $n=(x+z)(x-z)+(y+z)(y-z)+$ $(\lambda+2) z^{2}$. Hence we can put $\omega_{1}=z, \omega_{2}=z+x, \omega_{3}=z-x, \omega_{4}=z+y$ and $\omega_{5}=$ $z-y$. Then n is in form (3).

Now, assume that $\lambda=2$ and $\max \{x, y, z\}$ is either x or y, say x. We also have the following cases:

Case 1. y and z are of the same order as x. Here n is in form (1).
Case 2. $y / x \cong 0$ and z / x is appreciable. In this case, $n=2 x^{2}+2 z^{2}-$ $(x+y)(x-y)$. Hence, $\omega_{1}=x, \omega_{2}=z, \omega_{3}=x+y$ and $\omega_{4}=x-y$. Then n is in form (4).

Case 3. $z / x \cong 0$ and y / x is appreciable. We can do the same reasoning as above, that is, n is in form (4).

Case 4. $y / x \cong 0$ and $z / x \cong 0$. Then, $n=4 x^{2}-2(x+z)(x-z)-(x+y)(x-y)$. Hence, $\omega_{1}=2 x, \omega_{2}=2(x+z), \omega_{3}=x-z, \omega_{4}=x+y$ and $\omega_{5}=x-y$. Then n is in form (3).

This completes the proof.

4. Unlimited integers of the form $a \cdot \omega_{1}^{2}+b \cdot \omega_{2}^{2}$, where $\omega_{1} \sim \omega_{2}$

Let n be an arbitrary unlimited number and let a, b be limited. We want to represent n in the form: $a \cdot \omega_{1}^{2}+b \cdot \omega_{2}^{2}$, where $\omega_{1} \sim \omega_{2}$.

Let ω be unlimited and let F_{ω} be the ω-th Fibonacci number. Then $F_{2 \omega+1}$ is of the form $\omega_{1}^{2}+\omega_{2}^{2}$, where $\omega_{1} \sim \omega_{2}$ and $\operatorname{gcd}\left(\omega_{1}, \omega_{2}\right)=1$. In fact, from Koshy [14, Identity 30, p. 97] we have $F_{2 \omega+1}=F_{\omega}^{2}+F_{\omega+1}^{2}$, where $\operatorname{gcd}\left(F_{\omega}, F_{\omega+1}\right)=1$ by [14, Theorem 16.3, p. 198].

Let us start with the following result:
Proposition 5. There exist unlimited prime numbers p such that $p=\omega_{1}^{2}+\omega_{2}^{2}$, where $\omega_{1}, \omega_{2} \in \mathbb{N}$ are unlimited.

Proof. From Dirichlet's theorem about primes in arithmetic progressions there exists an unlimited prime q of the form $4 k-1$. Let n be an unlimited positive integer with $n<q$. It is not difficult to see that the numbers q and

$$
4\left(q+1^{2}\right)^{2}\left(q+2^{2}\right)^{2} \cdots\left(q+n^{2}\right)^{2}
$$

are coprime. By Dirichlet's theorem once again, there exists a positive integer k^{\prime} such that the number $p=4\left(q+1^{2}\right)^{2}\left(q+2^{2}\right)^{2} \cdots\left(q+n^{2}\right)^{2} \cdot k^{\prime}-q$ is prime. Clearly, it is of the form $4 t+1$. By Nathanson [16, Theorem 13.3, p. 407], there exist two positive integers ω_{1}, ω_{2} with $\omega_{1}<\omega_{2}$ such that $p=\omega_{1}^{2}+\omega_{2}^{2}$. Now, assume by way of contradiction that ω_{1} is limited, i.e., $\omega_{1}<n$. It follows that

$$
\left.\begin{array}{rl}
\omega_{2}^{2} & =p-\omega_{1}^{2}=4\left(q+1^{2}\right)^{2}\left(q+2^{2}\right)^{2} \cdots\left(q+n^{2}\right)^{2} \cdot k^{\prime}-\left(q+\omega_{1}^{2}\right) \\
& =\left(q+\omega_{1}^{2}\right)\left[4\left(q+1^{2}\right)^{2} \cdots\left(q+\left(\omega_{1}-1\right)^{2}\right)^{2}\left(q+\omega_{1}^{2}\right)\left(q+\left(\omega_{1}+1\right)^{2}\right)^{2} \cdots\right] \\
\left(q+n^{2}\right)^{2} \cdot k^{\prime}-1
\end{array}\right] .
$$

Note also that the above factors are relatively prime, i.e.,

$$
\operatorname{gcd}\left(q+\omega_{1}^{2}, 4\left(q+1^{2}\right)^{2} \cdots\left(q+\left(\omega_{1}-1\right)^{2}\right)^{2}\left(q+\omega_{1}^{2}\right) \cdots\left(q+n^{2}\right)^{2} \cdot k^{\prime}-1\right)=1
$$

and so $4\left(q+1^{2}\right)^{2} \cdots\left(q+\left(\omega_{1}-1\right)^{2}\right)^{2}\left(q+\omega_{1}^{2}\right)\left(q+\left(\omega_{1}+1\right)^{2}\right)^{2} \cdots\left(q+n^{2}\right)^{2} \cdot k^{\prime}-1$ must be square. This is impossible because it is of the form $4 t-1$. Thus, $\omega_{2}>\omega_{1} \geq$ $n \cong \infty$. This completes the proof.

Proposition 6. Let $n \in \mathbb{N}$ be unlimited such that n is representable as the sum of two squares. Then either $n=a^{2}+b^{2}$ with $a \sim b$ or $2 n=a^{2}+b^{2}$ with $a \sim b$.
Proof. Suppose that $n=a^{2}+b^{2}$ with $b \leq a$. If $a \sim b$, the desired assertion holds in this case; otherwise, $b / a \cong 0$ and so $2 n=(a-b)^{2}+(a+b)^{2}$, where in this case $a-b \sim a+b$. This completes the proof.

5. Representation of unlimited integers using quadratic forms

In this section, we aim to represent unlimited positive integers as in $\left(\mathrm{A}_{2}\right)$, where some of the factors $\omega_{i}(1 \leq i \leq 4)$ are in \mathbb{Z}. In addition, we give the values of ω_{i} $(1 \leq i \leq 4)$.

Recall that a quadratic form is a homogeneous polynomial of degree two. The quadratic form $Q(x, y, \ldots, z)$ represents the integer n if there exist integers a, b, \ldots, c such that $n=Q(a, b, \ldots, c)$. A binary quadratic form is a quadratic form in two variables. We consider the following definition:

Definition 2. Let $f(x, y)=a x^{2}+b x y+c y^{2}$. We say that f represents an integer n if $f(u, v)=n$ for some integers u and v, and that f properly represents n if $f(u, v)=n$ with $\operatorname{gcd}(u, v)=1$.

In what follows, we give two results, where in the first we show that every unlimited integer n, which can be represented by a quadratic form $f(x, y)=a x^{2}+b x y+c y^{2}$ such that a, b and c are all nonzero limited integers with $b^{2}-a c \neq 0$, can be written in the form $\left(\mathrm{A}_{2}\right)$, where $\omega_{i} \in \mathbb{Z}$ is unlimited for $1 \leq i \leq 4$. More precisely, we give the value of ω_{i} in terms of n for $1 \leq i, j \leq 4$. In the second theorem, we present some types of quadratic forms for which any unlimited positive integer n that can be represented by one of these forms is of the form:

$$
\left\{\begin{array}{l}
n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4} \tag{2}\\
\omega_{i} \sim \omega_{j}(1 \leq i, j \leq 4) \\
\operatorname{gcd}\left(\omega_{1} \cdot \omega_{2}, \omega_{3} \cdot \omega_{4}\right) \text { is limited }
\end{array}\right.
$$

where $\omega_{i} \in \mathbb{Z}$ is unlimited for $1 \leq i \leq 4$. Here we also give the value of ω_{i} in terms of n for $1 \leq i, j \leq 4$.

Theorem 9. Let n be an unlimited positive integer. Assume that n is represented by the quadratic form $f(x, y)=a x^{2}+b x y+c y^{2}$, where a, b and c are all nonzero limited integers with $b^{2}-a c \neq 0$. Then by rewriting this quadratic form n can always be represented explicitly in the form $\left(\mathrm{A}_{2}\right)$, where some of the ω_{i} may be negative integers.

Proof. We suppose that n is represented by f, i.e., $n=a x^{2}+b x y+c y^{2}$. We have the following cases:
I. $(x=0$ and $y \neq 0)$ or $(x \neq 0$ and $y=0)$. In this case, $n=c y^{2}$ with $c \neq 0$ or $n=a x^{2}$ with $a \neq 0$. Let us take, for instance, $n=c y^{2}$. Then $n=c(y-t+t)^{2}$. Hence, $n=c\left((y-t)^{2}+t^{2}+2 t(y-t)\right)=c(y-t)^{2}+c t(2 y-t)$. We end this case if we take $t=[y / 2]$ and put $\omega_{1}=y-t, \omega_{2}=c(y-t), \omega_{3}=c t$ and $\omega_{4}=2 y-t$.
II. $x, y \neq 0$. We distinguish two subcases:

II-1. $a, b, c \neq 0$. Consider the following possibilities:
II-1-1. y / x is appreciable. Clearly, we have $n=x(a x+b y)+c y^{2}$. Since $a x+b y$ is of the same order as x and y, we put $\omega_{1}=x, \omega_{2}=a x+b y, \omega_{3}=c y$ and $\omega_{4}=y$. Then n can be represented in the form $\left(\mathrm{A}_{2}\right)$.

II-1-2. y / x is unlimited. Here we see that

$$
\begin{aligned}
n & =a x^{2}+b x y+c y^{2}=a x^{2}+y(b x+c y)=a(x-y+y)^{2}+y(b x+c y) \\
& =a(x-y)(x+y)+y(a y+b x+c y)=a(x-y)(x+y)+y(y(a+c)+b x)
\end{aligned}
$$

We end this case if $a+c \neq 0$ because we can put $\omega_{1}=a(x-y), \omega_{2}=x+y$, $\omega_{3}=y$ and $\omega_{4}=y(a+c)+b x$. Otherwise, $c=-a$ and so $n=a x^{2}+b x y-a y^{2}$. Since $x=x-y+y$, we conclude that $n=(x-y)(a x+(a+b) y)+b y^{2}$. Similarly, when $a+b \neq 0$, we put $\omega_{1}=x-y, \omega_{2}=a x+(a+b) y, \omega_{3}=b y$ and $\omega_{4}=y$. Otherwise, $b=-a$ and then $n=a x^{2}-a x y-a y^{2}$. Here, we can easily see that $n=a(x+2 y)^{2}-5 y a(x+y)$. To finish the proof for this case, we only need to put $\omega_{1}=a(x+2 y), \omega_{2}=x+2 y, \omega_{3}=-5 y a$ and $\omega_{4}=x+y$. In addition, the proof of our claim for the case that x / y is unlimited is similar to our previous discussion.

II-2. At least one of the coefficients a, b and c is zero.
II-2-1. Only one coefficient among the numbers a, b and c is zero. We have the following cases:
$\bullet b=0$. Then $n=a x^{2}+c y^{2}$. Here we can assume that x and y are positive with $y \geq x$. If y / x is appreciable, then the proof in this case is obviously met by taking appropriate values for $\omega_{i}(1 \leq i \leq 4)$. Otherwise, y / x is unlimited from which we get $n=a x^{2}+c y^{2}=a(x-y+y)^{2}+c y^{2}=a(x-y)(x+y)+(a+c) y^{2}$. Hence,

$$
n=\left\{\begin{array}{l}
a(x-y)(x+y)+(a+c) y^{2}, \text { if } a+c \neq 0 \\
a(x-y)^{2}+2 a y(x-y), \text { otherwise } .
\end{array}\right.
$$

The proof in this case is met by taking appropriate values for $\omega_{i}(1 \leq i \leq 4)$. The case $x>y$ is treated in the same way.

- $a=0$. Then $n=b x y+c y^{2}$. Suppose that $|y| \geq|x|$. If y / x is appreciable, then the proof in this case is obviously met by taking appropriate values for ω_{i} $(1 \leq i \leq 4)$. Otherwise, y / x is unlimited and then $n=b(x-y) y+(c+b) y^{2}$. If $c+b \neq 0$, then the proof is finished for this case by taking appropriate values for ω_{i} $(1 \leq i \leq 4)$. Otherwise, $c+b=0$ and then

$$
n=b(x-y) y=b(x-y)(y-t+t)=b(x-y)(y-t)+b(x-y) t
$$

where $t=[y / 2]$. Also the proof is finished for this case by taking appropriate values for $\omega_{i}(1 \leq i \leq 4)$. The case $|x|>|y|$ is treated in the same way.

- $c=0$. Then $n=a x^{2}+b x y$. This case is treated in the same way as the case ($a=0$).

II-2-2. Exactly two coefficients among a, b and c are zero. We distinguish the following possibilities:

- $a=b=0$. Then $n=c y^{2}$. This case is treated in the same way as the case (I).
- $a=c=0$. Then $n=b x y$. Suppose that $|y| \geq|x|$. If y / x is appreciable, then

$$
n=b x(y-t+t)=b x(y-t)+b x t
$$

where $t=[y / 2]$. This complete the proof for this case by taking $\omega_{1}=b x, \omega_{2}=y-t$, $\omega_{3}=b x$ and $\omega_{4}=t$. If y / x is unlimited, then $n=b y(x-y+y)=b y(x-y)+b y^{2}$. This completes the proof by taking $\omega_{1}=b y, \omega_{2}=x-y, \omega_{3}=b y$ and $\omega_{4}=y$. The case $|x|>|y|$ is treated in the same way.

- $b=c=0$. Then $n=a x^{2}$. This case is treated in the same way as the case ($a=b=0$) of the previous case.

This completes the proof of Theorem 9.
By a similar proof we obtain the following result:
Theorem 10. Let n be an unlimited positive integer represented by a quadratic form $f(x, y)=a x^{2}+b x y+c y^{2}$, where a, b and c are limited integers with $\operatorname{gcd}(x, y)=1$. Then n is represented as in $\left(\mathrm{A}_{2}^{\prime}\right)$ whenever f corresponds to one of the following cases:

$$
\begin{aligned}
& \text { (1) } f(x, y)=a x^{2} . \\
& \text { (2) } f(x, y)=a x^{2}+c y^{2} \text { with } a \neq-c . \\
& \text { (3) } f(x, y)=a x^{2}+b x y+c y^{2} \text { such that } a, b, c \neq 0 \text { and } y / x \text { is appreciable. } \\
& \text { (4) } f(x, y)=a x^{2}+b x y+c y^{2} \text { such that } a, b \neq 0, c=-a \text { and } y / x \text { is not appreciable. } \\
& \text { (5) } f(x, y)=a x^{2}+b x y+c y^{2} \text { such that } b=c=-a .
\end{aligned}
$$

Proof. (1) $n=a x^{2}$. Then $a, x \neq 0$. Put $n=a(x-t+t)^{2}$, where $t \geq 3 x$ is prime with $t \sim 3 x$. Therefore, $n=a\left((x-t)^{2}+t^{2}+2 t(x-t)\right)=a(x-t)^{2}+$ at $(2 x-t)$. Let $\omega_{1}=a(x-t), \omega_{2}=x-t, \omega_{3}=a t$ and $\omega_{4}=2 x-t$. Clearly, ω_{i} is unlimited for $1 \leq i \leq 4$ and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$. Moreover, we can prove that $\operatorname{gcd}\left(\omega_{1} \cdot \omega_{2}, \omega_{3} \cdot \omega_{4}\right)$ is limited. Indeed, first we see that $\operatorname{gcd}(t, 2 x-t)=1$ since t is prime and $t \geq 3 x$. Suppose further that $\operatorname{gcd}\left(\omega_{1} \omega_{2}, \omega_{3} \omega_{4}\right)=a d_{1}$, where $d_{1} \geq 2$. Then $d_{1} \mid(x-t)^{2}$ and $d_{1} \mid t(2 x-t)$. Hence, $d_{1} \mid(x-t)^{2}+t(2 x-t)=x^{2}$. There are two possibilities:

- $d_{1} \mid x$. Then $d_{1} \mid t$ since $d_{1} \mid t(2 x-t)$, which is impossible since $\operatorname{gcd}(x, t)=1$.
- $d_{1} \nmid x$. We put $x^{2}=q_{1}^{2 \alpha_{1}} q_{2}^{2 \alpha_{2}} \cdots q_{r}^{2 \alpha_{r}}$, where $q_{1}, q_{2}, \ldots, q_{r}$ are distinct primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ are positive integers, and let $d_{1}=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{r}^{a_{r}}$ with $0 \leq$ $a_{i} \leq 2 \alpha_{i}$ for $1 \leq i \leq r$. We prove that every prime factor of d_{1} is limited; otherwise, if p is an unlimited prime number with $p \mid d_{1}$, then $p \mid t$ and so $p=t$. A contradiction. Now, let $q_{i_{0}}^{a_{0}}$ be an unlimited prime power such that $q_{i_{0}}^{a_{i_{0}}} \mid d_{1}$, i.e., $q_{i_{0}}$ is limited and $a_{i_{0}}$ is unlimited. Since $q_{i_{0}}^{a_{i_{0}}} \mid x^{2}$, we conclude that $q_{i_{0}}^{\omega} \mid x$, where $\omega=a_{i_{0}} / 2$ if $a_{i_{0}}$ is even or $\omega=\left(a_{i_{0}}-1\right) / 2$; otherwise. Since $q_{i_{0}}^{\omega} \mid 2 x-t$, we deduce that $q_{i_{0}}^{\omega}=t$. This is a contradiction since t is prime. Therefore, all the prime powers $q_{1}^{a_{1}}, q_{2}^{a_{2}}, \ldots, q_{r}^{a_{r}}$ are limited and so d_{1} is also limited.
(2) Here we can assume that x and y are positive and a, c are both non-zero; otherwise, if a or c is zero, then we are in case (1). Suppose that $y>x$. If y / x is appreciable, then the proof is easy. In the case when y / x is unlimited, we see that

$$
n=a x^{2}+c y^{2}=a(x-y+y)^{2}+c y^{2}=a(x-y)(x+y)+(a+c) y^{2} .
$$

Let $\omega_{1}=a(x-y), \omega_{2}=(x+y), \omega_{3}=(a+c) y$ and $\omega_{4}=y$. Clearly, ω_{i} is unlimited for $1 \leq i \leq 4$ and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$. Moreover, $\operatorname{gcd}\left(\omega_{1} \cdot \omega_{2}, \omega_{3} \cdot \omega_{4}\right)$ is limited. Indeed, if $d=\left(a(x-y)(x+y),(a+c) y^{2}\right) \cong+\infty$, then $d \mid a(x-y)(x+y)$ and $d \mid(a+c) y^{2}$. As in case (1), let p^{a} be an unlimited prime power such that p^{a} divides both d and y, from which it follows that $p^{a} \mid a(x-y)(x+y)$. This contradicts the fact that x and y are relatively prime, i.e., d is limited.
(3) Assume that $n=a x^{2}+b x y+c y^{2}$, where $a, b, c \neq 0$ and y / x is appreciable. In this case, $n=x(a x+b y)+c y^{2}$. Now, if $a x+b y=0$, then $n=c y^{2}$ and this case can be treated as in case (1); otherwise, if $(a x+b y) / x$ is appreciable, then we put $\omega_{1}=x, \omega_{2}=a x+b y, \omega_{3}=c y$ and $\omega_{4}=y$. Then we can easily prove that $\operatorname{gcd}\left(\omega_{1} \cdot \omega_{2}, \omega_{3} \cdot \omega_{4}\right)$ is limited since $\operatorname{gcd}(x, y)=1$. But, if $(a x+b y) / x \cong 0$, then we can write n as $n=a x^{2}+y(b x+c y)$, where $(b x+c y) / y$ must be appreciable and we end the proof as before. It remains to prove that $(a x+b y) / x$ and $(b x+c y) / y$ cannot be simultaneously infinitesimal. Indeed, suppose we have $a x+b y=\phi_{1} x=w_{1}$ and $b x+c y=\phi_{2} y=w_{2}$, where ϕ_{1} and ϕ_{2} are two infinitesimal numbers, that is, we have the following system:

$$
\left\{\begin{array}{l}
a \cdot x+b \cdot y=w_{1} \\
b \cdot x+c \cdot y=w_{2}
\end{array}\right.
$$

The solution of this system is $y=\frac{b \cdot w_{1}-a \cdot w_{2}}{b^{2}-a c}$ and $x=\frac{b \cdot w_{2}-c \cdot w_{1}}{b^{2}-a c}$. But this is a contradiction because this means that $y=\phi y$ and $x=\widetilde{\phi} x$, where ϕ and $\widetilde{\phi}$ are also infinitesimal.
(4) Consider the case when $n=a x^{2}+b x y+c y^{2}$, where $a, b \neq 0, c=-a$ and y / x is unlimited. Then $n=a x^{2}+b x y-a y^{2}$. Put $x=x-y+y$ we get

$$
n=(x-y)(a x+(a+b) y)+b y^{2}
$$

If $a+b \neq 0$, then the proof is completed for this case by choosing $\omega_{1}=x-y, \omega_{2}=$ $a x+(a+b) y, \omega_{3}=b y$ and $\omega_{4}=y$. Otherwise, $b=-a$, and so $n=a x^{2}-a x y-a y^{2}$, in which case we get $n=a(x+2 y)^{2}-5 y a(x+y)$. This ends the proof for this case by setting $\omega_{1}=a(x+2 y), \omega_{2}=x+2 y, \omega_{3}=-5 y a$ and $\omega_{4}=x+y$. As before, we can prove that $\operatorname{gcd}\left(\omega_{1} \cdot \omega_{2}, \omega_{3} \cdot \omega_{4}\right)$ is limited. Using the same way as above we can consider the case when $n=a x^{2}+b x y+c y^{2}$, where $a, b \neq 0, c=-a$ and x / y is unlimited.
(5) Here we can follow the same argument as in the proof of (4).

The proof of Theorem 10 is finished.

5.1. Examples

Applying the above theorems we find the following examples:

1) Let p be an unlimited prime number with $p \equiv 1(\bmod 4)$. By Niven $[17$, Lemma 2.13, p. 54], there exist positive integers s, t for which $p=s^{2}+t^{2}$. Hence by Theorem $9, p$ can be written as in $\left(\mathrm{A}_{2}^{\prime}\right)$.
2) Let p be an unlimited prime number such that $(p / 13)=(p / 17)=1$. By [17, Proposition 11.3.3, p. 324], either $p=x^{2}+x y-55 y^{2}$ or $p=-x^{2}+x y+55 y^{2}$, but not both represent p. Hence by Theorem $9, p$ can be written as in (A_{2}^{\prime}).
3) Let p be an unlimited prime number such that $(-2 / p)=(p / 13)=1$. Then at least one of the following statements is true: (a) both p and $2 p$ can be written as in (A_{2}^{\prime}). (b) both $3 p$ and $5 p$ can be written as in $\left(\mathrm{A}_{2}^{\prime}\right)$. Indeed, by Lehman [15, Proposition 7.3.2, p. 216], one and only one of the following is true: (a) The equations $x^{2}+26 y^{2}=p$ and $2 x^{2}+13 y^{2}=2 p$ both have solutions in integers. (b) The equations $x^{2}+26 y^{2}=3 p$ and $2 x^{2}+13 y^{2}=5 p$ both have solutions in integers. Hence, Theorem 9 gives us the response. Here, we remark that if we can write p and $2 p$ as in (A_{2}^{\prime}), then we can do the same for $3 p$ and $5 p$, while the converse is not true.
4) Let p be an unlimited prime number which is not congruent to $13,17,19$, or 23 modulo 24. Since p is not divisible by 4 and 9 , we conclude from Lehman $[15$, Proposition $7.2 .3, \mathrm{p} .207]$ that p is either properly represented by $x^{2}+6 y^{2}$ or by $2 x^{2}+3 y^{2}$. Hence, by Theorem $10, p$ can be written as in $\left(\mathrm{A}_{2}^{\prime}\right)$.
5) Let p be an unlimited prime number which is not divisible by any prime congruent to $3,5,6(\bmod 7)$. Then p is represented as in $\left(\mathrm{A}_{2}^{\prime}\right)$. Indeed, in this case, p is not divisible by 49 . Then, by [15, Corollary 2.5 .4, p. 84$], p$ is properly represented $x^{2}+7 y^{2}$. Applying Theorem 10, p can be written as in (A_{2}^{\prime}).

6. Some equivalent internal statements

All variables range over positive integers. First, let us consider $\left(F_{3}\right)$: Every unlimited v can be written in the form $v=a \cdot x^{2}+b \cdot y^{2}$, where a, b are limited. The external statement $\left(F_{3}\right)$ is equivalent to the following internal statement $\left(S_{3}\right)$: There is a finite set $\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle\right\}$ and a number s such that for every $n \geq s$ there exist $i \leq k$ and x, y such that $n=a_{i} \cdot x^{2}+b_{i} \cdot y^{2}$.

Proposition 7. $\left(F_{3}\right) \Leftrightarrow\left(S_{3}\right)$.
Proof. First, assume that (S_{3}) holds. By transfer, the set $\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle\right\}$ and the number s can be taken to be standard. If v is unlimited, then $v>s$, so $a_{i} \cdot x^{2}+b_{i} \cdot y^{2}$ for some standard i, a_{i} and b_{i}. This proves $\left(F_{3}\right)$. Conversely, assume that $\left(S_{3}\right)$ holds. Then for every standard finite set $\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle\right\}$ and every standard number s there exists n such that for every $i \leq k$ we have $n \geq s \wedge \forall x, y$ ($n \neq a_{i} \cdot x^{2}+b_{i} \cdot y^{2}$. By idealization ${ }^{\ddagger}$, there is v such that for every standard $\langle a, b\rangle$

[^1]and every standard s we have $v \geq s \wedge \forall x, y\left(v \neq a \cdot x^{2}+b \cdot y^{2}\right)$. So v is unlimited and it cannot be written in the desired form.

Next, let us consider $\left(F_{3}^{*}\right)$, which is obtained from $\left(F_{3}\right)$ by adding the requirement that x / y be appreciable. Note that $\left(F_{3}^{*}\right)$ is equivalent to the following internal statement $\left(S_{3}^{*}\right)$: There is a finite set $\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle\right\}$ and numbers m, s such that for every $n \geq s$ there exist $i \leq k$ and $x, y \geq \sqrt{n} / m$ such that $n=a_{i} \cdot x^{2}+b_{i} \cdot y^{2}$.
Proposition 8. $\left(F_{3}^{*}\right) \Leftrightarrow\left(S_{3}^{*}\right)$.
Proof. Assume $\left(S_{3}^{*}\right)$ holds. By transfer, the set $\left\{\left\langle a_{1}, b_{1}\right\rangle, \ldots,\left\langle a_{k}, b_{k}\right\rangle\right\}$ and the numbers m, s can be taken to be standard. If v is unlimited, then $v>s$, so v $=a_{i} \cdot x^{2}+b_{i} \cdot y^{2}$ for some standard a, b and $x, y \geq \frac{\sqrt{v}}{m}$. Of course, also $x, y \leq \sqrt{v}$, hence $1 / m \leq x / y \leq m$.

Assume the negation of $\left(S_{3}^{*}\right)$ holds. As in the proof of " $\left(F_{3}\right)$ implies $\left(S_{3}\right)$ ", we obtain v such that for every standard $\langle a, b\rangle$ and every standard m, s we have $v \geq s$ $\wedge \forall x, y \geq \frac{\sqrt{v}}{m}\left(v \neq a \cdot x^{2}+b \cdot y^{2}\right)$.

Suppose that for some standard a, b we have $v=a \cdot x^{2}+b \cdot y^{2}$, where x / y is appreciable. Then $1 / \ell \leq x / y \leq 1 / \ell$ holds for some standard ℓ. It follows that $y \leq x$ $\cdot \ell$ and $x \leq y \cdot \ell$, hence $v \leq\left(a+b \cdot \ell^{2}\right) \cdot x^{2}$ and $v \leq\left(a \cdot \ell^{2}+b\right) \cdot y^{2}$. Fix a standard $m \geq \max \left(\sqrt{a+b \cdot \ell^{2}}, \sqrt{a \cdot \ell^{2}+b}\right)$. Then $x, y \geq \frac{\sqrt{v}}{m}$, a contradiction.

If $\left(F_{3}^{*}\right)$ is true, then $\left(F_{2}\right)$: Every unlimited v can be written in the form $v=$ $x_{1} \cdot x_{2}+x_{3} \cdot x_{4}$, where all x_{i} are unlimited and x_{i} / x_{j} is always appreciable is true. Statement $\left(F_{2}\right)$ is equivalent to the internal statement
$\left(S_{2}\right)$: There are numbers m, s such that for every $n \geq s$ there exist $x_{1}, x_{2}, x_{3}, x_{4}$ such that $n=x_{1} \cdot x_{2}+x_{3} \cdot x_{4}$ and $\sqrt{v} / m \leq x_{i} \leq m \cdot \sqrt{v}$ holds for $1 \leq i \leq 4$.
Proposition 9. $\left(F_{2}\right) \Leftrightarrow\left(S_{2}\right)$.
Proof. Similar to the preceding proof. On the one hand, note that the condition $\sqrt{v} / m \leq x_{i} \leq m \cdot \sqrt{v}$ implies that $1 / m^{2} \leq x_{i} / x_{j} \leq m^{2}$, so all the ratios x_{i} / x_{j} are appreciable. On the other hand, if $1 / k \leq x_{i} / x_{j} \leq k$ holds for all i, j (where k is standard), we have $(1 / k) x_{j} \leq x_{i} \leq k \cdot x_{j}$ for all i, j. From this one gets $\left(1 / k+1 / k^{2}\right)$ - $x_{i}^{2} \leq x_{1} \cdot x_{2}+x_{3} \cdot x_{4}=v \leq\left(k+k^{2}\right) \cdot x_{i}^{2}$. Let $m \geq \max \left(\sqrt{k+k^{2}}, k / \sqrt{1+k}\right)$ be standard. The above inequality gives $\left(1 / m^{2}\right) \cdot x_{i}^{2} \leq v \leq m^{2} \cdot x_{i}^{2}$ and $\sqrt{v} / m \leq x_{i}$ $\leq m \cdot \sqrt{v}$ for all i.

In addition, Theorem 1 is equivalent to the following internal statement:
Theorem 11. There exists $(i, j) \in \mathbb{N}^{2}$ such that every $\omega \geq i$ can be written as $\omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where ω_{l} is a positive integer with $\omega_{l} / \sqrt{\omega} \in[1 / j, j]$ for $1 \leq l \leq 4$.
Proof. We write Theorem 1 as follows:

$$
\begin{aligned}
& \forall \omega\left[\forall^{s t} i \quad(\omega>i) \Rightarrow \exists\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)\right. \\
& \left.\exists^{s t} j \forall l \in\{1, \ldots, 4\} \quad\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}\right]
\end{aligned}
$$

any value.
where all variables range over positive integers. This is equivalent to

$$
\begin{aligned}
& \forall \omega \exists^{s t} j \exists^{s t} i \quad[(\omega>i) \\
\Rightarrow & \left.\exists\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \forall l \in\{1, \ldots, 4\},\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}\right] .
\end{aligned}
$$

By idealization, we obtain

$$
\begin{aligned}
& \exists^{s t} i \exists^{s t} j \forall \omega[(\omega>i) \\
\Rightarrow & \left.\exists\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \forall l \in\{1, \ldots, 4\},\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}\right] .
\end{aligned}
$$

Now, by transfer, the last formula is equivalent to

$$
\begin{aligned}
& \exists i \exists j \forall \omega[(\omega>i) \\
\Rightarrow & \left.\exists\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right) \forall l \in\{1, \ldots, 4\},\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}\right] .
\end{aligned}
$$

This completes the proof.
Finally, we obtain a generalization of the above theorem as follows:
Corollary 7. Let $k \geq 2$ be a fixed standard integer. Then there exists $(i, j) \in \mathbb{N}^{2}$ such that every $\omega \geq i$ can be written as $\omega=\omega_{1} \cdot \omega_{2}+\cdots+\omega_{2 k-1} \cdot \omega_{2 k}$, where ω_{l} is a positive integer with $\omega_{l} / \sqrt{\omega} \in[1 / j, j]$ for $l=1,2, \ldots, 2 k$.
Proof. Corollary 1 is equivalent to the following internal statement:

$$
\begin{aligned}
\forall \omega\left[\forall^{s t} i \quad(\omega>i) \Rightarrow\right. & \exists\left\{\omega_{1}, \ldots, \omega_{2 k}\right\} \exists^{s t} j \forall l \in\{1, \ldots, 2 k\} \\
& \left.\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \omega_{2}+\cdots+\omega_{2 k-1} \omega_{2 k}\right]
\end{aligned}
$$

where k is a standard positive integer. The unique free variable is k and it is standard, so we can apply the same method as before to show that the last formula is equivalent to

$$
\begin{aligned}
\exists i \exists j \forall \omega[(\omega>i) \Rightarrow & \exists\left(\omega_{1}, \ldots, \omega_{2 k}\right) \forall l \in\{1, \ldots, 2 k\} \\
& \left.\left(\omega_{l} / \sqrt{\omega} \in[1 / j, j]\right) \& \omega=\omega_{1} \omega_{2}+\cdots+\omega_{2 k-1} \omega_{2 k}\right]
\end{aligned}
$$

as required.

7. Open questions

For further research, we propose the following questions on the representation of unlimited integers as in $\left(\mathrm{A}_{2}\right)$.

1. We ask if every unlimited positive integer n is of the form $n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \in \mathbb{N}$ is unlimited and $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$ with $\operatorname{gcd}\left(\omega_{i}, \omega_{j}\right)=1$ for $i \neq j$.
2. Let ω be unlimited. Consider the numbers $n=a_{1} a_{2} \cdots a_{\omega}$, where a_{i} is standard for every i standard and $a_{i+1} / a_{i} \cong \infty$ for $i \cong \infty$. For example, n is the product of Fermat numbers, i.e., $n=f_{0} f_{1} \cdots f_{\omega}$ with $\omega \cong \infty$, where $f_{n}=2^{2^{n}}+1(n \geq$ $0)$. As in the proof of Theorem 4 , we ask if we can determine effective values $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ such that $n=\omega_{1} \cdot \omega_{2}+\omega_{3} \cdot \omega_{4}$, where $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 4$.
3. Does result (5) in Corollary 2 in Section 2 hold for $k=2$? In other words, we ask whether every unlimited positive integer n is of the form $n=\omega_{1} \cdot \omega_{2} \cdot \omega_{3}+$ $\omega_{4} \cdot \omega_{5} \cdot \omega_{6}$, where $\omega_{i} \in \mathbb{N}$ is unlimited with $\omega_{i} \sim \omega_{j}$ for $1 \leq i, j \leq 6$.

Acknowledgement

We thank the referee for very helpful and detailed comments which improved the quality of this paper. We would like to thank professor Karel Hrbáček for valuable talks with him. In particular, some proofs in sections 2 and 6 came from him.

References

[1] A. Adler, J. E. Coury, The theory of numbers: A text and source book of problems, Jones and Bartlett Publ., Boston, 1995.
[2] T. Andrescu, D. Andrica, Z. Feng, 104 number theory problems: from the training of the USA IMO team, Birkhäuser, Boston, 2007.
[3] D. Bellaouar, A. Boudaoud, Ö. Özer, On a sequence formed by iterating a divisor operator, Czech. Math. J.69(2019), 1177-1196.
[4] A. Boudaoud, La conjecture de Dickson et classes particulière d'entiers, Ann. Math. Blaise Pascal. 13(2006), 103-109.
[5] A. Boudaoud, D. Bellaouar, Representation of integers: A nonclassical point of view, J. Log. Anal. 12(2020), 1-31.
[6] F. Diener, M. Diener, Nonstandard analysis in practice, Springer Science \& Business Media, 1995.
[7] B. Dinis, I. P. Van Den Berg, Neutrices and external numbers, A flexible number system, CRC Press, 2019.
[8] A. Dujella, Z. Franušić, On differences of two squares in some quadratic fields, The Rocky Mountain Journal of Mathematics 37(2007), 429-453.
[9] P. Erdös, Problem 4226, Amer. Math. Monthly 53(1946), pp. 594. Solution by W.J. Harrington. Amer. Math. Monthly 55(1948), 433-435.
[10] R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 2nd edition, 1994.
[11] K. Hrbáček, On factoring of unlimited integers, J. Log. Anal. 12(2020), 1-6.
[12] H. Iwaniec, Topics in Classical Automorphic Forms, volume 17 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, 1997.
[13] F. Jarvis, Algebraic Number Theory, Springer, 2014.
[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, 2001.
[15] J. L. Lehman, Quadratic Number Theory An Invitation to Algebraic Methods in the Higher Arithmetic, MAA Press, 2019.
[16] M. B. Nathanson, Elementary methods in number theory, Springer-Verlag, New York, 2000.
[17] I. Niven, H. S. Zuckerman, H. L. Montgomery, An introduction to the theory of numbers, John Wiley \& Sons, 1991.
[18] P. Ribenboim, The little book of bigger primes, Springer, New York, 2004.

[^0]: *Corresponding author. Email addresses: bellaouar.djamel@univ-guelma.dz (D. Bellaouar), boudaoudab@yahoo.fr (A. Boudaoud)
 https://www.mathos.unios.hr/mc
 (C) 2023 School of Applied Mathematics and Computer Science, University of Osijek

[^1]: \ddagger Idealization (see F. Diener [6, pp.9, 21]): $\forall^{\text {stfin }} z \exists y \forall x \in z \quad B(x, y, t) \Leftrightarrow \exists y \forall^{s t} x B(x, y, t)$. The only nonlogical symbol of B must be \in (that is, B must be internal). The parameter t may take

