Computability of sets with attached arcs*

Zvonko Iljazović ${ }^{1, \dagger}$ tand Matea Jelić ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
${ }^{2}$ Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Matice hrvatske 15, HR-21 000, Split, Croatia

Received June 17, 2023; accepted September 13, 2023

Abstract

We consider topological spaces A that have a computable type, which means that any semicomputable set in a computable topological space which is homeomorphic to A is computable. Moreover, we consider topological pairs $(A, B), B \subseteq A$, which have a computable type, which means the following: if S and T are semicomputable sets in a computable topological space such that S is homeomorphic to A by a homeomorphism which maps T to B, then S is computable. We prove the following: if B has a computable type and A is obtained by gluing finitely many arcs to B along their endpoints, then (A, B) has a computable type. We also examine spaces obtained in the same way by gluing chainable continua. AMS subject classifications: 03D78, 03F60 Keywords: computable topological space, semicomputable set, computable set, computable type, chainable continuum

1. Introduction

A compact set $S \subseteq \mathbb{R}$ is semicomputable if its complement $\mathbb{R} \backslash S$ can be effectively exhausted by rational open intervals. A compact set $S \subseteq \mathbb{R}$ is computable if it is semicomputable and we can effectively enumerate all rational open intervals which intersect S.

A semicomputable set need not be computable. There exists $\gamma>0$ such that $[0, \gamma]$ is a semicomputable set which is not computable [20]. In fact, while each nonempty computable set contains computable numbers (moreover, they are dense in it), there exists a nonempty semicomputable set $S \subseteq \mathbb{R}$ which does not contain any computable number [23].

The notions of a semicomputable set and a computable set can be naturally defined in Euclidean space \mathbb{R}^{n} as well as in more general ambient spaces - computable metric spaces and computable topological spaces. While for a set S in a computable topological space X the implication

$$
\begin{equation*}
S \text { semicomputable } \Rightarrow S \text { computable } \tag{1}
\end{equation*}
$$

*This work was fully supported by the Croatian Science Foundation under the project 7459 CompStruct.
\dagger Corresponding author. Email addresses: zilj@math.hr (Z. Iljazović), mkalinic@gradst.hr (M. Jelić)
https://www.mathos.unios.hr/mc
(c)2024 School of Applied Mathematics and Informatics, University of Osijek
does not hold in general, there are certain additional assumptions under which (1) holds. It turns out that topology of S plays an important role in view of (1). More specifically, there are topological spaces A such that (1) holds in any computable topological space X whenever S is homeomorphic to A. We say that such an A has a computable type. It is known that each sphere in Euclidean space has a computable type; moreover, each compact manifold has a computable type [20, 13, 14, 18]. In particular, each circle has a computable type. However, not only manifolds have a computable type - the Warsaw circle also has a computable type. In fact, any circularly chainable continuum which is not chainable has a computable type [12, $10,16]$.

On the other hand, $[0,1]$ does not have a computable type. But if S is a set in a computable topological space X and $f:[0,1] \rightarrow S$ is a homeomorphism such that $f(0)$ and $f(1)$ are computable points (which is equivalent to saying that $f(\{0,1\})$ is a semicomputable set), then implication (1) holds. The following definition arises. We say that a topological pair (A, B) (i.e., a pair of topological spaces such that $B \subseteq A$) has a computable type if (1) holds whenever there exists a homeomorphism $f: A \rightarrow S$ such that $f(B)$ is a semicomputable set in X.

So $([0,1],\{0,1\})$ has a computable type. Moreover, $\left(B^{n}, S^{n-1}\right)$ has a computable type, where B^{n} is the unit closed ball and S^{n-1} is the unit sphere in $\mathbb{R}^{n}[20,13]$. In fact, $(M, \partial M)$ has a computable type if M is a compact manifold with boundary [14, 18]. Furthermore, if K is a continuum chainable from a to b, then $(K,\{a, b\})$ has a computable type $[12,10,16]$.

A computable type of topological spaces called graphs has been investigated in [15]. Amir and Hoyrup examined conditions under which a finite polyhedra has a computable type (see [1]). Certain results regarding a computable type and (in)computability of semicomputable sets can be found in $[2,6,19,17,11,8,24,9,7]$.

A general question is the following: if A is a topological space obtained from topological spaces which have computable types (using some standard topological construction), does A have a computable type? For example, if A_{1} and A_{2} have computable types, does $A_{1} \times A_{2}$ have a computable type?

In this paper, we consider a topological space B and a space A obtained by gluing finitely many arcs to B along their endpoints. In general, if B has a computable type, A need not have a computable type. Take for example $A=[0,1]$ and $B=$ $\{0,1\}$. But, we prove the following: if B has a computable type, then (A, B) has a computable type. Actually, we prove a more general result involving circularly chainable and chainable continua.

2. Preliminaries

In this section, we give some basic facts about computable metric and topological spaces. See $[22,27,25,26,4,3,12]$.

Let $k \in \mathbb{N}, k \geq 1$. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{Q}$ is said to be computable if there are computable (i.e. recursive) functions $a, b, c: \mathbb{N}^{k} \rightarrow \mathbb{N}$ such that

$$
f(x)=(-1)^{c(x)} \frac{a(x)}{b(x)+1}
$$

for each $x \in \mathbb{N}^{k}$. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{R}$ is said to be computable if there exists a computable function $F: \mathbb{N}^{k+1} \rightarrow \mathbb{Q}$ such that

$$
|f(x)-F(x, i)|<2^{-i}
$$

for each $x \in \mathbb{N}^{k}, i \in \mathbb{N}$.
For a set X, let $\mathcal{F}(X)$ denote the family of all finite subsets of X. A function $\Theta: \mathbb{N} \rightarrow \mathcal{F}(\mathbb{N})$ is called computable if the set

$$
\left\{(x, y) \in \mathbb{N}^{2} \mid y \in \Theta(x)\right\}
$$

is computable and if there is a computable function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\Theta(x) \subseteq\{0, \ldots, \varphi(x)\}
$$

for each $x \in \mathbb{N}$.
From now on, let $\mathbb{N} \rightarrow \mathcal{F}(\mathbb{N}), j \rightarrow[j]$ be some fixed computable function whose range is the set of all nonempty finite subsets of \mathbb{N}.

2.1. Computable metric space

A triple (X, d, α) is said to be a computable metric space if (X, d) is a metric space, and $\alpha=\left(\alpha_{i}\right)$ is a sequence in X such that $\alpha(\mathbb{N}) \subseteq X$ is dense in (X, d) and such that the function $\mathbb{N}^{2} \rightarrow \mathbb{R},(i, j) \mapsto d\left(\alpha_{i}, \alpha_{j}\right)$ is computable.

For example, if d is the Euclidean metric on \mathbb{R}^{n}, where $n \in \mathbb{N} \backslash\{0\}$, and α : $\mathbb{N} \rightarrow \mathbb{Q}^{n}$ is some effective enumeration of \mathbb{Q}^{n}, then $\left(\mathbb{R}^{n}, d, \alpha\right)$ is a computable metric space.

Let (X, d, α) be a fixed computable metric space. For $x \in X$ and $r>0$, let $B(x, r)$ denote the open ball in (X, d) with radius r centered at x.

Let $i \in \mathbb{N}$ and $r \in \mathbb{Q}, r>0$. We say that $B\left(\alpha_{i}, r\right)$ is an (open) rational ball in (X, d, α).

Let $q: \mathbb{N} \rightarrow \mathbb{Q}$ be some fixed computable function whose image is the set of all positive rational numbers and let $\tau_{1}, \tau_{2}: \mathbb{N} \rightarrow \mathbb{N}$ be some fixed computable functions such that $\left\{\left(\tau_{1}(i), \tau_{2}(i)\right) \mid i \in \mathbb{N}\right\}=\mathbb{N}^{2}$. For $i \in \mathbb{N}$ we define

$$
\begin{equation*}
I_{i}=B\left(\alpha_{\tau_{1}(i)}, q_{\tau_{2}(i)}\right) \tag{2}
\end{equation*}
$$

Note that $\left(I_{i}\right)_{i \in \mathbb{N}}$ is an enumeration of all rational balls. Every finite union of rational balls will be called a rational open set. For $j \in \mathbb{N}$ we define

$$
J_{j}=\bigcup_{i \in[j]} I_{i}
$$

Clearly, $\left\{J_{j} \mid j \in \mathbb{N}\right\}$ is the family of all rational open sets in (X, d, α).
Let $S \subseteq X$ be a closed set in (X, d). We say that S is a computably enumerable (c.e.) set in (X, d, α) if the set

$$
\left\{i \in \mathbb{N} \mid I_{i} \cap S \neq \emptyset\right\}
$$

is a c.e. subset of \mathbb{N}.
Let $S \subseteq X$ be a compact set in (X, d). We say that S is a semicomputable set in (X, d, α) if the set

$$
\left\{j \in \mathbb{N} \mid S \subseteq J_{j}\right\}
$$

is a c.e. subset of \mathbb{N}.
Finally, we say that S is a computable set in (X, d, α) if S is both c.e. and semicomputable in (X, d, α).

These definitions do not depend on the choice of functions q, τ_{1}, τ_{2} and $([j])_{j \in \mathbb{N}}$.
It can be shown that a nonempty subset S of X is computable in (X, d, α) if and only if S can be effectively approximated by a finite subset of $\left\{\alpha_{i} \mid i \in \mathbb{N}\right\}$ with any given precision. More precisely, S is computable in (X, d, α) if and only if there exists a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
d_{H}\left(S,\left\{\alpha_{i} \mid i \in[f(k)]\right\}\right)<2^{-k},
$$

for each $k \in \mathbb{N}$, where d_{H} is the Hausdorff metric (see Proposition 2.6 in [14]).

2.2. Computable topological space

A more general ambient space is a computable topological space. The notion of a computable topological space is not new, see e.g. [28, 29]. We will use the notion of a computable topological space which corresponds to the notion of a SCT_{2} space from [28] (which is an effective second countable Hausdorff space).

Let (X, \mathcal{T}) be a topological space and $\left(I_{i}\right)$ a sequence in \mathcal{T} such that the set $\left\{I_{i} \mid i \in \mathbb{N}\right\}$ is a basis for \mathcal{T}. A triple $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ is called a computable topological space if there exist c.e. subsets $C, D \subseteq \mathbb{N}^{2}$ such that:

1. if $i, j \in \mathbb{N}$ are such that $(i, j) \in C$, then $I_{i} \subseteq I_{j}$;
2. if $i, j \in \mathbb{N}$ are such that $(i, j) \in D$, then $I_{i} \cap I_{j}=\emptyset$;
3. if $x \in X$ and $i, j \in \mathbb{N}$ are such that $x \in I_{i} \cap I_{j}$, then there is $k \in \mathbb{N}$ such that $x \in I_{k}$ and $(k, i),(k, j) \in C$,
4. if $x, y \in X$ are such that $x \neq y$, then there are $i, j \in \mathbb{N}$ such that $x \in I_{i}, y \in I_{j}$ and $(i, j) \in D$.

Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a fixed computable topological space. We define $J_{j}:=$ $\bigcup_{i \in[j]} I_{i}$.

We say that a closed set S in (X, \mathcal{T}) is computably enumerable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ if $\left\{i \in \mathbb{N} \mid S \cap I_{i} \neq \emptyset\right\}$ is a c.e. subset od \mathbb{N}.

Furthermore, we say that S is semicomputable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ if S is a compact set in (X, \mathcal{T}) and $\left\{j \in \mathbb{N} \mid S \subseteq J_{j}\right\}$ is a c.e. subset of \mathbb{N}.

We say that S is computable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ if S is both c.e. and semicomputable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

The definition of a semicomputable set (and a computable set) does not depend on the choice of the sequence $([j])_{j \in \mathbb{N}}$.

If (X, d, α) is a computable metric space, then $\left(X, \mathcal{T}_{d},\left(I_{i}\right)\right)$ is a computable topological space, where \mathcal{T}_{d} is a topology induced by the metric d and $\left(I_{i}\right)$ are the sequences defined by (2) (see e.g. [18]). Clearly, S is c.e./semicomputable/computable in (X, d, α) if and only if S is c.e./semicomputable/computable in $\left(X, \mathcal{T}_{d},\left(I_{i}\right)\right)$.

We say that $x \in X$ is a computable point in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ if $\left\{i \in \mathbb{N} \mid x \in I_{i}\right\}$ is a c.e. subset of \mathbb{N}.

The proofs of the following facts, which will be used frequently in this paper, can be found in [18].
Theorem 1. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space. There exist c.e. subsets $\mathcal{C}, \mathcal{D} \subseteq \mathbb{N}^{2}$ such that:

1. if $i, j \in \mathbb{N}$ are such that $(i, j) \in \mathcal{C}$, then $J_{i} \subseteq J_{j}$;
2. if $i, j \in \mathbb{N}$ are such that $(i, j) \in \mathcal{D}$, then $J_{i} \cap J_{j}=\emptyset$;
3. if \mathcal{F} is a finite family of nonempty compact sets in (X, \mathcal{T}) and $A \subseteq \mathbb{N}$ is a finite subset of \mathbb{N}, then for each $K \in \mathcal{F}$ there is $i_{K} \in \mathbb{N}$ such that
(i) if $K \in \mathcal{F}$, then $K \subseteq J_{i_{K}}$;
(ii) if $K, L \in \mathcal{F}$ are such that $K \cap L=\emptyset$, then $\left(i_{K}, i_{L}\right) \in \mathcal{D}$;
(iii) if $a \in A$ and $K \in \mathcal{F}$ are such that $K \subseteq J_{a}$, then $\left(i_{K}, a\right) \in \mathcal{C}$.

Proposition 1. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space and let $S \subseteq X$ be a semicomputable set in this space.
(i) If $m \in \mathbb{N}$, then $S \backslash J_{m}$ is a semicomputable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.
(ii) If $k \in \mathbb{N} \backslash\{0\}$, then the set $\left\{\left(j_{1}, \ldots, j_{k}\right) \in \mathbb{N}^{k} \mid S \subseteq J_{j_{1}} \cup \cdots \cup J_{j_{k}}\right\}$ is c.e.

The proof of the following proposition can be found in [15].
Proposition 2. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space and let $x_{0}, \ldots, x_{n} \in$ X. Then the following holds:

$$
\begin{aligned}
x_{0}, \ldots, x_{n} \text { are computable points } & \Longleftrightarrow\left\{x_{0}, \ldots, x_{n}\right\} \text { is a semicomputable set } \\
& \Longleftrightarrow\left\{x_{0}, \ldots, x_{n}\right\} \text { is a computable set. }
\end{aligned}
$$

If $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ is a computable topological space, then the topological space (X, \mathcal{T}) need not be metrizable (see Example 3.2 in [18]). However, if S is a compact set in (X, \mathcal{T}), then S, as a subspace of (X, \mathcal{T}), is a compact Hausdorff second countable space, which implies that S is a normal second countable space and therefore it is metrizable. This fact will be very important to us later and we will use it often.

Let A be a topological space. We say that A has a computable type if the following holds: if $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ is a computable topological space and S a semicomputable set in this space such that S and A are homeomorphic, then S is computable.

Moreover, let A be a topological space and let B be a subspace of A. We say that (A, B) has a computable type if the following holds: if $\left(X, \mathcal{T},\left(I_{i}\right)\right.$ is a computable topological space, S and T semicomputable sets in this space and $f: A \rightarrow S$ a homeomorphism such that $f(B)=T$, then S is computable.

2.3. Chainable and circulary chainable continua

Let X be a set and $\mathcal{C}=\left(C_{0}, \ldots, C_{m}\right)$ a finite sequence of subsets of X. We say that \mathcal{C} is a chain in X if the following holds:

$$
C_{i} \cap C_{j}=\emptyset \Longleftrightarrow 1<|i-j|
$$

for all $i, j \in\{0, \ldots, m\}$.

Figure 1: Chain
We say that \mathcal{C} is a circular chain in X if the following holds:

$$
C_{i} \cap C_{j}=\emptyset \Longleftrightarrow 1<|i-j|<m
$$

for all $i, j \in\{0, \ldots, m\}$.

Figure 2: Circular chain
Let $A \subseteq X$ and $a, b \in A$. We say that C_{0}, \ldots, C_{m} covers A if $A \subseteq C_{0} \cup \cdots \cup C_{m}$, and we say it covers A from a to b if also $a \in C_{0}$ and $b \in C_{m}$.

Let (X, d) be a metric space. A (circular) chain C_{0}, \ldots, C_{m} is said to be a ϵ (circular) chain, for some $\epsilon>0$, if $\operatorname{diam} C_{i}<\epsilon$, for each $i \in\{0, \ldots, m\}$ and it is said to be an open (circular) chain if every C_{i} is open in (X, d). In the same way we define the notion of a compact (circular) chain.

A connected and compact metric space is called a continuum.
Let (X, d) be a continuum. We say that (X, d) is a (circulary) chainable continuum if for every $\epsilon>0$ there is an open ϵ-(circular) chain in (X, d) which covers X.

Suppose $a, b \in X$. We say that (X, d) is a continuum chainable from a to b if for every $\epsilon>0$ there is an open ϵ-chain C_{0}, \ldots, C_{m} which covers X from a to b.

We similarly define the notions of an open and a compact (circular) chain in a topological space.

A topological space which is Hausdorff, connected and compact is called a continuum.

Let \mathcal{A} and \mathcal{B} be families of sets. We say that \mathcal{A} refines \mathcal{B} if for each $A \in \mathcal{A}$ there is $B \in \mathcal{B}$ such that $A \subseteq B$.

Let X be a topological space which is a continuum. We say that X is a (circulary) chainable continuum if for each open cover \mathcal{U} of X there is an open (circular) chain
C_{0}, \ldots, C_{m} in X which covers X and such that $\left\{C_{0}, \ldots, C_{m}\right\}$ refines \mathcal{U}. We similarly define that X is a continuum chainable from a to b.

It follows easily that a metric space (X, d) is a (circulary) chainable continuum if and only if topological space $\left(X, \mathcal{T}_{d}\right)$ is a (circulary) chainable continuum. Moreover, (X, d) is a continuum chainable from a to b if and only if $\left(X, \mathcal{T}_{d}\right)$ is a continuum chainable from a to b. See Section 3 in [10].
Remark 1. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a homeomorphism. Then it is easy to see that X is a (circularly) chainable continuum if and only if Y is a (circularly) chainable continuum. Furthermore, if $a, b \in X$, then X is a continuum chainable from a to b if and only if Y is a continuum chainable from $f(a)$ to $f(b)$.

The proofs of the following facts can be found in [16].
Proposition 3. Let (X, d) be a continuum and $a, b \in X$. Then (X, d) is a chainable continuum from a to b if and only if for each $\epsilon>0$ there is a compact ϵ-chain in (X, d) which covers X from a to b.
Proposition 4. Let (X, d) be a continuum. Then (X, d) is a (circulary) chainable continuum if and only if for each $\epsilon>0$ there is a compact ϵ-(circular) chain in (X, d) which covers X.

Example 1. We have that $[0,1]$ (with the Euclidean metric) is a continuum chainable from 0 to 1. This can be easily concluded from Proposition 3. (Thus [0, 1] with the Euclidean topology is a continuum chainable from 0 to 1.)

Similarly, the unit circle S^{1} in \mathbb{R}^{2} is a circularly chainable continuum. However, S^{1} is not a chainable continuum (see [5]).

A topological space homeomorphic to $[0,1]$ is called an arc. If A is an arc and $f:[0,1] \rightarrow A$ a homeomorphism, then we say that $f(0)$ and $f(1)$ are endpoints of A (this definition does not depend on the choice of f).

If A is an arc with endpoints a and b, then by Example 1 and Remark 1 we have that A is a continuum chainable from a to b.

A topological space homeomorphic to S^{1} is called a topological circle. By Example 1 and Remark 1 each topological circle is a circularly chainable continuum which is not chainable.
Example 2. Let

$$
K=(\{0\} \times[-1,1]) \cup\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, 0<x \leq 1\right\} .
$$

Let $a=(0,-1)$ and $b=(1, \sin 1)$. It is known that K is a continuum chainable from a to b. However, K is not an arc since K is not locally connected.

Furthermore, let

$$
W=K \cup(\{0\} \times[-2,-1]) \cup([0,1] \times\{-2\}) \cup(\{1\} \times[-2, \sin 1])
$$

The space W is called the Warsaw circle. It is known that W is a circularly chainable continuum which is not chainable. Since W is not locally connected, W is not a topological circle.

3. Spaces with attached arcs

The following result was proved in [10] (Theorem 2): if $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ is a computable topological space and K a semicomputable set in this space which, as a subspace of (X, \mathcal{T}), is a continuum chainable from a to b, where a and b are computable points, then K is a computable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. In other words, if K is a continuum chainable from a to b, then $(K,\{a, b\})$ has a computable type (note that by Proposition 2 , the condition that a and b are computable points is equivalent to the fact that $\{a, b\}$ is a semicomputable set).

Now we prove a more general result (the result from [10] follows from the following result for $S=\{a, b\}$ and $L=\emptyset)$.

Proposition 5. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space. Suppose K, as a subspace of (X, \mathcal{T}), is a continuum chainable from a to $b, a, b \in X, a \neq b$. Let $S \subseteq X$ be such that $S \cap K=\{a, b\}$ and let $L \subseteq X$ be a compact set in (X, \mathcal{T}) such that $L \cap K \subseteq\{a, b\}$ (see Figure 3). Suppose S and $S \cup L \cup K$ are semicomputable sets in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. Then K is a c.e. set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

Proof. Since K is compact, it is metrizable. Let d be the metric on K which induces the topology on K, i.e., the relative topology on K in (X, \mathcal{T}).

Figure 3: $S \cup L \cup K$: the grey set is S, the union of the short straight lines is L and the arc whose endpoints lie is S is K.

Since X is Hausdorff, there are $U_{a}, U_{b} \in \mathcal{T}$ such that $a \in U_{a}, b \in U_{b}$ and $U_{a} \cap U_{b}=\emptyset$.

Assume that $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right) \neq \emptyset$. The sets K and $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right)$ are disjoint and compact in (X, \mathcal{T}). Namely, since $K \cap(S \cup L)=\{a, b\}$ and $a, b \notin$ $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right)$, the sets K and $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right)$ are disjoint. We have that $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right)$ is compact in (X, \mathcal{T}) because it is closed and contained in $S \cup L$ (which is compact).

By Theorem 1 there exists $\mu \in \mathbb{N}$ such that

$$
\begin{equation*}
(S \cup L) \backslash\left(U_{a} \cup U_{b}\right) \subseteq J_{\mu} \text { and } K \cap J_{\mu}=\emptyset \tag{3}
\end{equation*}
$$

(this can also be easily concluded from the fact that (X, \mathcal{T}) is Hausdorff). Let us denote

$$
S^{\prime}=(S \cup L \cup K) \backslash J_{\mu}
$$

By (3) we have $(S \cup L) \backslash J_{\mu} \subseteq U_{a} \cup U_{b}$ and therefore

$$
S^{\prime}=\left(S \backslash J_{\mu}\right) \cup\left(L \backslash J_{\mu}\right) \cup K=A \cup B \cup L_{1} \cup L_{2} \cup K
$$

where $A=\left(S \backslash J_{\mu}\right) \cap U_{a}, B=\left(S \backslash J_{\mu}\right) \cap U_{b}, L_{1}=\left(L \backslash J_{\mu}\right) \cap U_{a}$ and $L_{2}=\left(L \backslash J_{\mu}\right) \cap U_{b}$. By Proposition 1 the set S^{\prime} is semicomputable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

We claim that A and B are semicomputable sets in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. Namely, $S \backslash J_{\mu}=$ $A \cup B$ and A and B are open in $S \backslash J_{\mu}$. Since these sets are disjoint, they are also closed in $S \backslash J_{\mu}$. The fact that $S \backslash J_{\mu}$ is compact now implies that A and B are compact in (X, \mathcal{T}). It follows that there exist $\alpha, \beta \in \mathbb{N}$ such that

$$
A \subseteq J_{\alpha}, B \subseteq J_{\beta} \text { and } J_{\alpha} \cap J_{\beta}=\emptyset
$$

Then $A=\left(S \backslash J_{\mu}\right) \backslash J_{\beta}$ and $B=\left(S \backslash J_{\mu}\right) \backslash J_{\alpha}$, i.e., A and B are semicomputable sets in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. In a similar way we conclude that L_{1} and L_{2} are compact in (X, \mathcal{T}).

So S^{\prime} is a semicomputable set and

$$
S^{\prime}=A \cup B \cup L_{1} \cup L_{2} \cup K
$$

where A and B are semicomputable, L_{1} and L_{2} are compact, $\left(A \cup L_{1}\right) \cap\left(B \cup L_{2}\right)=\emptyset$ and $a \in A, b \in B$ (note that (3) and $a, b \in K$ imply $a \notin J_{\mu}$ and $b \notin J_{\mu}$).

We get the same conclusion if $(S \cup L) \backslash\left(U_{a} \cup U_{b}\right)=\emptyset$. Namely, we can define $S^{\prime}=S \cup L \cup K$ and then

$$
S^{\prime}=A \cup B \cup L_{1} \cup L_{2} \cup K
$$

where $A=S \cap U_{a}, B=S \cap U_{b}, L_{1}=L \cap U_{a}$ and $L_{2}=L \cap U_{b}$. Similarly as before, we conclude that A and B are semicomputable, L_{1} and L_{2} are compact, $\left(A \cup L_{1}\right) \cap\left(B \cup L_{2}\right)=\emptyset$ and $a \in A, b \in B$.

Let \mathcal{C} and \mathcal{D} be the subsets of \mathbb{N}^{2} from Theorem 1 and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a fixed computable function such that $I_{i}=J_{f(i)}$ for each $i \in \mathbb{N}$ (such a function certainly exists).

Suppose $i \in \mathbb{N}$ is such that $I_{i} \cap K \neq \emptyset$. We claim that there exists $x \in I_{i} \cap K$, $x \neq a, b$. Namely, if $I_{i} \cap K \subseteq\{a, b\}$, then $I_{i} \cap K$ is finite and therefore closed in K. Also, $I_{i} \cap K$ is open in K. Together with the fact that K is connected, we have that $I_{i} \cap K=K$. Since K is finite and Hausdorff, it is discrete, which contradicts the fact that K is connected and $\operatorname{card}(K) \geq 2$.

So, there exists $x \in I_{i} \cap(K \backslash\{a, b\})$. Choose r so that

$$
0<r<\min \{d(a, x), d(b, x)\}
$$

and

$$
\begin{equation*}
B(x, r) \subseteq I_{i} \cap K \subseteq I_{i}=J_{f(i)} \tag{4}
\end{equation*}
$$

Furthermore, since (K, d) is a continuum chainable from a to b, there is a compact r-chain K_{0}, \ldots, K_{n} in (K, d) which covers K and such that $a \in K_{0}$ and $b \in K_{n}$.

Let $p \in\{0, \ldots, n\}$ be such that $x \in K_{p}$. Because of (4) and $\operatorname{diam}\left(K_{p}\right)<r$, we have $K_{p} \subseteq I_{i}$, hence

$$
\begin{equation*}
K_{p} \subseteq J_{f(i)} \tag{5}
\end{equation*}
$$

Since $r<d(x, a), d(x, b)$, we have $p \neq 0, n$.
Let us denote

$$
F=A \cup L_{1} \cup K_{0} \cup \ldots \cup K_{p-1} \text { and } G=B \cup L_{2} \cup K_{p+1} \cup \ldots \cup K_{n}
$$

Note that

$$
\begin{equation*}
S^{\prime}=F \cup K_{p} \cup G \tag{6}
\end{equation*}
$$

We claim that F and G are disjoint. Obviously, $A \cap B=\emptyset$ and since $A \subseteq S$, $A \subseteq U_{a}$ and $S \cap K=\{a, b\}$ (by the assumption of the theorem), we have $A \cap K \subseteq\{a\}$. However, $a \notin K_{j}$, for $j \in\{p+1, \ldots, n\}$ because $a \in K_{0}, p+1 \geq 2$ and K_{0}, \ldots, K_{n} is a chain, so $A \cap K_{p+1}=\emptyset, \ldots, A \cap K_{n}=\emptyset$. Similarly, $B \cap K_{0}=\cdots=B \cap K_{p-1}=\emptyset$. Moreover, $A \cap L_{2}=\emptyset$ because $L_{2} \subseteq U_{b}$ and $A \subseteq U_{a}$. Similarly, $B \cap L_{1}=\emptyset$. Hence $F \cap G=\emptyset$.

The sets F, K_{p} and G are compact in $(X, \mathcal{T}), F$ and G are disjoint and we have (5), so according to Theorem 1 , there are $u, v, w \in \mathbb{N}$ such that $F \subseteq J_{u}, K_{p} \subseteq J_{v}$, $G \subseteq J_{w},(u, w) \in \mathcal{D}$ and $(v, f(i)) \in \mathcal{C}$. It follows from (6) that $S^{\prime} \subseteq J_{u} \cup J_{v} \cup J_{w}$. By the definitions of F and G we have $A \subseteq J_{u}$ and $B \subseteq J_{w}$.

So, if $i \in \mathbb{N}$ is such that $I_{i} \cap K \neq \emptyset$, then there exist $u, v, w \in \mathbb{N}$ such that:
(i) $S^{\prime} \subseteq J_{u} \cup J_{v} \cup J_{w}$;
(ii) $A \subseteq J_{u}$;
(iii) $B \subseteq J_{w}$;
(iv) $(u, w) \in \mathcal{D}$;
(v) $(v, f(i)) \in \mathcal{C}$.

Let Ω be the set of all $(i, u, v, w) \in \mathbb{N}^{4}$ for which statements (i)-(v) hold.
We have proved the following: if $i \in \mathbb{N}$ is such that $I_{i} \cap K \neq \emptyset$, then there exist $u, v, w \in \mathbb{N}$ such that $(i, u, v, w) \in \Omega$.

Conversely, let us suppose that $i \in \mathbb{N}$ is such that there exist $u, v, w \in \mathbb{N}$ such that $(i, u, v, w) \in \Omega$. We claim that $I_{i} \cap K \neq \emptyset$.

Suppose the opposite, i.e., $I_{i} \cap K=\emptyset$. Since $J_{v} \subseteq I_{i}$ by (v), we have $J_{v} \cap K=\emptyset$, and since by (i) it holds $K \subseteq J_{u} \cup J_{v} \cup J_{w}$, we have $K \subseteq J_{u} \cup J_{w}$. Because $A \subseteq J_{u}$, it holds $a \in J_{u}$, and because $B \subseteq J_{w}$, it holds $b \in J_{w}$. So, the sets J_{u} and J_{w} are open in (X, \mathcal{T}), they are disjoint, their union contains K and each of them intersects K. This implies that K is not connected, which is impossible. Therefore, $I_{i} \cap K \neq \emptyset$.

So we have:
$I_{i} \cap K \neq \emptyset$ if and only if there exist $u, v, w \in \mathbb{N}$ such that $(i, u, v, w) \in \Omega$.
Since S^{\prime}, A and B are semicomputable sets, by Proposition 1 we have that Ω is a c.e. set. It follows now from (7) that the set $\left\{i \in \mathbb{N} \mid I_{i} \cap K \neq \emptyset\right\}$ is c.e. Hence K is a c.e. set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

Let $\sigma: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and $\eta: \mathbb{N} \rightarrow \mathbb{N}$ be some fixed computable functions such that $\{(\sigma(j, 0), \ldots, \sigma(j, \eta(j))) \mid j \in \mathbb{N}\}$ is the set of all nonempty finite sequences in \mathbb{N}. Instead of $\sigma(i, j)$ we will write $(i)_{j}$ and \bar{j} instead of $\eta(j)$. So $\left\{\left((j)_{0}, \ldots,(j)_{\bar{j}}\right) \mid j \in \mathbb{N}\right\}$ is the set of all nonempty finite sequences in \mathbb{N}.

The function $\mathbb{N} \rightarrow \mathcal{F}(\mathbb{N}), i \mapsto\left\{(j)_{0}, \ldots,(j)_{\bar{j}}\right\}$, is computable and its range is the set of all nonempty finite subsets of \mathbb{N}. Therefore, we may assume (without any loss of generality) that

$$
[j]=\left\{(j)_{0}, \ldots,(j)_{\bar{j}}\right\}
$$

for each $j \in \mathbb{N}$.
Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space. Let \mathcal{C} and \mathcal{D} be from Theorem 1.

For $l \in \mathbb{N}$ we define

$$
\mathcal{H}_{l}=\left(J_{(l)_{0}}, \ldots, J_{(l)_{\bar{\tau}}}\right)
$$

We say that \mathcal{H}_{l} is a formal circular chain if the following holds:

$$
\left((l)_{i},(l)_{j}\right) \in \mathcal{D} \text { for all } i, j \in\{0, \ldots, \bar{l}\} \text { such that } 1<|i-j|<\bar{l}
$$

Note that this is a property of the number l. (More precisely, we can say that " l represents a formal circular chain"; it is possible that $\mathcal{H}_{l}=\mathcal{H}_{l^{\prime}}, l$ represents a formal circular chain, but l^{\prime} does not - so \mathcal{H}_{l} is a formal circular chain and $\mathcal{H}_{l^{\prime}}$ is not.)

The following proposition can be proved similarly to propositions 32 and 34 in [12].

Proposition 6. 1. The set $\left\{l \in \mathbb{N} \mid \mathcal{H}_{l}\right.$ is a formal circular chain $\}$ is c.e.
2. Let S be a semicomputable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. Then the set $\left\{l \in \mathbb{N} \mid \mathcal{H}_{l}\right.$ covers $\left.S\right\}$ is c.e.

Lemma 1. Let (K, d) be a connected metric space. Suppose $\epsilon>0$ and C_{0}, \ldots, C_{m} are open sets in (K, d) which cover K, whose diameters are less than ϵ and such that $C_{i} \cap C_{j}=\emptyset$ for each $i, j \in\{0, \ldots, m\}$ such that $|i-j|>1$. Then there exists an open ε-chain in (K, d) which covers K.
Proof. Let

$$
v=\min \left\{i \in\{0, \ldots, m\} \mid C_{i} \neq \emptyset\right\}
$$

and

$$
w=\max \left\{i \in\{0, \ldots, m\} \mid C_{i} \neq \emptyset\right\}
$$

Then the finite sequence C_{v}, \ldots, C_{w} covers K. We claim that C_{v}, \ldots, C_{w} is an open ϵ-chain in (K, d). It suffices to prove that $C_{i} \neq \emptyset$ for each $i \in\{v, \ldots, w\}$ and $C_{i} \cap C_{i+1} \neq \emptyset$ for each $i \in\{v, \ldots, w-1\}$.

Suppose $C_{i}=\emptyset$ for some $i \in\{v, \ldots, w\}$. By definition of v and w we have $C_{v} \neq \emptyset$ and $C_{w} \neq \emptyset$, so $v<i<w$. Let $U=C_{v} \cup \cdots \cup C_{i-1}$ and $V=C_{i+1} \cup \cdots \cup C_{w}$. Then U and V are disjoint open sets in (K, d). Since $K=C_{v} \cup \cdots \cup C_{w}$ and $C_{i}=\emptyset$, we have $K=U \cup V$ and $U \neq \emptyset, V \neq \emptyset$. This means that (U, V) is a separation of (K, d), which is impossible since (K, d) is connected.

Similarly, we see that $C_{i} \cap C_{i+1} \neq \emptyset$ for each $i \in\{v, \ldots, w-1\}$. So C_{v}, \ldots, C_{w} is an open ϵ-chain in (K, d) which covers K.

Now, we have a result similar to Proposition 5.
Proposition 7. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space. Suppose K, as a subspace of (X, \mathcal{T}), is a continuum which is circulary chainable but not chainable, and let $a \in X$. Let $S \subseteq X$ be such that $S \cap K=\{a\}$ and let $L \subseteq X$ be a compact set in (X, \mathcal{T}) such that $L \cap K \subseteq\{a\}$ (see Figure 4). If S and $S \cup L \cup K$ are semicomputable sets in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$, then K is c.e. in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

Proof. Firstly, since K is not chainable, we have card $K \geq 2$.
Similary as before, let d be the metric on K which induces the topology on K, i.e., the relative topology on K in (X, \mathcal{T}).

Figure 4: $S \cup L \cup K$: the grey set is S, the union of the short straight lines is L and the circle above S is K.

Let

$$
\begin{equation*}
S^{\prime}=S \cup L \cup K \tag{8}
\end{equation*}
$$

By assuming the proposition S^{\prime} and S are semicomputable and L is compact. Clearly, $a \in S$ and

$$
\begin{equation*}
(S \cup L) \cap K=\{a\} \tag{9}
\end{equation*}
$$

Since (K, d) is not chainable, there exists $\epsilon_{0}>0$ such that there exists no open ϵ_{0}-chain in (K, d) which covers K. Since K is compact and for each $z \in K$ and $\epsilon>0$ there is $j \in \mathbb{N}$ such that $z \in J_{j}$ and $\operatorname{diam}\left(J_{j} \cap K\right)<\epsilon$, there are $a_{0}, \ldots, a_{m} \in \mathbb{N}$ such that

$$
K \subseteq \bigcup_{i=0}^{m} J_{a_{i}}
$$

and

$$
\begin{equation*}
\operatorname{diam}\left(J_{a_{i}} \cap K\right)<\frac{\epsilon_{0}}{3}, \text { for each } i \in\{0, \ldots, m\} \tag{10}
\end{equation*}
$$

Let $\lambda>0$ be a Lebesgue number of the open cover

$$
\begin{equation*}
\left\{J_{a_{0}} \cap K, \ldots, J_{a_{m}} \cap K\right\} \tag{11}
\end{equation*}
$$

of (K, d).
Since $S \cup L$ is compact in (X, \mathcal{T}), there exists $\alpha \in \mathbb{N}$ such that

$$
\begin{equation*}
S \cup L \subseteq J_{\alpha} \text { and } \operatorname{diam}\left(J_{\alpha} \cap K\right)<\frac{\epsilon_{0}}{3} \tag{12}
\end{equation*}
$$

Namely, choose $r \in \mathbb{R}$ such that $0<r<\frac{\epsilon_{0}}{8}$. The sets $S \cup L$ and $K \backslash B(a, r)$ are disjoint by (9) and they are clearly compact. Thus there exists $\alpha \in \mathbb{N}$ such that

$$
S \cup L \subseteq J_{\alpha} \text { and }(K \backslash B(a, r)) \cap J_{\alpha}=\emptyset
$$

It follows that $J_{\alpha} \cap K \subseteq B(a, r)$ and so $\operatorname{diam}\left(J_{\alpha} \cap K\right) \leq 2 r \leq \frac{\epsilon_{0}}{4}<\frac{\epsilon_{0}}{3}$.
Let \mathcal{C} and \mathcal{D} be as in Theorem 1 and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a computable function such that $I_{i}=J_{f(i)}$ for each $i \in \mathbb{N}$.

Suppose $i \in \mathbb{N}$ is such that $I_{i} \cap K \neq \emptyset$. Then there exists $x \in I_{i} \cap K$ such that $x \neq a$. Otherwise, we would have $I_{i} \cap K=\{a\}$, which would imply that $\{a\}$ is open in K; however, this is impossible since $\{a\}$ is closed, K is connected and $\operatorname{card}(K) \geq 2$.

Since $x \in I_{i} \cap K$, there is $0<r<\min \left\{\frac{1}{2} d(a, x), \lambda\right\}$ such that

$$
\begin{equation*}
B(x, r) \subseteq I_{i} \cap K \subseteq I_{i}=J_{f(i)} \tag{13}
\end{equation*}
$$

Now, since (K, d) is a circulary chainable continuum, there exists a compact r circular chain K_{0}, \ldots, K_{n} in (K, d) which covers K. For each $l \in\{1, \ldots, n\}$ the finite sequence $K_{l}, \ldots, K_{n}, K_{0}, \ldots, K_{l-1}$ is also an r-circular chain which covers K, so we may assume $a \in K_{0}$. Furthermore, without loss of generality, we may assume that $a \notin K_{j}$ for $j \neq 0$. Indeed, we have $a \notin K_{j}$ for each $j \notin\{n, 0,1\}$ since K_{0}, \ldots, K_{n} is a circular chain and so we can replace K_{0}, \ldots, K_{n} by the circular chain $K_{n} \cup K_{0} \cup K_{1}, K_{2}, \ldots, K_{n-1}$ (which is an r-circular chain if K_{0}, \ldots, K_{n} is an $\frac{r}{3}$-circular chain).

Let $p \in\{0, \ldots, n\}$ be such that $x \in K_{p}$. It follows from (13) and $\operatorname{diam}\left(K_{p}\right)<r$ that

$$
\begin{equation*}
K_{p} \subseteq I_{i}=J_{f(i)} \tag{14}
\end{equation*}
$$

Since $r<d(x, a)$, one has $p \neq 0$.
For each $j \in\{0, \ldots, n\}$ we have $\operatorname{diam}\left(K_{j}\right)<\lambda$, so there exists $k_{j} \in\{0, \ldots, m\}$ such that

$$
\begin{equation*}
K_{j} \subseteq J_{a_{k_{j}}} \tag{15}
\end{equation*}
$$

(recall that λ is a Lebesgue number of the open cover (11)).
For each $j \in\{1, \ldots, n\}$ we have $a \notin K_{j}$ and it follows from (9) that

$$
(S \cup L) \cap K_{j}=\emptyset
$$

Also, for all $j, j^{\prime} \in\{0, \ldots, n\}$ such that $1<\left|j-j^{\prime}\right|<n$ we have $K_{j} \cap K_{j^{\prime}}=\emptyset$. Using this, (14), (12), (15) and Theorem 1 we conclude that there are $u_{0}, \ldots, u_{n}, u \in \mathbb{N}$ such that

$$
\begin{aligned}
& K_{j} \subseteq J_{u_{j}}, \text { for each } j \in\{0, \ldots, n\} \\
& S \cup L \subseteq J_{u} \\
& \left(u_{j}, u_{j^{\prime}}\right) \in \mathcal{D} \text { for all } j, j^{\prime} \in\{0, \ldots, n\} \text { such that } 1<\left|j-j^{\prime}\right|<n \\
& \left(u, u_{j}\right) \in \mathcal{D} \text { for each } j \in\{1, \ldots, n\} \\
& \left(u_{p}, f(i)\right) \in \mathcal{C} \text { and }(u, \alpha) \in \mathcal{C}
\end{aligned}
$$

$\left(u_{j}, a_{k_{j}}\right) \in \mathcal{C}$, for each $j \in\{0, \ldots, n\}$.
By (8) we have $S^{\prime}=S \cup L \cup \bigcup_{j=0}^{n} K_{j}$, which implies $S^{\prime} \subseteq J_{u} \cup J_{u_{0}} \cup \cdots \cup J_{u_{n}}$.
Choose $l \in \mathbb{N}$ so that $\left((l)_{0}, \ldots,(l)_{\bar{l}}\right)=\left(u_{0}, \ldots, u_{n}\right)$. Then the following holds:
(i) $S^{\prime} \subseteq \bigcup \mathcal{H}_{l} \cup J_{u}$;
(ii) $S \subseteq J_{u}$;
(iii) \mathcal{H}_{l} is a formal circular chain;
(iv) $\left(u,(l)_{j}\right) \in \mathcal{D}$, for each $j \in\{1, \ldots, \bar{l}\}$;
(v) $1 \leq p \leq \bar{l}$ and $\left((l)_{p}, f(i)\right) \in \mathcal{C}$;
(vi) $(u, \alpha) \in \mathcal{C}$;
(vii) for each $j \in\{0, \ldots, \bar{l}\}$ there exists $j^{\prime} \in\{0, \ldots, m\}$ such that $\left((l)_{j}, a_{j^{\prime}}\right) \in \mathcal{C}$.

Let Ω be the set of all $(i, l, u, p) \in \mathbb{N}^{4}$ such that (i)-(vii) hold. We have proved the following: if $i \in \mathbb{N}$ is such that $I_{i} \cap K \neq \emptyset$, then there exist $l, u, p \in \mathbb{N}$ such that $(i, l, u, p) \in \Omega$.

Conversely, let us suppose that $i \in \mathbb{N}$ is such that there exist $l, u, p \in \mathbb{N}$ such that $(i, l, u, p) \in \Omega$. So statements (i)-(vii) hold. We want to prove that $I_{i} \cap K \neq \emptyset$.

Suppose the opposite, i.e. $I_{i} \cap K=\emptyset$. So $J_{f(i)} \cap K=\emptyset$ and by (v) we have $J_{(l)_{p}} \subseteq J_{f(i)}$. This implies that $J_{(l)_{p}} \cap K=\emptyset$. It follows from (i) that $K \subseteq \bigcup \mathcal{H}_{l} \cup J_{u}$ and therefore

$$
K \subseteq J_{(l)_{0}} \cup \ldots \cup J_{(l)_{p-1}} \cup J_{(l)_{p+1}} \cup \ldots \cup J_{(l)_{\bar{\iota}}} \cup J_{u}
$$

i.e.,

$$
K \subseteq J_{(l)_{p+1}} \cup \ldots \cup J_{(l)_{\tau}} \cup\left(J_{(l)_{0}} \cup J_{u}\right) \cup J_{(l)_{1}} \ldots \cup J_{(l)_{p-1}}
$$

It follows that K is the union of the following sets:
$\left(J_{(l)_{p+1}} \cap K\right), \ldots,\left(J_{(l)_{\bar{\iota}}} \cap K\right),\left(\left(\left(J_{(l)_{0}} \cap K\right) \cup\left(J_{u} \cap K\right)\right),\left(J_{(l)_{1}} \cap K\right), \ldots,\left(J_{(l)_{p-1}} \cap K\right)\right.$.
Let M be the union of the following sets:

$$
\begin{equation*}
\left(J_{(l)_{p+1}} \cap K\right), \ldots,\left(J_{(l)_{\bar{\tau}}} \cap K\right),\left(J_{(l)_{0}} \cap K\right),\left(J_{(l)_{1}} \cap K\right), \ldots,\left(J_{(l)_{p-1}} \cap K\right) \tag{17}
\end{equation*}
$$

By (vi) we have $J_{u} \subseteq J_{\alpha}$, so $J_{u} \cap K \subseteq J_{\alpha} \cap K$ and it follows from (12) that

$$
\begin{equation*}
\operatorname{diam}\left(J_{u} \cap K\right)<\frac{\epsilon_{0}}{3} \tag{18}
\end{equation*}
$$

In the same way, using (vii) and (10), we conclude that

$$
\begin{equation*}
\operatorname{diam}\left(J_{(l)_{j}} \cap K\right)<\frac{\epsilon_{0}}{3} \tag{19}
\end{equation*}
$$

for each $j \in\{0, \ldots, \bar{l}\}$.

We claim that

$$
\begin{equation*}
\left(J_{(l)_{0}} \cap K\right) \cap\left(J_{u} \cap K\right) \neq \emptyset \tag{20}
\end{equation*}
$$

Otherwise, if $J_{u} \cap K$ and $J_{(l)_{0}} \cap K$ are disjoint, then $J_{u} \cap K$ is disjoint with each of the sets in (17) (this follows from (iv)) and thus $J_{u} \cap K$ and M are disjoint. By the definition of M we have $K=M \cup\left(J_{u} \cap K\right)$ and this means that $\left(M, J_{u} \cap K\right)$ is a separation of $K: M$ and $J_{u} \cap K$ are clearly open in $K, J_{u} \cap K$ is nonempty since $a \in J_{u}$ by (ii) and M is nonempty since $M=\emptyset$ implies $K=J_{u} \cap K$ and this, together with (18), implies that there exists a (trivial) open ϵ_{0}-chain in K which covers K which is impossible by the choice of ϵ_{0}.

So (20) holds. Using this, (20), (18) and (19) we conclude that

$$
\begin{equation*}
\operatorname{diam}\left(\left(J_{(l)_{0}} \cap K\right) \cup\left(J_{u} \cap K\right)\right)<\frac{\epsilon_{0}}{3}+\frac{\epsilon_{0}}{3}<\epsilon_{0} \tag{21}
\end{equation*}
$$

Let us consider the finite sequence of sets in (16). Nonadjacent sets in this sequence are disjoint, which follows from (iii) and (iv). These sets are open in K and their diameters, by (19) and (21), are less than ϵ_{0}. It follows from Lemma 1 that there exists an open ϵ_{0}-chain in K which covers K, but this is impossible by the choice of ϵ_{0}.

Hence, $I_{i} \cap K \neq \emptyset$.
We have proved the following:

$$
\begin{equation*}
I_{i} \cap K \neq \emptyset \Leftrightarrow \text { there exist } l, u, p \in \mathbb{N} \text { such that }(i, l, u, p) \in \Omega \tag{22}
\end{equation*}
$$

It is not hard to conclude that Ω is a c.e. set (see e.g. the proofs of propositions 32 and 34 in [12]). Now (22) implies that the set $\left\{i \in \mathbb{N} \mid I_{i} \cap K \neq \emptyset\right\}$ is c.e. and thus K is a c.e. set in $\left(X, \mathcal{T},(I)_{i}\right)$.

The following result generalizes both Proposition 5 and Proposition 7.
Theorem 2. Let $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ be a computable topological space and let $S \subseteq X$ be a computable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. Suppose $\left(K_{0},\left\{a_{0}, b_{0}\right\}\right), \ldots\left(K_{n},\left\{a_{n}, b_{n}\right\}\right)$ is a finite sequence of pairs, where each K_{i}, as a subspace of (X, \mathcal{T}), is either a continuum chainable from a_{i} to b_{i}, where $a_{i}, b_{i} \in K_{i}$ are such that $a_{i} \neq b_{i}$, or a continuum which is circulary chainable, but not chainable, where $a_{i}, b_{i} \in K_{i}$ are such that $a_{i}=b_{i}$.

Suppose the following holds:
(i) $K_{i} \cap S=\left\{a_{i}, b_{i}\right\}$ for each $i \in\{0, \ldots, n\}$;
(ii) $K_{i} \cap K_{j} \subseteq S$ for all $i, j \in\{0, \ldots, n\}$ such that $i \neq j$.

Let

$$
T=S \cup K_{0} \cup \cdots \cup K_{n}
$$

See Figure 5. Suppose T is a semicomputable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. Then T is computable.

Figure 5: The set T : the grey set is S.
Proof. Let $i \in\{0, \ldots, n\}$. Let

$$
L=\bigcup_{j \neq i} K_{j} .
$$

Then $T=S \cup L \cup K_{i}$ and so we have that S and $T=S \cup L \cup K_{i}$ are semicomputable sets. It follows from (i) and (ii) that $L \cap K_{i} \subseteq\left\{a_{i}, b_{i}\right\}$ and this, together with (i) and propositions 5 and 7 , implies that the set K_{i} is c.e. in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

Therefore T, as a finite union of c.e. sets, is also a c.e. set. Together with the fact that T is semicomputable, T is computable.

Let X be a topological space and let \mathcal{F} be a partition of the set X. Let $p: X \rightarrow \mathcal{F}$ be a (unique) function such that $x \in p(x)$ for each $x \in X$ (such a p will be called the quotient map). We topologize \mathcal{F} by declaring that $V \subseteq \mathcal{F}$ is open if $p^{-1}(V)$ is open in X. This topology is called the quotient topology and \mathcal{F}, with this topology, is called a quotient space of X. Clearly, $p: X \rightarrow \mathcal{F}$ is a continuous surjection.

Remark 2. The following facts are well-known (see e.g. [21]).
(i) Let \mathcal{F} be the partition of $[0,1]$ given by $\mathcal{F}=\{\{x\} \mid 0<x<1\} \cup\{\{0,1\}\}$. If we take the Euclidean topology on $[0,1]$ and the quotient topology on \mathcal{F}, then \mathcal{F} is homeomorphic to the unit circle S^{1}.
(ii) Let X and Y be topological spaces such that X is compact and Y is Hausdorff. Let $f: X \rightarrow Y$ be a continuous surjection. Let $X / f=\left\{f^{-1}(\{y\}) \mid y \in Y\right\}$. Then X / f (the given quotient topology) and Y are homeomorphic.

Suppose A and B are topological spaces, C is a subspace of B and $f: C \rightarrow A$ is a function. Let us consider the topological space $A \sqcup B$ - the disjoint union of A and B, i.e., $A \sqcup B=(A \times\{1\}) \cup(B \times\{2\})$ (we identify A with $A \times\{1\}$ and B with $B \times\{2\}$), the topology on $A \sqcup B$ given by $U \subseteq A \sqcup B$ is open if $U \cap A$ is open in A and $U \cap B$ is open in B.

We have the partition \mathcal{F} of $A \sqcup B$ given by

$$
\mathcal{F}=\{\{a\} \mid a \in A \backslash f(C)\} \cup\left\{\{a\} \cup f^{-1}(\{a\}) \mid a \in f(C)\right\} \cup\{\{b\} \mid b \in B \backslash C\} .
$$

Then \mathcal{F}, together with the quotient topology, is called an adjunction space obtained by adjoining A and B by way of f. This adjunction space is denoted by $A \cup_{f} B$.

Computability of sets with attached arcs
Example 3. Let X be a Hausdorff space and let A, B and C be compact sets in X such that $A \cap B=C$. Let $f: C \rightarrow A$ be defined by $f(x)=x$. Then $A \cup_{f} B$ is homeomorphic to $A \cup B$.

Indeed, we have the obvious function $g: A \sqcup B \rightarrow A \cup B$ and we have that $(A \sqcup B) / g$ and $A \cup B$ are homeomorphic by Remark 2. However, $(A \sqcup B) / g=A \cup_{f} B$.

Remark 3. If A and B are topological spaces, C is a closed subspace of B and $f: C \rightarrow A$ is a continuous function, we can identify A with an obvious subspace of $A \cup_{f} B$: this subspace is the image of A by the composition

$$
A \xrightarrow{i} A \sqcup B \xrightarrow{p} A \cup_{f} B,
$$

where i is the inclusion, and p the quotient map. It is not hard to check (see [21]) that this subspace is actually homeomorphic to A.

Suppose $n \in \mathbb{N}$ and I_{0}, \ldots, I_{n} is the finite sequence of topological spaces defined by $I_{i}=[0,1]$ for each $i \in\{0, \ldots, n\}$. For $i \in\{0, \ldots, n\}$ let $\partial I_{i}=\{0,1\}$. We have the subspace $\partial I_{0} \sqcup \ldots \sqcup \partial I_{n}$ of the disjoint union $I_{0} \sqcup \ldots \sqcup I_{n}$.

Let A be a topological space and let $f: \partial I_{0} \sqcup \ldots \sqcup \partial I_{n} \rightarrow A$ be any function. Consider the adjunction space

$$
\begin{equation*}
A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right) \tag{23}
\end{equation*}
$$

Suppose A has a computable type. Does (23) then has a computable type? The following simple example shows that in general the answer is negative.

Example 4. Let $A=\{0,1\}$. Then A has a computable type (see Proposition 2). Let $f:\{0,1\} \rightarrow A$ be the identity and let us consider the adjunction space $A \cup_{f}$ $[0,1]$. By Example $3 A \cup_{f}[0,1]$ is homeomorphic to $[0,1]$ and $[0,1]$ does not have a computable type (recall that there exists $\gamma>0$ such that $[0, \gamma]$ is semicomputable but not computable). So $A \cup_{f}[0,1]$ does not have a computable type.

Nevertheless, we have the following result.
Theorem 3. Let A be a topological space, let I_{0}, \ldots, I_{n} be such that $I_{i}=[0,1]$ for each $i \in\{0, \ldots, n\}$ and let $f: \partial I_{0} \sqcup \ldots \sqcup \partial I_{n} \rightarrow A$ be a function. Suppose A has a computable type. Then

$$
\left(A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right), A\right)
$$

has a computable type (where A is identified with a subspace of $A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ as in Remark 3).

Proof. Suppose $\left(X, \mathcal{T},\left(I_{i}\right)\right)$ is a computable topological space and T and S are semicomputable sets in this space such that there exists a homeomorphism $g: A \cup_{f}$ $\left(I_{0} \sqcup \ldots \sqcup I_{n}\right) \rightarrow T$ which maps A to S. More precisely, we have $g(p(i(A))=S$, where $i: A \rightarrow A \sqcup\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ is the inclusion and $p: A \sqcup\left(I_{0} \sqcup \ldots \sqcup I_{n}\right) \rightarrow A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ is the quotient map. We will identify A and I_{i} with corresponding images by inclusions

$$
A \rightarrow A \sqcup\left(I_{0} \sqcup \ldots \sqcup I_{n}\right) \text { and } I_{i} \rightarrow A \sqcup\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)
$$

We want to prove that T is a computable set in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$. In order to apply Theorem 2, we have to show that T "looks like" as in Figure 5. For that purpose, we have to show that $A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ "looks like" as in Figure 5 (since g is homeomorphism).

We have that T is a Hausdorff space (as a subspace of (X, \mathcal{T})), so $A \cup_{f}\left(I_{0} \sqcup \ldots . \sqcup I_{n}\right)$ is also a Hausdorff space. Obviously, $A \sqcup\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ is compact.

Let $i \in\{0, \ldots, n\}$. Then $p\left(I_{i}\right)$ is compact in $A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$. Since p is a surjection, we have

$$
A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)=p(A) \cup p\left(I_{1}\right) \cup \cdots \cup p\left(I_{n}\right)
$$

By the definition of an adjunction space we have that p is injective on $I_{i} \backslash\{1\}$ and p maps the points $0,1 \in I_{i}$ to the same point in the adjunction space $A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ if and only if $f(0)=f(1)$. So the function

$$
\left.p\right|_{I_{i}}: I_{i} \rightarrow p\left(I_{i}\right)
$$

is a continuous surjection which is either injective (in particular, $p(0) \neq p(1)$) or it is injective on $I_{i} \backslash\{1\}$ and $p(0)=p(1)$. In the first case, we have that $\left.p\right|_{I_{i}}$ is a homeomorphism (since I_{i} is compact and $p\left(I_{i}\right)$ is Hausdorff), so $p\left(I_{i}\right)$ is homeomorphic to $[0,1]$. In the second case, it follows from Remark 2 that $p\left(I_{i}\right)$ is homeomorphic to S^{1}. Hence, $p\left(I_{i}\right)$ is either an arc or a topological circle.

The function f is continuous since $\partial I_{0} \sqcup \ldots \sqcup \partial I_{n}$ is a discrete space and this space is also closed in $I_{0} \sqcup \ldots \sqcup I_{n}$. So, as noted earlier, A and $p(A)$ are homeomorphic. Furthermore, $p(A)$ and S are homeomorphic (the homeomorphism is a restriction of $g)$ and it follows that A and S are homeomorphic. This, together with the fact that A has a computable type, implies that S is computable in $\left(X, \mathcal{T},\left(I_{i}\right)\right)$.

We have that $A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right)$ is the union of the sets $p(A), p\left(I_{0}\right), \ldots, p\left(I_{n}\right)$. For each $i \in\{0, \ldots, n\}$ there exist $x_{i}, y_{i} \in p(A)$ such that $p\left(I_{i}\right) \cap p(A)=\left\{x_{i}, y_{i}\right\}$ and $p\left(I_{i}\right)$ is either an arc with endpoints x_{i} and $y_{i}, x_{i} \neq y_{i}$, or $p\left(I_{i}\right)$ is a topological circle and $x_{i}=y_{i}$. Furthermore, if $i, j \in\{0, \ldots, n\}$ are such that $i \neq j$, then $p\left(I_{i}\right) \cap p\left(I_{j}\right) \subseteq p(A)$.

From this and the fact that $g: A \cup_{f}\left(I_{0} \sqcup \ldots \sqcup I_{n}\right) \rightarrow T$ is a homeomorphism, we conclude that for the finite sequence $\left(K_{i},\left\{a_{i}, b_{i}\right\}\right)_{0 \leq i \leq n}$ defined by $K_{i}=g\left(p\left(I_{i}\right)\right)$, $a_{i}=g\left(x_{i}\right), b_{i}=g\left(y_{i}\right)$ we have $T=S \cup K_{0} \cup \cdots \cup K_{n}$ and the assumptions of Theorem 2 hold. Thus, by Theorem 2, T is computable.

References

[1] D. E. Amir, M. Hoyrup, Computability of finite simplicial complexes, in: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), (M. Bojańczyk et al., Eds.), Dagstuhl Publishing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2022, 1-16.
[2] V. Brattka, Plottable real number functions and the computable graph theorem, SIAM J. Comput. 38(2008), 303-328.
[3] V. Brattka, G. Presser, Computability on subsets of metric spaces, Theor. Comput. Sci. 305(2003), 43-76.
[4] V. Brattka, K. Weihrauch, Computability on subsets of Euclidean space I: Closed and compact subsets, Theor. Comput. Sci. 219(1999), 65-93.
[5] C. E. Burgess, Chainable continua and indecomposability, Pac. J. Math. 9(1959), 653-659.
[6] K. Burnik, Z. Iljazović, Computability of 1-manifolds, Log. Methods Comput. Sci. 10(2014), 1-28.
[7] V. Čačić, M. Horvat, Z. Iljazović, Computable subcontinua of semicomputable chainable Hausdorff continua, Theor. Comput. Sci. 892(2021), 155-169.
[8] M. Čelar, Z. Iljazović, Computability of products of chainable continua, Theory Comput. Syst. 65(2021), 410-427.
[9] M. Čelar, Z. Iljazović, Computability of glued manifolds, J. Log. Comput. 32(2022), 65-97.
[10] E. ČIčKović, Z. Iljazović, L. Validžı́́, Chainable and circularly chainable semicomputable sets in computable topological spaces, Arch. Math. Log. 58(2019), 885-897.
[11] M. Horvat, Z. Iljazović, B. Pažek, Computability of pseudo-cubes, Ann. Pure Appl. Log. 171(2020), 1-21.
[12] Z. Ildazović, Chainable and circularly chainable co-c.e. sets in computable metric spaces, J Univers. Comput Sci. 15(2009), 1206-1235.
[13] Z. Ildazović, Co-c.e. spheres and cells in computable metric spaces, Log. Methods Comput. Sci. 7 (2011), 1-21.
[14] Z. Iljazović, Compact manifolds with computable boundaries, Log. Methods Comput. Sci. 9(2013), 1-22.
[15] Z. Ildazović, Computability of graphs, Math. Log. Q. 66(2020), 51-64.
[16] Z. Iljazović, B. PAŽEK, Computable intersection points, Computability 7(2018), 5799.
[17] Z. Iljazović, B. Pažek, Warsaw discs and semicomputability, Topol. Appl. 239(2018), 308-323.
[18] Z. Iljazović, I. Sušić, Semicomputable manifolds in computable topological spaces, J. Complex. 45(2018), 83-114.
[19] T. Kihara, Incomputability of simply connected planar continua, Computability 1(2012), 131-152.
[20] J.S. Miller, Effectiveness for embedded spheres and balls, Electron. Notes Theor. Comput. Sci. 66(2002), 127-138.
[21] J. R. Munkres, Topology, Featured Titles for Topology, Prentice Hall, New Jersey, 2000.
[22] M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer, Berlin, 1989.
[23] E. Specker, Der Satz vom Maximum in der rekursiven Analysis, in: Constructivity in Mathematics, (A. Heyting, Ed.), North Holland Publ. Comp., Amsterdam, 1959, 254-265.
[24] H. Tanaka, On a Π_{1}^{0} set of positive measure, Nagoya Math. J. 38(1970), 139-144.
[25] A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc. 42(1936), 230-265.
[26] K. Weihrauch, Computability on computable metric spaces, Theor. Comput. Sci. 113(1993), 191-210.
[27] K. Weihrauch, Computable Analysis, Springer, Berlin, 2000.
[28] K. Weihrauch, Computable separation in topology, from T_{0} to T_{2}, J Univers. Comput Sci. 16(2010), 2733-2753.
[29] K. Weihrauch, T. Grubba, Elementary computable topology, J Univers. Comput Sci. 15(2009), 1381-1422.

