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A characterization of maps of bounded compression
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Abstract. A measurable map between measure spaces is shown to have bounded com-
pression if and only if its image via the measure-algebra functor is Lipschitz-continuous
w.r.t. the measure-algebra distances. This provides a natural interpretation of maps of
bounded compression/deformation by means of the measure-algebra functor and corrobo-
rates the assertion that maps of bounded deformation are a natural class of morphisms for
the category of complete and separable metric measure spaces.
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1. Introduction

Let ϕ : (X1,Σ1, µ1) → (X2,Σ2, µ2) be a measurable map between two measure
spaces, and denote by ϕ]µ1 :=µ1 ◦ ϕ−1 the push-forward measure of µ1 via ϕ. We
say that ϕ is inverse-nil-preserving if

ϕ]µ1 � µ2 ,

and that ϕ has bounded compression if there exists a constant C = Cϕ ∈ (0,∞) such
that

ϕ]µ1 ≤ Cµ2 on Σ2 .

We call such infimal constant the compression of ϕ. Maps of bounded compres-
sion —in this generality firstly considered by N. Gigli in [3]— have found numerous
applications in metric-measure-space analysis, where they play a key role in several
important definitions.

Notably, they are instrumental to the definition of the minimal weak upper gra-
dient of a real-valued function on a metric measure space [1], and of pull-back of
normed modules [3], also cf. [4, Chapter 3].

In spite of their importance, it seems, however, that maps of bounded compres-
sion have not been much investigated as a measure-theoretical construct in their
own right, i.e. when no distance is involved. Here, we fill this gap by unveiling the
meaning, significance, and naturality of the notion of bounded compression in the
category of measure algebras. Our main result may be informally stated as follows:
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Theorem 1. A map has bounded compression if and only if its image via the
measure-algebra functor is Lipschitz-continuous with respect to the measure-algebra
distances.

The significance of maps of bounded compression in the category of measure
algebras is thus a consequence of the naturality (in the non-technical sense) of the
measure-algebra functor.

Let us now recall the necessary definitions, following [2, Vol. III].

1.1. Some categories
We say that C is a category of objects O if the objects ob(C) of C coincide with O
and the morphisms hom(C) of C are unassigned. Let

• USp be the category of uniform spaces and uniformly continuous maps;

• Met be the category of complete and separable metric spaces with all uniformly
continuous maps as morphisms;

• Metb be the category of complete and separable metric spaces with all Lipschitz-
continuous maps as morphisms;

• Met1 be the category of complete and separable metric spaces with all short‡
maps as morphisms;

• Meas be a category of triples X :=(X,Σ, µ) with (X,Σ) a standard Borel space
and µ a σ-finite measure on (X,Σ), and morphisms A := hom(Meas). We
require each ϕ ∈ hom(X1,X2) to be a measurable map ϕ : X1 → X2. We
write Ainp for the subclass of A consisting of inverse-nil-preserving maps.

1.2. Measure algebras
For X ∈ ob(Meas), let (A, µ̄) be the measure algebra of (Σ, µ), that is, the Boolean
algebra of equivalence classes of sets in Σ modulo µ-null sets, endowed with the
quotient measure functional µ̄, e.g. [2, 321H-I]. Whenever no confusion may arise,
we suppress µ̄ from the notation, just writing A for the measure algebra of X. It is
always possible to endow A with a uniformity of pseudo-metrics U , turning it into
a uniform space on which the standard Boolean algebra operations are uniformly
continuous, e.g. [2, 323A(b), 323B]. (For uniform spaces and uniformities, see e.g. [2,
3A4].)

Consider now a morphism ϕ ∈ hom(X1,X2). We write ϕ ∈ hominp(X1,X2)
to indicate that ϕ is additionally inverse-nil-preserving. In this case, the map ϕ
descends to a Boolean homomorphism ϕ• : A2 → A1, e.g. [2, 324B], defined by

ϕ• : [A]2 7→
[
ϕ−1(A)

]
1 . (1)

‡We say that a map is short if it is Lipschitz-continuous with Lipschitz constant less than or equal
to 1.
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In the next proposition, we summarize a virtually well-known construction of the
measure-algebra functor Alg on Meas defined by

Alg : X 7−→ (A,U ) and Alg : ϕ 7−→ ϕ• .

Proposition 1. The following assertions are equivalent:

(i) every morphism of Meas is inverse-nil-preserving (i.e., A = Ainp);

(ii) Alg is a (contravariant) functor on Meas with values in USp.

Remark 1. The assertion in Proposition 1 is non-quantitative and may in fact
be rephrased without any reference to measures. Indeed, we might have alterna-
tively stated it for a category with objects (X,Σ,N ) with (X,Σ) a standard Borel
space, and N a σ-ideal of Σ —playing the role of the σ-ideal Nµ of µ-null sets
of a σ-finite measure µ on (X,Σ). This motivated our choice of terminology for
inverse-nil-preserving maps, since ϕ : X1 → X2 is inverse-nil-preserving precisely
when ϕ−1(N2) ⊂ N1.

Under the additional datum of a uniform structure on objects of Meas, Proposi-
tion 1 may be used to characterize uniformly continuous inverse-nil-preserving maps
via Alg and a forgetful functor to USp. Indeed, let UMeas be a category of complete
and separable uniform spaces (X,U ) endowed with σ-finite Borel measures µ, and
denote by f the map on UMeas defined on objects by f : (X,U , µ) → (X,U ) ∈
ob(USp) and preserving morphisms. Then,

Corollary 1. The following assertions are equivalent:

(i) every morphism of UMeas is uniformly continuous and inverse-nil-preserving;

(ii) Alg and f are functors on UMeas with values in USp.

1.3. Main result
Relying on maps of bounded compression, we now turn to a quantitative version of
Proposition 1. Let A be the measure algebra of X ∈ ob(Meas). Write Afin for the
ideal of A consisting of elements with a finite µ̄-measure, and note that the quantity

ρ(a, b) := µ̄(a4b) , a, b ∈ A ,

defines a distance ρ on Afin, e.g. [2, 323A(e)].
In order to state our main result, we define a map alg on Meas by

alg : X 7−→ (Afin, ρ) and alg : ϕ 7−→ ϕ• .

Theorem 2. The following assertions are equivalent:

(i) every morphism of Meas has bounded compression;

(ii) alg is a functor on Meas with values in Metb.
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1.4. A natural choice of morphisms for metric measure spaces
After the work of J.R. Isbell [5], the category of metric spaces is usually defined to
have all short maps as morphisms (giving rise to Met1 in §1.1). This is essentially the
same as choosing as morphism the class of all Lipschitz-continuous maps (giving rise
to Metb), as morphisms in that any Lipschitz-continuous map may be turned into
a short map by linearly rescaling distances, and such rescaling has nice categorical
properties. Occasionally, a larger class of uniformly continuous maps is also chosen
as the class of morphisms of a category of metric spaces (giving rise to Met) since
uniform continuity is a minimal requirement in discussing the preservation of, e.g.,
completeness. This ambiguity for the choice of morphisms in a category of metric
measure spaces may be resolved by introducing some additional structure. Below, we
show that when each (X, d) ∈ ob(Metb) (which is the same as ob(Met) and ob(Met1))
is further endowed with a σ-finite Borel measure, then there is a natural choice of
morphisms for the result category, namely all Lipschitz-continuous maps of bounded
compression.

Indeed, let MetMeas be a category of triples X :=(X, d, µ) with (X, d) a complete
and separable metric space and µ a σ-finite Borel measure on (X, d), and mor-
phisms B := hom(MetMeas) with ϕ ∈ hom(X1,X2) Borel measurable and inverse-
nil-preserving. Denote by B the Borel σ-algebra of X ∈ ob(MetMeas), and note
that (X,B) is a standard Borel space since (X, d) is complete and separable. Thus,
g : X 7→ (X,B, µ) maps ob(MetMeas) → ob(Meas) and allows us to identify mor-
phisms in B as morphisms between objects of Meas. Under this identification,
we may therefore compare the morphisms B of MetMeas with those A of Meas.
If B ⊂ A , then g is a (forgetful) functor MetMeas → Meas and it is further essen-
tially surjective since every (X,Σ, µ) ∈ ob(Meas) arises as the standard Borel σ-finite
measure space associated to an object (X, d, µ) by definition of standard Borel space
and forgetting the assignment of the distance d on X. Thus, if B = A , the functor g
is an equivalence of categories. In the following, we shall therefore —with no loss of
generality— deal with a category MetMeas with same morphisms B = A as Meas.

Denote now by f the forgetful functor from MetMeas to a category of metric
spaces, mapping X to (X, d) and preserving morphisms. Clearly, f : ob(MetMeas)→
ob(Metb), and f : A → hom(Metb) if and only if A consists of Lipschitz-continuous
maps. After [3, Definition 2.4.1], we say that a map ϕ : X1 → X2 has bounded
deformation if it is both Lipschitz and of bounded compression. Again, in light of the
equivalence of MetMeas and Meas, we may as well regard alg as a map on MetMeas.
Thus, we also have:

Corollary 2. The following assertions are equivalent:

(i) every morphism of MetMeas has bounded deformation;

(ii) alg is a functor on MetMeas and both f and alg take values in Metb.

We note that the requirement of ϕ ∈ A having bounded compression competes
with that of ϕ being Lipschitz. For instance, a constant map x is ‘as much Lipschitz
as possible’ (since its Lipschitz constant is zero), but its compression is ‘maximally
unbounded’ (since x]µ = (µX)δx is a multiple of a Dirac mass). More precisely —as
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we will show in the proof of Theorem 2— a map ϕ : (X1, µ1)→ (X2, µ2) has compres-
sion C if and only if ϕ• : (A2, µ̄2)→ (A1, µ̄1) is C-Lipschitz. The above competition
is thus a consequence of the fact that f is covariant, while alg is contravariant.

Informally, Corollary 2 resolves the competition between being Lipschitz-continuous
and having bounded compression by showing that, when a category MetMeas can
be understood as a subcategory of Metb via the alg functor, then all maps have
bounded compression, and thus that maps of bounded deformation are a natural
class of morphisms for a category with objects ob(MetMeas).

2. Proofs

Proof of Proposition 1. (ii) =⇒ (i) It suffices to note that, by [2, 324B], the Boolean
homomorphism Alg(ϕ) :=ϕ• is well-defined (if and) only if ϕ is inverse-nil-preserving.

(i) =⇒ (ii) As discussed above, Alg : ob(Meas) → ob(USp). Thus, since A =
Ainp by assumption, then Alg is a functor on Meas by [2, 324C(c), 324D]. It remains
to show that Alg : Ainp → hom(USp), i.e. that ϕ• : A2 → A1 is U2/U1-uniformly
continuous for every ϕ ∈ hominp(X1,X2). To this end, we argue as follows. Since
every X ∈ ob(Meas) is a σ-finite standard Borel space, its measure algebra satisfies
the countable chain condition [2, 316A] by combining [2, 322B(c) and 322G]. In
light of the countable chain condition, the sequential order-continuity of a Boolean
homomorphism on A coincides with its order-continuity by [2, 316F(d)], and in turn
with its uniform continuity by [2, 324F(a)]. Therefore, it suffices to show that ϕ• is
sequentially order-continuous, which is shown in [2, 324B].

Proof of Theorem 2. We show that alg: ob(Meas)→ob(Metb) and alg:A→hom(Metb)
if and only if every ϕ ∈ A has bounded compression.

(i) =⇒ (ii). For every X ∈ ob(Meas) the algebra (Afin, ρ) is a complete metric
space by [2, 323X(g)]. Note that, since µ is a σ-finite measure on a standard Borel
space, L1(µ) is separable, e.g. [2, 365X(p)]. Again by [2, 323X(g)], the map χ : Afin →
L0(µ) defined by χ([A]) = [1A]µ is an isometry of (Afin, ρ) into L1(µ). Thus, (Afin, ρ)
is separable, (isometric to) a subset of the separable metric space L1(µ). As a
consequence, alg(X) = (Afin, ρ) ∈ ob(Metb) for every X ∈ ob(Meas).

Now, let ϕ : X1 → X2 have compression C. Then, for all A ∈ Σ2,

µ̄1ϕ
• [A]2 = (µ1 ◦ ϕ−1)A = ϕ]µ1A ≤ Cµ2A = Cµ̄2 [A]2 ,

which shows that ϕ•(Afin
2 ) ⊂ Afin

1 , i.e. that alg(ϕ) : Afin
2 → Afin

1 is a map between the
right objects. Furthermore, for all A,B ∈ Σ2,

ρ1
(
ϕ• [A]2 , ϕ

• [B]2
)

= µ̄1
(
ϕ• [A]24ϕ

• [B]2
)

= µ1
(
ϕ−1(A)4ϕ−1(B)

)
= ϕ]µ1(A4B)

≤ Cµ2(A4B) = Cµ̄2([A]24 [B]2) = Cρ2([A]2 , [B]2) .

Thus with all other necessary verifications being straightforward, alg is indeed a
Metb-valued functor.

(ii) =⇒ (i). Let ϕ ∈ A . Since alg is a functor on MetMeas with values in Metb,
then ϕ• ∈ hom(Afin

2 ,Afin
1 ) is a ρ2/ρ1 Lipschitz map. Let C be the Lipschitz constant
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of ϕ•. Then for all A,B ∈ Σ2,

ϕ]µ1(A4B) = µ1
(
ϕ−1(A)4ϕ−1(B)

)
= µ̄1

(
ϕ• [A]24ϕ

• [B]2
)

= ρ1
(
ϕ• [A]2 , ϕ

• [B]2
)

≤ Cρ2([A]2 , [B]2) = Cµ̄2([A]24 [B]2) = Cµ2(A4B) ,

and choosing B = ∅ (i.e. A4B = A) shows that ϕ has compression C.
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