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Abstract. We consider real univariate degree d real-rooted polynomials with non-vanishing
coefficients. Descartes’ rule of signs implies that such a polynomial has c̃ positive and p̃
negative roots counted with multiplicity, where c̃ and p̃ are the numbers of sign changes
and sign preservations in the sequence of its coefficients, c̃ + p̃ = d. For d = 6, we give
an exhaustive answer to the question: When the moduli of all 6 roots are distinct and
arranged on the real positive half-axis, in which positions can the moduli of the negative
roots depend

AMS subject classifications: 26C10, 30C15

Keywords: real polynomial in one variable, hyperbolic polynomial, sign pattern, Descartes’
rule of signs

1. Introduction

A real univariate polynomial is hyperbolic if all its roots are real. We consider
hyperbolic polynomials with all coefficients non-vanishing. For such a degree d
polynomial, the classical Descartes’ rule of signs implies that the number of its
positive (resp. negative) roots counted with multiplicity is equal to the number c̃
of sign changes (resp. p̃ of sign preservations) in the sequence of its coefficients,
see [1, 2, 3, 4, 6, 8, 9, 17, 18]; c̃ + p̃ = d. This fact, however, does not answer the
following more subtle question:

Question 1. For fixed degree d, consider the set of hyperbolic polynomials with given
signs of the coefficients and with distinct moduli of roots. Suppose that these moduli
are arranged on the real positive half-axis. In which positions can the moduli of the
negative roots depend on the signs of the coefficients?

We give an exhaustive answer to the question for d = 6. For d ≤ 5, its answer
can be found in [15], see Example 1.1 and Section 3 therein. In order to recall some
other results directly related to Question 1 we recall the following definition:
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Definition 1. (1) A real polynomial Q :=
∑d

j=0 qjx
j is said to define the sign

pattern σ(Q) := (sgn(qd), . . ., sgn(q0)). Formally, a sign pattern of length d + 1 is
a string of d+1 signs + and/or −. We operate mainly with sign patterns beginning
with a +. Thus a sign pattern is completely defined by the corresponding change-
preservation pattern (and vice versa), which is a d-vector whose components are the
letters p and c; when qjqj−1 > 0 (resp. qjqj−1 < 0), in the jth position from the
right there is a p (resp. a c).

(2) The order of moduli defined by the roots of a given hyperbolic polynomial Q
is denoted as follows. (The general definition should be clear from this example.)
Suppose that d = 6 and that there are three negative roots −γ3 < −γ2 < −γ1 and
three positive roots α1 < α2 < α3 (so c̃ = p̃ = 3), where

α1 < γ1 < γ2 < α2 < γ3 < α3.

Then we say that the roots define the order of moduli PNNPNP , i. e. the letters
P and N denote the relative positions of the moduli of positive and negative roots.

(3) For a given degree d, a couple (change-preservation pattern, order of moduli)
(or a couple for short) is compatible if the number of letters c (resp. p) of the
former is equal to the number of letters P (resp. N) of the latter. A compatible
couple is realizable if there exists a hyperbolic polynomial whose coefficients (resp.
moduli of roots) define the change-preservation pattern (resp. the order of moduli)
of the couple.

We can give now a more precise formulation of Question 1:

Question 2. For a given degree d, which compatible couples are realizable?

There are two extremal situations with regard to Question 2.

Definition 2. For a given change-preservation pattern (or, equivalently, a sign
pattern) one defines the corresponding canonical order of moduli as follows. One
reads the pattern from the right and one writes the order from the left. To each
letter c (resp. p) one puts in correspondence the letter P (resp. N).

Each sign pattern (or equivalently a change-preservation pattern) is realizable
with its corresponding canonical order, see [11, Proposition 1].

Definition 3. A change-preservation pattern (or a sign pattern) is canonical if it
is realizable only with the corresponding canonical order of moduli.

It is shown in [14, Theorem 7] that a sign pattern is canonical if and only if
it does not contain any of the 4-tuples (+,+,−,−), (+,−,−,+), (−,−,+,+) or
(−,+,+,−). Hence, a change-preservation pattern is canonical if and only if it
contains no string cpc or pcp. Canonical sign patterns are exceptional in the sense
that the ratio of their number and the number of all sign patterns tends to 0 as d
tends to ∞, see [14, Proposition 10].

The second extremal situation is the one of rigid orders of moduli.

Definition 4. An order of moduli is rigid if all hyperbolic polynomials with this
order of moduli define one and the same sign pattern.
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It is proved that (see [12, Theorem 8]) rigid are exactly the orders of moduli of
the form PNPNPN · · · , NPNPNP · · · , PP · · ·P or NN · · ·N . The corresponding
change-preservation patterns are of the form · · · pcpcpc, · · · cpcpcp, cc · · · c or pp · · · p.
Hence, rigid orders of moduli are also exceptional.

We introduce now a Z2 × Z2-action:

Definition 5. (1) For a given degree d, there are two commuting involutions which
act on the set of couples. These are

im : Q(x) 7→ (−1)dQ(−x) and ir : Q(x) 7→ xdQ(1/x)/Q(0).

The role of the factors (−1)d and 1/Q(0) is to preserve the set of monic polynomials.
The involution im exchanges the letters P and N in the order of moduli, the letters c
and p in the change-preservation pattern and the quantities c̃ and p̃. The involution
ir reads orders, patterns and polynomials (modulo the factor 1/Q(0)) from the right.
It preserves the quantities c̃ and p̃.

(2) The orbits of couples under the Z2 ×Z2-action are of length 4 or 2. One can
also consider orbits of only sign patterns or of orders of moduli.

Remark 1. (1) For any given sign pattern σ, its orbit can be of length 2 only if
either ir(σ) = σ or irim(σ) = σ. Indeed, one always has im(σ) 6= σ. All couples of
a given orbit are simultaneously (non-)realizable.

(2) In the text, we use the following notation: if a sign pattern consists of m1

pluses followed by m2 minuses followed by m3 pluses etc., then we denote this sign
pattern by Σm1,m2,m3,.... For d = 6, an example of an orbit of a sign pattern of
length 2 is the one of Σ3,1,3 with c̃ = 2, p̃ = 4 and ir(Σ3,1,3) = Σ3,1,3. The other
sign pattern of the orbit is im(Σ3,1,3) = imir(Σ3,1,3) = Σ1,1,3,1,1, with c̃ = 4, p̃ = 2.

The involution im exchanging the quantities c̃ and p̃ when studying the realiz-
ability of the couples with d = 6, it suffices to consider the cases c̃ = 0, 1, 2 and
3. The first three of them have been thoroughly analyzed in [16] (we recall the
corresponding results in Section 2), so we concentrate on the case c̃ = 3.

Lemma 1. For d = 6, there are 7 orbits of sign patterns with three sign changes:

A : {Σ3,1,2,1, Σ1,2,1,3, Σ2,3,1,1, Σ1,1,3,2} , D : {Σ4,1,1,1, Σ1,1,1,4},
B : {Σ1,4,1,1, Σ1,1,4,1, Σ3,1,1,2, Σ2,1,1,3}, E : {Σ2,2,2,1, Σ1,2,2,2},
C : {Σ2,1,2,2, Σ2,2,1,2, Σ1,2,3,1, Σ1,3,2,1}, F : {Σ3,2,1,1, Σ1,1,2,3}

and G : {Σ1,3,1,2, Σ2,1,3,1}.

Out of these, the canonical are exactly B, D and G.

Remark 2. (1) For σ = Σ4,1,1,1, Σ2,2,2,1, Σ3,2,1,1 and Σ1,3,1,2, one has imir(σ) = σ.

(2) The canonical orbits B, D and G give rise to the following realizable couples
and only to them:
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B : (Σ1,4,1,1, PPNNNP ), (Σ1,1,4,1, PNNNPP ),

(Σ3,1,1,2, NPPPNN) and (Σ2,1,1,3, NNPPPN);

D : (Σ4,1,1,1, PPPNNN) and (Σ1,1,1,4, NNNPPP );

G : (Σ1,3,1,2, NPPNNP ) and (Σ2,1,3,1, PNNPPN).

Proof of Lemma 1. Among the sign patterns of the form Σm1,m2,m3,m4 with m1 +
m2 +m3 +m4 = 7 and c̃ = p̃ = 3, all components mi must be ≤ 4. Hence, there are
exactly four such sign patterns in which exactly one component equals 4 (the other
components equal 1), exactly twelve in which one component equals 3, and exactly
four in which three components equal 2. These are all the 20 sign patterns listed in
the lemma. The last statement of the lemma is checked straightforwardly.

Part (2) of Remark 2 settles the cases B, D and G. Theorem 1 below finishes the
study of realizability of couples with d = 6, c̃ = 3. We remind that by Definition 5
and part (1) of Remark 1 it suffices to give the answer only for one sign pattern from
each of the cases A, C, E and F .

Theorem 1. (1) The sign pattern Σ3,1,2,1 is realizable by and only by the fol-
lowing orders of moduli: PPPNNN , PPNPNN , PPNNPN , PNPPNN , and
NPPPNN .

(2) The sign pattern Σ2,1,2,2 is realizable by and only by the following orders
of moduli: PNNPPN , NPPPNN , NPPNPN , NPPNNP , NPNPPN and
NNPPPN .

(3) The sign pattern Σ2,2,2,1 is not realizable by and only by the following com-
patible orders of moduli: NPNPNP , NPNNPP , NNPPNP , NNPNPP , and
NNNPPP .

(4) The sign pattern Σ3,2,1,1 is realizable by and only by the following orders of
moduli: PPPNNN , PPNPNN , PPNNPN and PNPPNN .

Theorem 1 is proved in Section 3. The method of its proof and some comments
are given in Section 2.

2. Comments and the method of proof of Theorem 1

2.1. Systems of linear differential equations

The characteristic polynomials of linear systems of ordinary differential equations
are often hyperbolic. Consider such a system dX/dt = AX, where A is an n × n-
matrix with real entries. Suppose that all its eigenvalues λ1, . . ., λn are real. This
is true, in particular, for symmetric matrices. Suppose also that they are distinct.
Then any component of any solution is of the form

∑
cje

λjt, cj ∈ R. For a generic
solution, all coefficients cj are non-zero.

If the characteristic polynomial of A defines a canonical sign pattern, then one
knows whether the eigenvalue of the largest modulus is positive or negative. Hence,
one knows (without computing the eigenvalues) whether a generic solution grows
faster in modulus as t → +∞ or as t → −∞.
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2.2. The results for c̃ < 3

We begin by reminding that for d = 6, there is just one change-preservation pattern
with c̃ = 0. This is pppppp and it is realizable with the only compatible order of
moduli NNNNNN .

Notation 1. For d = 6 and c̃ = 1 (resp. c̃ = 2), we denote by u1 and u2 (resp.
u1, u2 and u3) the number of moduli of negative roots belonging to the respective
intervals (0, α1) and (α1,+∞) (resp. to (0, α1), (α1, α2) and (α2,+∞)). For d = 6
and c̃ = 3, we denote by analogy the quantities u1, u2, u3 and u4 with respect
to the intervals (0, α1), (α1, α2), (α2, α3) and (α3,+∞). Example: the order of
moduli NNPNNN corresponds to [u1, u2] = [2, 3], while NPNNPN corresponds
to [u1, u2, u3] = [1, 2, 1] and NPPNNP corresponds to [u1, u2, u3, u4] = [1, 0, 2, 0].
There are 6 couples [u1, u2], u1 + u2 = 5, 15 triples [u1, u2, u3], u1 + u2 + u3 = 4,
and 20 quadruples [u1, u2, u3, u4], u1 + u2 + u3 + u4 = 3.

For d = 6, c̃ = 1, we list the orders of moduli with which the sign patterns
Σm1,m2 , m1 +m2 = 7, are realizable (see [10]):

for 1 ≤ m1 < m2, 0 ≤ u2 ≤ 2m1 − 2;

for 1 ≤ m2 < m1, 0 ≤ u1 ≤ 2m2 − 2.
(1)

For d = 6, c̃ = 2, realizability of couples has been studied in [16]. There are two
cases of canonical sign patterns. The corresponding couples are:

(Σ1,5,1, [0, 4, 0]) and (Σm,1,q, [q − 1, 0,m− 1]), m+ q = 6. (2)

We give the remaining results in a table in which the first column contains the sign
pattern, the second contains the realizable and the third the non-realizable triples
[u1, u2, u3]:

SP Y N

Σ2,4,1 [0, 2, 2], [0, 3, 1], [0, 4, 0] all other cases

Σ3,3,1 [1, 0, 3], [0, 0, 4], [0, 1, 3], all other cases
[0, 2, 2], [0, 3, 1], [0, 4, 0]

Σ4,2,1 [1, 0, 3], [0, 0, 4], [0, 1, 3] all other cases
[0, 2, 2]

Σ2,3,2 all possible cases no cases

Σ3,2,2 all other cases [4, 0, 0], [3, 1, 0]
[2, 2, 0], [1, 3, 0].

2.3. The ratio between the numbers of realizable and all pos-
sible couples

The number of realizable couples with d = 6 and c̃ = 3 can be found using Theorem 1
and Remark 2. It equals

5× 4 + 6× 4 + 15× 2 + 4× 2 + 1× 4 + 1× 2 + 1× 2 = 90.
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These products correspond to the orbits A, C, E, F , B, D and G, respectively. The
second factor corresponds to the number of sign patterns in the given orbit.

At the same time, the number of compatible orders of moduli with 3 letters P
and 3 letters N equals 20. So the number all couples with d = 6 and c̃ = 3 equals

(4 + 4 + 2 + 2 + 4 + 2 + 2)× 20 = 400.

For c̃ = 0 and 6, the only couples K := (Σ7, NNNNNN) and im(K) are realizable.
For c̃ = 1, the numbers of realizable and of all couples are (see (1))

1 + 3 + 5 + 5 + 3 + 1 = 18 and 6× 6 = 36, respectively.

The same numbers apply to the case c̃ = 5 as well (one has to use the involution im).
Factor 6 stands for the number of orders of moduli with c̃ = 1 or 5.

For c̃ = 2 and 4, we use the information at the end of the previous subsection
to find these numbers. The last table shows that there are 4 orbits of sign patterns
of length 4 and 1 of length 2, each with 15 compatible orders of moduli (half of
which correspond to the case c̃ = 2 and the other half to c̃ = 4). This makes
270 couples. To these one has to add the canonical sign patterns (see (2)), which
brings another 6 × 15 = 90 couples with c̃ = 2 and 90 with c̃ = 4. So there are
450 couples, 12 of which are realizable in the case of canonical sign patterns and
3× 4 + 6× 4 + 4× 4 + 15× 2 + 11× 4 = 126 in other cases.

Thus the ratio between the numbers of realizable and all couples is

r(6) = (90 + 2 + 36 + (12 + 126))/(400 + 2 + 72 + 450) = 19/66.

The numbers r(d), d ≤ 5 are computed in [15]. For d ≤ 6, the sequence of numbers
r(d) looks like this: 1, 2/3, 3/5, 3/7, 47/126, 19/66. One could conjecture that this
sequence (defined for d ∈ N∗) is decreasing. The sequence r(d+ 1)/r(d), d = 1, . . .,
5, equals

2/3 = 0.66 . . . , 9/10 = 0.9, 5/7 = 0.71 . . . , 47/54 = 0.87 . . . , 399/517 = 0.77 . . . .

It seems that when the ratio r(d + 1)/r(d) is defined for d ∈ N∗, this gives two
adjacent sequences.

2.4. The methods used in the proof of Theorem 1

We use four methods in the proof of Theorem 1. Three of them can be qualified as
analytic and the fourth as computational. In the next subsection, we explain how
realizability of certain couples for degree d+1 hyperbolic polynomials can be deduced
from realizability of couples for degree d. The second method consists of proving
that the inequalities between the moduli of roots do not allow certain coefficients
of a hyperbolic polynomial to have certain signs. In Subsection 2.6, we describe
another method used to prove that certain couples are not realizable. The method
is based on properties of the set Ed of hyperbolic polynomials having a couple of
non-zero opposite real roots.

Finally, in order to quickly obtain examples of realizability, we use a Python
program which generates uniformly distributed random numbers. For a given degree
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d, a given sign pattern and a given order of moduli, the program generates d real
numbers to create roots in a given order of moduli. Then the code calculates the
coefficients of the polynomial and checks whether they match the sign pattern. If
this is the case, the code stops and returns the result, i.e. the polynomial. If not,
it continues and repeats the simulation until it finds one or stops if the assigned
number of simulations is reached. Finding concrete examples of realizability when
analytic methods fail turns out to be indispensable in the context of a problem closely
related to Question 2, see [5]. The problem asks to describe real, but not necessarily
hyperbolic polynomials, for which triples (sign pattern, number of positive roots,
number of negative roots) compatible with Descartes’ rule of signs are realizable.

2.5. Concatenation of couples

Consider a hyperbolic degree d polynomial V with distinct moduli of roots and non-
vanishing coefficients. Denote by Ω the order of the moduli of its roots, where Ω is a
string of letters P and/or N . Then for ε > 0 small enough, the first d+1 coefficients
of the degree d+1 hyperbolic polynomialsW− := V (x)(x−ε) andW+ := V (x)(x+ε)
are perturbations of the respective coefficients of V . Hence, they are of the same
signs as the latter coefficients. The three polynomials realize the couples

V := (σ(V ),Ω), W− : (σ(W−), PΩ) and W+ : (σ(W+), NΩ).

Denote by α the last component of the sign pattern σ(V ), where α = + or −. Hence
σ(W−) (resp. σ(W+)) is obtained from σ(V ) by adding the component −α (resp. α)
to the right. We say that the couples W− and W+ are obtained by concatenation of
the couple V with the couples ((+,−), P ) and ((+,+), N), respectively. The method
of concatenation is explained in a broader context in [5] and within the framework
of the problem mentioned at the end of Subsection 2.4.

2.6. The set Ed and neighbours of quadruples

Notation 2. For a given sign pattern σ of length d+1, we denote by Πd(σ) the set of
monic hyperbolic degree d polynomials with distinct roots defining the sign pattern
σ. For an order of moduli Ω compatible with σ, we denote by Πd(σ,Ω) ⊂ Πd(σ) the
set of monic hyperbolic degree d polynomials defining the sign pattern σ the order
of moduli of their roots is Ω. We denote by Ed(σ) the subset of Πd(σ) on which a
positive and a negative root have an equal modulus.

It is proved in [13, Theorem 2] that all sets of the form Πd(σ) are open and
contractible. It is shown in [7, Theorem 1.5] that at a generic point the set Ed(σ)
is locally a smooth hypersurface, and at a point, where there are s distinct couples
(positive root, negative root) of equal modulus, Ed(σ) is the transversal intersection
of s smooth hypersurfaces.

Definition 6. Two quadruples [u1, u2, u3, u4] are neighbours if they are obtained
from one another by shifting a unit one position to the left or to the right. E.g. all
neighbours of [0, 2, 0, 1] are [1, 1, 0, 1], [0, 1, 1, 1] and [0, 2, 1, 0].
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Proposition 1. Suppose that for given degree d and sign pattern σ, two couples
(σ,Ω1) and (σ,Ω2) are realizable, with Ω1 6= Ω2. Then there is a continuous path con-
necting two points Ai ∈ Πd(σ,Ωi), i = 1, 2, passing through a point A′ ∈ Πd(σ,Ω

′),
where Ω′ is a neighbour of Ω1.

Proof. Indeed, one can assume that the path γ is smooth and avoids the non-generic
points of Ed(σ), i.e. the points at which there is more than one pair of opposite real
non-zero roots, see [7, Theorem 1.5]. On the other hand, as Ω2 6= Ω1, the path γ
intersects Ed(σ). The first time when this occurs, the path passes from Πd(σ,Ω1)
to Πd(σ,Ω

′), where Ω′ is a neighbour of Ω1.

Remark 3. As the path from the proof of Proposition 1 avoids the non-generic
points of Ed, when it intersects the common boundary of the sets Πd(σ,Ω1) and
Πd(σ,Ω

′), this point corresponds to a polynomial having two opposite real roots (and
this is the only equality between moduli of its roots). After a linear change of the
variable, x this polynomial can be given the form Q = (x2−1)R, where R is a monic
hyperbolic polynomial of degree d− 2.

3. Proof of Theorem 1

Part (1). The couple (Σ3,1,2,1, PNPPNN) is realizable, because PNPPNN is
the canonical order of moduli (see [11, Proposition 1]). We prove by examples
realizability of the remaining 4 couples mentioned in part (1) of the theorem. Our
examples involve polynomials having a positive and a negative root of equal moduli.
After perturbing these roots so that they become of distinct moduli (the perturbation
does not change the signs of the coefficients), one obtains polynomials realizing the
given order of moduli with the sign pattern Σ3,1,2,1. For the first polynomial of
the list below the perturbed roots equal −9, −1.01, −1 − ε, 0.39, 0.4 and 1 − ε,
0 < ε � 0.1:

PPPNNN (x− 0.39)(x− 0.4)(x− 1)(x+ 1)(x+ 1.01)(x+ 9)
= x6 + 8.23x5 + 0.1902x4 − 13.26928x3

+0.08276x2 + 5.03928x− 1.27296,

PPNPNN (x− 0.2)(x− 1)(x+ 1)(x− 3.1)(x+ 5)(x+ 10) =
= x6 + 11.7x5 + 0.12x4 − 167.4x3 + 29.88x2 + 155.7x− 31,

PPNNPN (x− 0.39)(x− 0.4)(x+ 0.99)(x+ 1)(x− 1)(x+ 9)
= x6 + 9.2x5 + 0.1739x4 − 14.68046x3

+0.21606x2 + 5.48046x− 1.38996,

NPPPNN (x+ 1)(x− 1)(x− 2)(x− 2.1)(x+ 5)(x+ 20)
= x6 + 20.9x5 + 0.7x4 − 325.9x3 + 418.3x2 + 305x− 420.

Now we prove non-realizability of the rest of the orders of moduli with the sign
pattern Σ3,1,2,1. Part of the results also concern the sign pattern Σ3,2,1,1.

Proposition 2. The 10 orders of moduli with u4 = 0 are not realizable with any of
the sign patterns Σ3,1,2,1 or Σ3,2,1,1.
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Proof. Below σ denotes any of the sign patterns Σ3,1,2,1 or Σ3,2,1,1. The couples
(σ, PPNNPN) are realizable, see the examples at the beginning of the proofs of
parts (1) and (4) of the theorem. For these couples one has u4 = 1. This implies
that the set Π6(σ, PPNNPN) is open and non-empty, see Notation 2. Denote by
Ω an order of moduli compatible with the sign pattern σ and u4 = 0. If the set
Π6(σ,Ω) is non-empty, then there exists a continuous path γ ⊂ Π6(σ) leading from
a point of Π6(σ,Ω) to a point of Π6(σ, PPNNPN) (see Proposition 1 and its proof).
Hence, this path contains a polynomial Q defining the sign pattern σ and having
a positive and a negative roots of equal modulus. Moreover, its other roots are of
smaller modulus.

Set Q := x6 +
∑5

j=1 qjx
j . After a linear change of the variable x, Q takes the

form Q := (x2−1)R, where R := x4+
∑3

j=0 ajx
j is a degree 4 hyperbolic polynomial

the moduli whose roots are < 1.

Lemma 2. Suppose that the polynomials Q := x6 +
∑5

j=1 qjx
j and R := x4 +∑3

j=0 ajx
j are hyperbolic, Q := (x2 − 1)R and Q defines one of the sign patterns

Σ3,1,2,1 and Σ3,2,1,1. Then R defines the sign pattern Σ3,1,1.

Proof. It is clear that

Q = x6 + a3x
5 + (a2 − 1)x4 + (a1 − a3)x

3 + (a0 − a2)x
2 − a1x− a0.

If Q defines the sign pattern Σ3,1,2,1 or Σ3,2,1,1, then a0 > 0, a1 < 0 and a3 > 0.
If a2 ≤ 0, then a2 − 1 < 0, which contradicts each of the two sign patterns, so one
must have a2 > 0 and R defines the sign pattern Σ3,1,1.

The sign pattern Σ3,1,1 is canonical. Hence, the order of moduli defined by the
roots of R is PPNN . We denote these roots by 0 < a < b and −g < −f < 0, where
a < b < f < g. Thus

q4 = ab− af − ag − bf − bg + fg − 1.

If g ≤ 1, then q4 = (fg − 1) + a(b− f)− ag − bf − bg < 0, which is a contradiction.
Thus none of the orders of moduli with u4 = 0 are realizable.

We give the proof of non-realizability of the remaining 5 couples. The couples
(Σ3,1,2,1, PNPNPN) and (Σ3,2,1,1, PNPNPN) (the order of moduli corresponds to
the quadruple [0, 1, 1, 1]) are not realizable, because the order of moduli PNPNPN
is rigid and hence realizable only with the sign pattern Σ2,2,2,1, see Definition 4 and
the text that follows.

Suppose that the order of moduli [1, 1, 0, 1] is realizable with the sign pattern
Σ3,1,2,1 or Σ3,2,1,1, meaning that the following inequalities are satisfied:

γ1 < α1 < γ2 < α2 < α3 < γ3.

In this case, we have
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q4 = (α1α2 − α2γ2) + (α1α3 − α1γ3) + (α2α3 − α2γ3) + (γ1γ2 − α1γ2)
+(γ1γ3 − α3γ3) + (γ2γ3 − α3γ2)− α1γ1 − α2γ1 − α3γ1.

(3)

However, this is a sum of negative terms, which leads to a contradiction.
Suppose that the order of moduli [1, 0, 1, 1] is realizable with the sign pattern

Σ3,1,2,1 or Σ3,2,1,1, which means that the following inequalities are satisfied:

γ1 < α1 < α2 < γ2 < α3 < γ3.

In this case, we obtain the following expression for q4:

q4 = (α1α2 − α2γ2) + (α1α3 − α2γ3) + (α2α3 − α3γ2) + (γ1γ2 − α1γ2)
+(γ1γ3 − α1γ3) + (γ2γ3 − α3γ3)− α1γ1 − α2γ1 − α3γ1.

(4)

It is clear that q4 is a sum of negative quantities, which is a contradiction.
The orders of moduli [2, 0, 0, 1] and [0, 2, 0, 1] are not realizable with the sign pat-

tern Σ3,1,2,1, because neither of their neighbours is, see Proposition 1. For [2, 0, 0, 1],
these neighbours are [1, 1, 0, 1] and [2, 0, 1, 0]. For [0, 2, 0, 1], they are [1, 1, 0, 1],
[0, 1, 1, 1] and [0, 2, 1, 0].

Part (2). The couple (Σ2,1,2,2, NPNPPN) is realizable, because NPNPPN is the
canonical order. The other 5 couples mentioned in part (2) of the theorem are also
realizable:

PNNPPN (x− 4.52)(x+ 5.02)(x+ 5.32)(x− 7.002)(x− 8.003)(x+ 9.32)
= x6 + 0.135x5 − 136.926694x4 + 27.6529548x3

+5404.574382x2 − 344.273285x− 63044.12478,

NPPPNN (x+ 2.5)(x− 4.95)(x− 6.47)(x− 8.19)(x+ 8.57)(x+ 9.05)
= x6 + 0.51x5 − 147.3884x4 + 73.049286x3

+6188.991502x2 − 7552.653247x− 50858.41147,

NPPNPN (x+ 1.49)(x− 1.87)(x− 5.77)(x+ 5.96)(x− 7.58)(x+ 8.07)
= x6 + 0.3x5 − 98.5114x4 + 5.90954x3

+2380.426651x2 − 720.0363792x− 5861.282963,

NPPNNP (x+ 1.34)(x− 3.43)(x− 5.34)(x+ 7.86)(x+ 9)(x− 9.4)
= x6 + 0.03x5 − 136.6074x4 + 60.496052x3

+4547.732428x2 − 6518.600281x− 16320.4859,

NNPPPN (x+ 2.5)(x+ 3.03)(x− 4.28)(x− 4.4)(x− 5.6)(x+ 9.4),
x6 + 0.65x5 − 86.2034x4 + 122.15104x3

+1425.210824x2 − 1478.768374x− 7509.222336.

We prove that the remaining 14 cases are not realizable. Assume for the first 8 of
them that they are realizable by a polynomial Q := x6 +

∑5
j=0 qjx

j . There are 4
cases in which one obtains that

q5 := (γ1 − α1) + (γ2 − α2) + (γ3 − α3) < 0,
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which contradicts the sign pattern. These are

γ1 < γ2 < γ3 < α1 < α2 < α3 : [3, 0, 0, 0],
γ1 < γ2 < α1 < γ3 < α2 < α3 : [2, 1, 0, 0],
γ1 < α1 < γ2 < γ3 < α2 < α3 : [1, 2, 0, 0],
γ1 < γ2 < α1 < α2 < γ3 < α3 : [2, 0, 1, 0].

There are 4 cases in which

q1 := α1α2α3γ1γ2γ3(1/α1 + 1/α2 + 1/α3 − 1/γ1 − 1/γ2 − 1/γ3) > 0,

which also contradicts the sign pattern. The cases are:

α1 < α2 < α3 < γ1 < γ2 < γ3 : [0, 0, 0, 3],
α1 < γ1 < α2 < α3 < γ2 < γ3 : [0, 1, 0, 2],
α1 < α2 < γ1 < α3 < γ2 < γ3 : [0, 0, 1, 2],
α1 < α2 < γ1 < γ2 < α3 < γ3 : [0, 0, 2, 1].

The orders of moduli [0, 1, 1, 1] and [1, 1, 1, 0], i.e. PNPNPN and NPNPNP are
rigid, see Definition 4 and the lines after it, hence non-realizable with the sign pattern
Σ2,1,2,2.

In the four remaining cases of orders of moduli there exists at least one realizable
neighbour and one can apply Proposition 1 and Remark 3. We list these cases to
the left and their neighbours to the right; non-realizable neighbours are marked by
the subscript 0:

1) [0, 0, 3, 0] [0, 1, 2, 0], [0, 0, 2, 1]0

2) [0, 1, 2, 0] [1, 0, 2, 0], [0, 2, 1, 0], [0, 1, 1, 1]0, [0, 0, 3, 0]

3) [0, 2, 1, 0] [1, 1, 1, 0]0, [0, 1, 2, 0], [0, 2, 0, 1], [0, 3, 0, 0]

4) [0, 3, 0, 0] [1, 2, 0, 0]0, [0, 2, 1, 0].

The four cases and their neighbours realizable with Σ2,1,2,2 are all with u4 = 0 or
u4 = 1. Hence, if one applies Proposition 1 and Remark 3, one concludes that
realizability of one of the cases 1–4 implies the existence of a polynomial Q =
(x2 − 1)R, where all roots of R are of modulus < 1. Consider the orders of moduli
[0, 0, 3, 0] and [0, 1, 2, 0]. For the roots −g < −f < 0 < a < b of R, one should have

a < b < f < g < 1 or a < f < b < g < 1, respectively.

However, this would imply q1 = abcd((1/a − 1/f) + (1/b − 1/g)) > 0, which is a
contradiction. So the orders [0, 0, 3, 0] and [0, 1, 2, 0] are not realizable.

Set σ := Σ2,1,2,2. Consider the sets S := S1 ∪ S2, S1 := Π6(σ, [0, 2, 1, 0]), S2 :=
Π6(σ, [0, 3, 0, 0]), see Notation 2. If at least one of the set S1 and S2 is non-empty,
then there exists a smooth path γ ⊂ Π6(σ) connecting a point of S with a point of
Π6(σ, [0, 2, 0, 1]). One can choose the path avoiding the non-generic points of the set
E6 and intersecting this set transversally. Hence, there exists a point of γ belonging
to the common boundary of S and Π6(σ, [0, 2, 0, 1]). After a linear change of the
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variable x, this point corresponds to a polynomial Q = (x2 − 1)R, where for the
roots of R, one has a < f < g < b < 1 and

q5 := −a− b+ f + g > 0 and q1 := abfg(1/a+ 1/b− 1/f − 1/g) < 0, i.e.

a+ b < f + g and (a+ b)/ab < (f + g)/fg.

This, however, is impossible. Indeed, for fixed f , g and a+b, the quantity (a+b)/ab
is the minimal possible, in which a and b are closest to one another. But for b = g,
one should have a < f and 1/a < 1/f , which is contradictory; for a = f , this gives
b < g, which is also a contradiction. Hence, S = ∅, i.e. the orders of moduli [0, 2, 1, 0]
and [0, 3, 0, 0] are not realizable with Σ2,1,2,2.

Part (3). We prove that certain couples are realizable by concatenating couples
corresponding to d = 5 with the ones corresponding to d = 1, see Subsection 2.5. It
is shown in [15, Section 3] that for d = 5, the sign pattern Σ2,2,2 is realizable with all
compatible orders Ω (Ω is any string of 2 letters P and 3 letters N). Applying the
involution im (see Definition 5) one sees that the sign pattern im(Σ2,2,2) = Σ1,2,2,1

is realizable with any order Ω′ which is a string of 3 letters P and 2 letters N .
Denote by T (resp. U) a polynomial realizing the couple (Σ2,2,2,Ω) (resp.

(Σ1,2,2,1,Ω
′)). Hence, for ε > 0 small enough, the product T (x)(x − ε) (resp.

U(x)(x + ε)) realizes the order PΩ with the sign pattern Σ2,2,2,1 (resp. the or-
der NΩ′ with the sign pattern Σ1,2,2,2), see Subsection 2.5. Applying the involution
ir (see Definition 5) one understands that any order of the form Ω′N is realizable
with the sign pattern Σ2,2,2,1.

There are exactly 6 orders which are not of the form PΩ or Ω′N . These are the
5 orders mentioned in part (3) of the theorem and the order NPPNNP . The latter
is realizable with the sign pattern Σ2,2,2,1:

(x+ 4)(x− 5)(x− 6)(x+ 8.74)(x+ 9.41)(x− 9.59) = x6 + 1.56x5

− 165.7351x4 − 145.848506x3 + 7833.610842x2 + 24.186884x− 94645.70472.

The order of moduli NPNPNP is rigid (see Definition 4), so realizable only
with the sign pattern Σ1,2,2,2.

We prove non-realizability of the remaining 5 orders. Consider a degree 6 hyper-
bolic polynomial Q := x6 +

∑5
j=1 qjx

j with distinct moduli of roots αi and γj and
defining the sign pattern Σ2,2,2,1. Thus

Q =

3∏
i=1

(x− αi)(x+ γi) and q1 = α1α2α3γ1γ2γ3S1,

where
S1 := (1/α3 − 1/γ3) + (1/α2 − 1/γ2) + (1/α1 − 1/γ1).

If the orders of moduli [1, 2, 0, 0], [2, 0, 1, 0], [2, 1, 0, 0], and [3, 0, 0, 0] are realizable,
then the moduli of the roots satisfy the following inequalities:

γ1 < α1 < γ2 < γ3 < α2 < α3, γ1 < γ2 < α1 < α2 < γ3 < α3,
γ1 < γ2 < α1 < γ3 < α2 < α3 and γ1 < γ2 < γ3 < α1 < α2 < α3, respectively.



Degree 6 hyperbolic polynomials and orders of moduli 175

Thus S1 < 0. Therefore, we have q1 < 0, which leads to a contradiction.

Part (4). The order of moduli PPNPNN is the canonical order for the sign pat-
tern Σ3,2,1,1, so the corresponding couple is realizable, see [11, Proposition 1]. The
remaining 3 couples are realizable by perturbations of the following polynomials (see
the beginning of the proof of part (1) of the theorem with the explanation about
perturbations):

PPPNNN (x− 0.039)(x− 0.4)(x− 1)(x+ 1)(x+ 1.001)(x+ 4)
= x6 + 4.562x5 + 0.824161x4 − 6.2417404x3

−1.7616986x2 + 1.6797404x− 0.0624624,

PPNNPN (x− 0.09)(x− 0.19)(x+ 0.8)(x+ 1)(x− 1)(x+ 13)
= x6 + 13.52x5 + 5.5531x4 − 16.19602x3

−6.37526x2 + 2.67602x− 0.17784,

PNPPNN (x− 0.02)(x+ 1)(x− 1)(x− 3.1)(x+ 5)(x+ 20)
= x6 + 21.88x5 + 21.062x4 − 332.33x3

−15.862x2 + 310.45x− 6.2.

It has already been mentioned (see Proposition 2) that no orders of moduli with
u4 = 0 are realizable with the sign pattern Σ3,2,1,1. Also, in the proof of part (1) we
saw that the sign pattern Σ3,2,1,1 is not realizable with any of the orders of moduli
[1, 0, 1, 1] or [1, 1, 0, 1].

Non-realizability of the couple (Σ3,2,1,1, PNPNPN) was proved in the proof of
part (1). The orders [2, 0, 0, 1] and [0, 2, 0, 1] are also not realizable with Σ3,2,1,1,
because their respective neighbours [1, 1, 0, 1], [2, 0, 1, 0] and [1, 1, 0, 1], [0, 1, 1, 1],
[0, 2, 1, 0] are not, see Proposition 1.

It remains to prove non-realizability of the couple (Σ3,2,1,1, NPPPNN). It cor-
responds to the quadruple [1, 0, 0, 2] and has exactly two neighbours: [0, 1, 0, 2] and
[1, 0, 1, 1], only the first of which is realizable. Proposition 1 and Remark 3 imply
that if the couple is realizable, then there exists a polynomial Q := (x2 − 1)R such
that for the roots a, b, −f and −g of R one has

0 < 1 < a < b < f < g.

Using the same notation as in the proof of part (1) we observe that

q2 = (ab− 1)fg + a(f − b) + ag + bf + bg > 0,

whereas one should have q2 < 0. This contradiction implies non-realizability of the
couple.
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