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Biharmonic curves in ˜SL(2,R) space
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Abstract. In this paper, non-geodesic biharmonic curves in ˜SL(2, R) space are characterized
and the statement that only proper biharmonic curves are helices is proved. Also, the
explicit parametric equations of proper biharmonic helices are obtained.
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1. Introduction

A map ϕ : (M, g) → (N,h) between two Riemannian manifolds is said to be har-
monic if it is a critical point of the energy functional E(ϕ) := 1

2

∫
M

|dϕ|2vg. A
harmonic map is characterized by the vanishing of the first tension field τ(ϕ) :=
trace∇dϕ.

A map ϕ : (M, g) → (N,h) is said to be biharmonic if it is a critical point of
the bienergy functional E2(ϕ) := 1

2

∫
M

|τ(ϕ)|2vg. A biharmonic map is character-

ized by the vanishing of the second tension field τ2(ϕ) := J(τ(ϕ)) = −△ϕτ(ϕ) −
tracegR

N (dϕ, τ(ϕ))dϕ = 0.
Any harmonic map (τ(ϕ) = 0) is biharmonic (τ2(ϕ) = 0), so the interesting are

so called proper biharmonic maps, i.e. non-harmonic biharmonic maps.
In the last decade, several papers on biharmonic curves in 3-dimensional Riem-

manian manifolds have appeared (see [1, 2, 3, 8, 10, 12]). Generally speaking, in
homogeneous spaces there either exists no proper biharmonic curve or all proper
biharmonic curves are helices.

Here, biharmonic curves are examined using the hyperboloid model of ˜SL(2,R)
space. E. Molnár introduced the hyperboloid model as a part of the projective
spherical model of the eight homogeneous Thurston 3-geometries (E3, S3, H3, S2×
R, H2 × R, ˜SL(2,R), Nil, Sol). One of the advantages of the hyperboloid model to
the ”standard” model (described in [11]) is the possibility of better visualization of
curves and surfaces.

In this paper, we characterize proper biharmonic curves in ˜SL(2,R) space (Propo-
sition 3.1) and prove that the only proper biharmonic curves are helices (Theorem
3.3). We also give explicit parametric equations of proper biharmonic curves (Propo-
sition 4.5).

∗Corresponding author. Email addresses: zlatko.erjavec@foi.hr (Z. Erjavec),
damir.horvat1@foi.hr (D.Horvat)

http://www.mathos.hr/mc c⃝2014 Department of Mathematics, University of Osijek



292 Z.Erjavec and D.Horvat

2. Hyperboliod model of ˜SL(2,R) space

As we mentioned before, E. Molnar introduced the hyperboloid model of ˜SL(2,R)
space in [9]. The model is used in [5] and [6], where geodesics and minimal surfaces
are considered, respectively.

The idea is to start with the collineation group which acts on projective 3-space
P3(R) and preserves a polarity, i.e. a scalar product of signature (−−++). Using
the one-sheeted hyperboloid solid

H : −x0x0 − x1x1 + x2x2 + x3x3 < 0 or − 1− x2 + y2 + z2 < 0

with an appropriate choice of a subgroup of the collineation group of H as an iso-
metry group, the universal covering space H̃ of hyperboloid H will give the so-called
hyperboloid model of ˜SL(2,R) geometry.

An invariant infinitesimal arc length square in ˜SL(2,R), obtained by the standard
pull back translation into the origin (see [9]), is given by

(ds)2 =
1(

− (x0)2 − (x1)2 + (x2)2 + (x3)2
)2

((
− (dx0)x1 + (dx1)x0 − (dx2)x3 + (dx3)x2

)2
+
(
− (dx0)x2 − (dx1)x3 + (dx2)x0 + (dx3)x1

)2
+
(
− (dx0)x3 + (dx1)x2 − (dx2)x1 + (dx3)x0

)2)
.

After introducing new coordinates, the so-called hyperboloid ones

x0 = cosh r cosφ

x1 = cosh r sinφ (1)

x2 = sinh r cos(ϑ− φ)

x3 = sinh r sin(ϑ− φ)),

the following infinitesimal metric is obtained

(ds)2 = (dr)2 + cosh2 r sinh2 r(dϑ)2 +
(
(dφ) + sinh2 r(dϑ)

)2
, (2)

where (r, ϑ) are polar coordinates in the hyperbolic base plane and φ is the fiber
coordinate.

The Euclidean coordinates (x = x1

x0 , y = x2

x0 , z = x3

x0 ) corresponding to the hyper-
boloid coordinates (r, ϑ, φ) and respecting (1), are given as follows

x = tanφ,

y = tanh r
cos(ϑ− φ)

cosφ
, (3)

z = tanh r
sin(ϑ− φ)

cosφ
,
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where r ∈ [0,∞), ϑ ∈ [0, 2π) and φ ∈ (−π
2 ,

π
2 ) with extension to R for the universal

covering. These Euclidean coordinates are important for the visualization of surfaces
in E3,

If {ω1, ω2, ω3} is an orthonormal coframe defined by

ω1 = dr, ω2 =
1

2
sinh 2r dϑ, ω3 = sinh2 r dϑ+ dφ, (4)

then the dual orthonormal frame fields are given by

e1 =
∂

∂r
, e2 =

2

sinh 2r

∂

∂ϑ
− tanh r

∂

∂φ
, e3 =

∂

∂φ
. (5)

Notice that dω3 ∧ ω3 ̸= 0 which means that ω3 is a contact form.

In local coordinates (r, ϑ, φ) around an arbitrary point p ∈ ˜SL(2,R) one has a
natural local vector basis {∂r, ∂ϑ, ∂φ} (for the standard denotation see, e.g. [4]).
The Levi-Civita connection ∇ of the ambient space is defined by ∇∂i∂j := Γk

ij∂k,

where the Cristoffel symbols Γk
ij are given by

Γ1
ij =

 0 0 0
0 1

2 (1− 2 cosh 2r) sinh 2r − cosh r sinh r
0 − cosh r sinh r 0

 ,

Γ2
ij =

 0 coth r + 2 tanh r 1
cosh r sinh r

coth r + 2 tanh r 0 0
1

cosh r sinh r 0 0

 , (6)

Γ3
ij =

 0 −2 sinh2 r tanh r − tanh r

−2 sinh2 r tanh r 0 0
− tanh r 0 0

 .

The Levi-Civita connection ∇ (in terms of the orthonormal frame) is given by

∇e1e1 = 0 ∇e1e2 = −e3 ∇e1e3 = e2

∇e2e1 = 2 coth 2r e2 + e3 ∇e2e2 = −2 coth 2r e1 ∇e2e3 = −e1 (7)

∇e3e1 = e2 ∇e3e2 = −e1 ∇e3e3 = 0.

The non-vanishing components of the Riemannien curvature tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

are

R(e1, e2)e1 = 7e2 R(e1, e2)e2 = −7e1 R(e1, e3)e1 = −e3

R(e1, e3)e3 = e1 R(e3, e2)e2 = e3 R(e3, e2)e3 = −e2.

Moreover, if we put Rijkl = −g(Rijk, el), where Rijk = R(ei, ej)ek, we obtain

R1212 = −7, R1313 = 1 and R2323 = 1. (8)
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3. Biharmonic curves in ˜SL(2,R) space

Let γ : I → ˜SL(2,R) be a differentiable curve parameterized by arc length and let
{T,N,B} be the orthonormal frame field tangent to ˜SL(2,R) along γ and defined
as follows: T is the unit vector field tangent to γ, N is the unit vector field in the
direction of ∇TT normal to γ and B = T×N.

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T1e1 + T2e2 + T3e3

N = N1e1 +N2e2 +N3e3 (9)

B = B1e1 +B2e2 +B3e3.

The following Frenet formulas hold

∇TT = κN
∇TN = −κT + τB
∇TB = −τN,

(10)

where κ = |∇TT| is the geodesic curvature of γ and τ is the geodesic torsion.

The biharmonic equation

τ2(ϕ) = −△ϕτ(ϕ)− tracegR
N (dϕ, τ(ϕ))dϕ = 0 (11)

in the case of a curve γ : I → (N, g) from an open interval I ⊂ R to a Riemannian
manifold (N, g) parameterized by arc length transforms (γ = ϕ, dϕ = T, τ(ϕ) =
∇TT) to the differential equation

∇3
TT−R(T,∇TT)T = 0. (12)

Using the Frenet formulas (10), biharmonic equation (12) reduces to the system
(see e.g. [3])

κκ′ = 0

κ′′ − κ3 − κτ2 + κR(T,N,T,N) = 0 (13)

2κ′τ + κτ ′ + κR(T,N,T,B) = 0

Proposition 1. Let γ : I → ˜SL(2,R) be a differentiable curve parameterized by arc
length. Then γ is a proper non-geodesic biharmonic curve if and only if

κ = constant ̸= 0

κ2 + τ2 = 1− 8B2
3 (14)

τ ′ = −8N3B3
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Proof. By direct calculation, using (8), we obtain

R(T,N,T,N) =
3∑

i,j,k,l=1

TiNjTkNlRijkl

...

= −7(T1N2 − T2N1)
2 + (T1N3 − T3N1)

2 + (T2N3 − T3N2)
2

= −7B2
3 + (−B2)

2 +B2
1 = −7B2

3 + (1−B2
3)

= 1− 8B2
3 ,

R(T,N,T,B) =
3∑

i,j,k,l=1

TiNjTkBlRijkl

...

= (N2T3 −N3T2) (B2T3 −B3T2) + (N1T3 −N3T1) (B1T3 −B3T1)

−7 (N1T2 −N2T1) (B1T2 −B2T1) = −B1N1 −B2N2 + 7B3N3

= N3B3 + 7N3B3

= 8N3B3.

If we insert the obtained result in the equation system (13), the theorem state-
ment follows directly.

Definition 1. A differentiable curve in ˜SL(2,R) space having constant both geodesic
curvature and geodesic torsion is called a helix.

Theorem 1. Let γ : I → ˜SL(2,R) be a proper biharmonic curve parameterized by arc
length. Then γ is a helix.

Proof. First we determine ∇TT, ∇TN and ∇TB. Using (9) and (7), after long but
straightforward computation we have

∇TX
i =

(
(Xi

1)
′ − 2T2X

i
2 coth 2r − (T2X

i
3 +Xi

2T3)
)
e1

+
(
(Xi

2)
′ + 2T2X

i
1 coth 2r + (T1X

i
3 +Xi

1T3)
)
e2 (15)

+
(
T2X

i
1 −Xi

2T1 + (Xi
3)

′
)
e3, i = 1, 2, 3,

where X1 = T, X2 = N and X3 = B.
Next, we find g(∇TX

i, e3), first using equations (15) (and having in mind B =
T × N) and then using Frenet formulas (10). After comparing the corresponding
scalar products, we obtain the following system

T ′
3 = κN3,

−B3 +N ′
3 = −κT3 + τB3, (16)

N3 +B′
3 = −τN3.
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If we suppose that N3B3 ̸= 0, then inserting N3 from the third equation of (14) into
the third equation of (16), after separating variables and integrating, we have

τ2 + 2τ = 8B2
3 + constant.

On the other hand, from the second equation of (14), we have
8B2

3 = 1− κ2 − τ2. Thus, by comparing the last two equations we get

τ2 + τ = constant,

which means that τ is a constant and this is in contradiction with our assumption
N3B3 ̸= 0.

So, the conclusion is that for any proper biharmonic curve there holds N3B3 = 0,
i.e. τ is constant. Finally, the curve is a helix.

Corollary 1. Let γ : I → ˜SL(2,R) be a differentiable curve parameterized by arc
length. Then γ is a proper biharmonic curve if and only if

κ = constant ̸= 0

τ = constant

κ2 + τ2 = 1− 8B2
3 (17)

N3B3 = 0.

Remark 1. In [7], the authors have derived similar statements about biharmonic
curves using the standard metric of ˜SL(2,R) geometry.

4. Biharmonic helices in ˜SL(2,R)

In this section, we determine helices in ˜SL(2,R). From Corollary 1 it is clear that
we have to study the coefficients N3 and B3, where from (17) we know that B3 =

constant ∈ (−
√
2

4 ,
√
2
4 ).

Proposition 2. Let γ : I → ˜SL(2,R) be a differentiable curve parameterized by arc
length. If the third component of the binormal vector field vanishes (B3 = 0), then
γ is not a proper biharmonic curve.

Proof. First, note that if a curve is proper biharmonic, then it is not a geodesic.
So, by Corollary 1 we have two cases:

• B3 = 0 and N3 ̸= 0,

• B3 = 0 and N3 = 0,

and we prove that both cases imply γ is geodesic which further contradicts the
fact that γ is a proper biharmonic.

In the first case, from the third equation of (16) it follows τ = −1. If we insert
τ = −1 in the second equation of (14), then we obtain κ = 0, which means γ is a
geodesic curve.

In the second case, we have T = N × B = (0, 0, N1B2 − B1N2) = ±e3. Thus
∇TT = ∇e3e3 vanishes by (7). So, κ = 0 and γ is a geodesic curve.
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Corollary 2. Let γ : I → ˜SL(2,R) be a differentiable curve parameterized by arc
length. Then γ is a proper biharmonic curve if and only if

κ = constant ̸= 0

τ = constant

κ2 + τ2 = 1− 8B2
3 (18)

B3 = constant ̸= 0

N3 = 0.

Further, using the obtained characterization of proper biharmonic curves we find
explicit parametric equations of these curves.

Proposition 3. The proper biharmonic curve γ(t) = (r(t), ϑ(t), φ(t)) in ˜SL(2,R) is
a solution of the following system of differential equations.

r′(t) = sinα0 cosβ(t)

ϑ′(t) =
2

sinh 2r(t)
sinα0 sinβ(t)

φ′(t) = − sinh2 r(t)ϑ′(t) + cosα0 (19)

β′(t) = −2 sinα0 sinβ(t) coth 2r(t)− 2 cosα0 + ω,

where α0 ∈ (0, π) and ω ∈ R+.

Proof. Suppose that γ : I → ˜SL(2,R) is a proper biharmonic curve parameterized
by arc length. From (15) we have

∇TT = (T ′
1− 2T 2

2 coth 2r− 2T2T3)e1+(T ′
2+2T1T2 coth 2r+2T1T3)e2+T ′

3e3. (20)

Since ∇TT = κN, by Corollary 2 (N3 = 0) it follows T ′
3 = 0, i.e. T3 = constant.

Since (e1, e2, e3) is an orthonormal basis and |T| = 1, it follows T3 ∈ ⟨−1, 1⟩. If
T3 = ±1, then T1 = T2 = 0 and from (20) we get ∇TT = 0 which implies γ is a
geodesic curve. Therefore, there exists α0 ∈ ⟨0, π⟩ and a smooth function β such
that

T(t) = sinα0 cosβ(t) · e1 + sinα0 sinβ(t) · e2 + cosα0 · e3. (21)

If we put (21) on the right-hand side of (20), by direct computation we get

∇TT = ω sinα0 · (− sinβ · e1 + cosβ · e2) , (22)

where

ω = β′ + 2 sinα0 sinβ coth 2r + 2 cosα0. (23)

From (22) there follows

κ = ω sinα0 and N = − sinβ · e1 + cosβ · e2.



298 Z.Erjavec and D.Horvat

If the curve is given by γ(t) = (r(t), ϑ(t), φ(t)), then we have

γ′(t) = r′(t)
∂

∂r
+ ϑ′(t)

∂

∂ϑ
+ φ′(t)

∂

∂φ

= r′ · e1 +
1

2
sinh 2rϑ′ · e2 + (sinh2 2rϑ′ + φ′) · e3.

Using γ′(t) = T (t), we obtain the system of differential equations (19).

Remark 2. Analogously to the relation κ = ω sinα0, using τ = ⟨−∇TB,N⟩ we
have τ = ω cosα0 − 1. Furthermore, from the third equation of (1) there follows

ω = cosα0 ±
√
1− 9 sin2 α0 = constant > 0, (24)

where α ∈ ⟨0, arcsin 1
3 ⟩ ∪ ⟨π − arcsin 1

3 , π⟩.
Now, we try to solve the system (19). Observe that the most important part is

to solve the subsystem consisting of the first and the fourth equation. Therefore,
from the fourth equation we have

r =
1

2
Arcth

(
ω − 2 cosα0 − β′

2 sinα0 sinβ

)
. (25)

After differentiating (25) and comparing with the first equation of the system (19)
we have the following equation for β(t)

2 sinα0

(
sinβ · β′′ − 2 cosβ · β′2 + 3 cosβ · (ω − 2 cosα0)β

′

+ 4 cosβ · sin2 α0 sin
2 β − cosβ · (ω − 2 cosα0)

2

)
= 0 (26)

The obtained second order differential equation is generally not solvable, but it is
obvious that β = π

2 + kπ is a solution of this equation.
In this case, from the first equation of the system (19), we have r(t) = R0 = const,

where since (24)

R0 =
1

2
Arcth

(
− cosα0 ±

√
1− 9 sin2 α0

2 sinα0

)
. (27)

If we insert the obtained function in the second and the third equation of the system
(19), we have the following proposition

Proposition 4. The proper biharmonic curve γ(t) = (r(t), ϑ(t), φ(t)) in ˜SL(2,R) is
given by following parametric equations

r(t) = R0

ϑ(t) =
2 sinα0 sinβ0

sinh(2R0)
· t+ c1 (28)

φ(t) = (cosα0 − tanhR0 sinα0 sinβ0) · t+ c2,

where α0 ∈ ⟨π − arcsin 1
3 , π⟩, β0 = π

2 + kπ, R0 is given by (27), c1, c2 ∈ R.
Figure 1 shows the obtained proper biharmonic curves for α0 = 3, c1 = c2 =

0, β0 = π
2 (left curve) and β0 = 3π

2 (right curve).
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Figure 1: Proper biharmonic curves in ˜SL(2, R) space
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