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On the Diophantine equation 𝐹2
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Abstract. Let 𝐹𝑛 be the 𝑛-th Fibonacci number. In this paper, we show that the only nonnegative solutions (𝑛, 𝑚, 𝑎)
of the Diophantine equation 𝐹2

𝑛 + 𝐹2
𝑚 = 2𝑎 with 𝑛 ≥ 𝑚 ≥ 0 are (1, 0, 0), (2, 0, 0), (3, 0, 2), (6, 0, 6), (1, 1, 1), (2, 1, 1),

(2, 2, 1), (3, 3, 3), (6, 6, 7).
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1. Introduction

Let (𝐹𝑛)≥0 be the Fibonacci sequence given by 𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, for all 𝑛 ≥ 0. Lots
of mathematicians have studied the interesting properties of the Fibonacci sequence.

Bravo and Luca [3] showed that the Diophantine equation 𝐹𝑛 + 𝐹𝑚 = 2𝑎 in nonnegative integers
𝑛, 𝑚, 𝑎 has finitely many solutions. Bravo and Bravo [1] extended it so that the Diophantine equation
𝐹𝑛 + 𝐹𝑚 + 𝐹ℓ = 2𝑎 also has finitely many solutions. The number of Fibonacci numbers on the LHS has
been studied up to five [13, 14].

The equation 𝐹𝑛 ± 𝐹𝑚 = 𝑦𝑎 has also been studied [6, 8, 9, 10, 11, 5, 15]. Recently, Bravo, Díaz, and
Luca [2] have found all nonnegative solutions of (𝐹𝑛 + 𝐹𝑚)/(𝐹𝑟 + 𝐹𝑠) = 2𝑎. As such, various forms of the
equations are being studied.

In the present paper, we investigate the Diophantine equation

𝐹2
𝑛 + 𝐹2

𝑚 = 2𝑎

in nonnegative integers 𝑛, 𝑚, 𝑎. As in the previous papers, we use the Matveev theorem to show the finiteness
of the solutions in §2 and the Dujella-Pethő theorem to reduce the bound for 𝑛 in §3. The result is as follows.

Theorem 1. The only solutions of the Diophantine equation

𝐹2
𝑛 + 𝐹2

𝑚 = 2𝑎

in nonnegative integers 𝑛, 𝑚 and 𝑎 with 𝑛 ≥ 𝑚 are given by

(𝑛, 𝑚, 𝑎) ∈
{

(1, 0, 0), (2, 0, 0), (3, 0, 2), (6, 0, 6), (1, 1, 1),
(2, 1, 1), (2, 2, 1), (3, 3, 3), (6, 6, 7)

}
.

2. Finiteness

To find a bound for 𝑛 we apply Matveev’s theorem (Theorem 2) to Λ = Λ1,Λ2 in two steps.

Step 1. Compute Λ1= 2𝑎 ·
√

5
2 · 𝛼−2𝑛 to obtain (𝑛 − 𝑚) log𝛼 < (an expression with log 2𝑛).

Step 2. Compute Λ2= 2𝑎 ·
√

5
2
𝛼−2𝑚 (1 + 𝛼2𝑛−2𝑚)−1 to obtain 𝑛 log𝛼 < (an expression with (𝑛−𝑚)log𝛼).

Combining two inequalities, we obtain a bound of 𝑛. In this process, we need the logarithmic height.
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Definition 1. Let 𝜂 be an algebraic number of degree 𝑑 with minimal polynomial

𝑎𝑑𝑥
𝑑 + 𝑎𝑑−1𝑥

𝑑−1 + · · · + 𝑎0 = 𝑎𝑑

𝑑∏
𝑖=1

(𝑥 − 𝜂 (𝑖) ),

where 𝑎𝑖’s are relatively prime integers with 𝑎𝑑 > 0, and 𝜂 (𝑖) ’s are conjugates of 𝜂. Then

ℎ(𝜂) = 1
𝑑

(
log 𝑎𝑑 +

𝑑∑︁
𝑖=1

log
(
max{|𝜂 (𝑖) |, 1}

))
is called the logarithmic height of 𝜂.

In particular, if 𝜂 = 𝑝/𝑞 is a rational number with gcd(𝑝, 𝑞) = 1, then ℎ(𝜂) = log max{|𝑝 |, |𝑞 |}. The
following properties holds:

• ℎ(𝜂 ± 𝛾) ≤ ℎ(𝜂) + ℎ(𝛾) + log 2.

• ℎ(𝜂𝛾±1) ≤ ℎ(𝜂) + ℎ(𝛾).

• ℎ(𝜂𝑠) = |𝑠 |ℎ(𝜂).
Theorem 2 (Matveev [12, Corollary 2.3], [4, Theorem 9.4]). Assume that 𝛾1, . . . , 𝛾𝑡 are positive real
algebraic numbers in a real algebraic number field 𝐾 of degree 𝐷, 𝑏1, . . . , 𝑏𝑡 ∈ Z, and

Λ := 𝛾𝑏1
1 · · · 𝛾𝑏𝑡𝑡 − 1

is not zero. Then

|Λ| > exp(−1.4 × 30𝑡+3 × 𝑡4.5 × 𝐷2 (1 + log𝐷) (1 + log 𝐵)𝐴1 · · · 𝐴𝑡 ),

when the following holds:

• 𝐵 ≥ max{|𝑏1 |, . . . , |𝑏𝑡 |}

• 𝐴𝑖 ≥ max{𝐷ℎ(𝛾𝑖), | log 𝛾𝑖 |, 0.16} for all 𝑖 = 1, . . . , 𝑡.

First, we compute Step 1. By the Binet formula

𝐹𝑛 =
1
√

5
(𝛼𝑛 − 𝛽𝑛) for 𝑛 ≥ 0,

where

𝛼 =
1 +

√
5

2
and 𝛽 =

1 −
√

5
2

.

Note that 1 < 𝛼 < 2 and
𝛼𝑛−2 < 𝐹𝑛 < 𝛼

𝑛−1 < 𝛼𝑛.

Thus, since
2𝑎 = 𝐹2

𝑛 + 𝐹2
𝑚 < 𝛼2𝑛 + 𝛼2𝑚 < 2𝛼2𝑛 < 2 · 22𝑛 = 22𝑛+1,

we have 𝑎 ≤ 2𝑛. Arranging the equation(
𝛼𝑛 − 𝛽𝑛

√
5

)2
+

(
𝛼𝑚 − 𝛽𝑚

√
5

)2
= 2𝑎, (1)

we obtain ����𝛼2𝑛

5
− 2𝑎

���� =����2𝛼𝑛𝛽𝑛

5
− 𝛽2𝑛

5
− 𝛼2𝑚

5
+ 2𝛼𝑚𝛽𝑚

5
− 𝛽2𝑚

5

����
<

2𝛼𝑛+𝑚

5
+ 𝛼𝑛+𝑚

5
+ 𝛼𝑚+𝑛

5
+ 2𝛼𝑚+𝑛

5
+ 𝛼𝑛+𝑚

5

=
7
5
𝛼𝑛+𝑚,
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since 𝛼 > 1 and |𝛽 | < 1. Dividing by 𝛼2𝑛

5 , we obtain an inequality����1 − 2𝑎 · 5
𝛼2𝑛

���� < 7
𝛼𝑛−𝑚 . (2)

We apply the Matveev theorem to

Λ1 = 2𝑎 · 5
𝛼2𝑛 − 1.

It is clear that Λ1 ≠ 0. Assume that 𝑡 = 3 and

𝛾1 = 2, 𝛾2 =
√

5, 𝛾3 = 𝛼; 𝑏1 = 𝑎, 𝑏2 = 2, 𝑏3 = −2𝑛.

Then
𝐵 := 2𝑛 ≥ max{|𝑏1 |, |𝑏2 |, |𝑏3 |}

and

𝐴1 := 1.4 ≥max{𝐷ℎ(𝛾1), | log 𝛾1 |, 0.16}
=max{2 log 2, | log 2|, 0.16}
=2 log 2 = 1.386 . . . ,

where 𝐷 = [Q(
√

5) : Q] = 2. Next, we choose 𝐴2. Note that the minimal polynomial of 𝛾2 =
√

5 is 𝑥2 − 5
and

ℎ(𝛾2) =
1
2
(log 1 + log

√
5 + log | −

√
5|) = 1

2
log 5.

Then

𝐴2 := 1.7 ≥max{𝐷ℎ(𝛾2), | log 𝛾2 |, 0.16}

=max{2 · 1
2

log 5, | log
√

5|, 0.16}

= log 5 = 1.609 . . . .

Finally, let us choose 𝐴3 as follows:

𝐴3 := 0.49 ≥max{𝐷ℎ(𝛾3), | log 𝛾3 |, 0.16}

=max{2 · 1
2

log𝛼, | log𝛼 |, 0.16}

= log𝛼 = 0.4812 . . . .

Let

𝐶1 =1.4 × 30𝑡+3 · 𝑡4.5 · 𝐷2 (1 + log𝐷) · 𝐴1 · 𝐴2 · 𝐴3

=1.4 × 306 · 34.5 · 22 (1 + log 2) × 1.4 × 1.7 × 0.49

=1.13091 . . . × 1012.

Then, by Theorem 2 and inequality (2), we obtain the inequality

exp(−𝐶1 · (1 + log 2𝑛)) < |Λ1 | <
7

𝛼𝑛−𝑚 .

Thus,
−𝐶1 · (1 + log 2𝑛) < log 7 − (𝑛 − 𝑚) log𝛼

and then
(𝑛 − 𝑚) log𝛼 < log 7 + 𝐶1 (1 + log 2𝑛)

< log 7 + 1.131 × 1012 (1 + log 2𝑛)
<1.14 × 1012 (1 + log 2𝑛).

(3)
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Now, we compute Step 2. By arranging (1), we obtain

𝛼2𝑛

5
+ 𝛼2𝑚

5
− 2𝑎 =

2𝛼𝑛𝛽𝑛

5
− 𝛽2𝑛

5
+ 2𝛼𝑚𝛽𝑚

5
− 𝛽2𝑚

5
.

Since |𝛽 | < 1, 𝛼 > 1, and 𝑛 ≥ 𝑚, the inequality����𝛼2𝑛

5
+ 𝛼2𝑚

5
− 2𝑎

���� <2
5
𝛼𝑛 + 1

5
𝛼𝑛 + 2

5
𝛼𝑛 + 1

5
𝛼𝑛 =

6
5
𝛼𝑛

holds. Dividing both sides by 1
5
(
𝛼2𝑚 + 𝛼2𝑛) , we obtain an inequality����1 − 2𝑎 · 5

𝛼2𝑚 + 𝛼2𝑛

���� < 6
𝛼𝑛
. (4)

If we set 𝑡 = 4 and

𝛾1 = 2, 𝛾2 =
√

5, 𝛾3 = 𝛼, 𝛾4 = 1 + 𝛼2𝑛−2𝑚;
𝑏1 = 𝑎, 𝑏2 = 2, 𝑏3 = −2𝑚, 𝑏4 = −1,

then the LHS of (4) becomes

Λ2 := 2𝑎 · 5
𝛼2𝑚 + 𝛼2𝑛 − 1 = 𝛾

𝑏1
1 𝛾

𝑏2
2 𝛾

𝑏3
3 𝛾

𝑏4
4 − 1.

If Λ2 = 0, by Galois conjugation 𝛼 = 𝛽 in Q(
√

5),

𝛼2𝑛 ≤ 𝛼2𝑚 + 𝛼2𝑛 = 2𝑎 · 4 = |𝛽2𝑚 + 𝛽2𝑛 | ≤ |𝛽 |2𝑚 + |𝛽 |2𝑛 ≤ 2,

which yields a contradiction. So Λ2 ≠ 0. Note that

𝐵 := 2𝑛 ≥ max{|𝑏1 |, |𝑏2 |, |𝑏3 |, |𝑏4 |},

and we can set 𝐴1 = 1.4, 𝐴2 = 1.7, 𝐴3 = 0.49 as in the previous step for Λ1. Since

ℎ(𝛾4) =ℎ(1 + 𝛼2𝑛−2𝑚)
≤ℎ(1) + ℎ(𝛼2𝑛−2𝑚) + log 2
=|2𝑛 − 2𝑚 |ℎ(𝛼) + log 2
=(𝑛 − 𝑚) log𝛼 + log 2,

we have that

max{2ℎ(𝛾4), | log 𝛾4 |, 0.16} ≤max{2(𝑛 − 𝑚) log𝛼 + log 4, log(2𝛼2𝑛−2𝑚), 0.16}
=2(𝑛 − 𝑚) log𝛼 + log 4
=2(𝑛 − 𝑚) log𝛼 + 1.386 . . . ,

and thus we can set
𝐴4 := 2(𝑛 − 𝑚) log𝛼 + 1.4.

Then, by Theorem 2 and inequality (4), we obtain

exp(−𝐶2 · (1 + log 2𝑛) · 𝐴4) < |Λ2 | <
6
𝛼𝑛
,

where

𝐶2 =1.4 × 307 × 44.5 × 22 (1 + log 2) × 1.4 × 1.7 × 0.49

=1.23815 . . . × 1014.
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Taking logarithms on both sides, we obtain

𝑛 log𝛼 < log 6 + 𝐶2 (1 + log 2𝑛) × 𝐴4

< log 6 + (1.3 · 1014) (1 + log 2𝑛) × (2(𝑛 − 𝑚) log𝛼 + 1.4)
< log 6 + (1.3 · 1014) (1 + log 2𝑛)
× (2 · 1.14 · 1012 · (1 + log 2𝑛) + 1.4)

(5)

by using (3). This inequality does not hold for 𝑛 > 3.18683 × 1030, i.e. the set of integer solutions of
𝐹2
𝑛 + 𝐹2

𝑚 = 2𝑎 is finite.

3. Reduction on 𝑛

To lower the upper bound of 𝑛 we use Dujella–Pethő’s reduction method. The following lemma is an
immediate variation of the result due to Dujella and Pethő from [7].

Lemma 1. Let 𝑀 be a positive integer, let 𝑝/𝑞 be a convergent of the continued fraction of the irrational
number 𝛾 such that 𝑞 > 6𝑀 , and let 𝐴, 𝐵, 𝜇 be some real numbers with 𝐴 > 0 and 𝐵 > 1. Let
𝜖 := ∥𝜇𝑞∥ − 𝑀 ∥𝛾𝑞∥, where ∥ · ∥ denotes the distance from the nearest integer. If 𝜖 > 0, then there
exists no solution to the inequality

0 < |𝑢𝛾 − 𝑣 + 𝜇 | < 𝐴𝐵−𝑤

in positive integers 𝑢, 𝑣 and 𝑤 with

𝑢 ≤ 𝑀 and 𝑤 ≥ log(𝐴𝑞/𝜖)
log 𝐵

.

We use this reduction in two steps.

Step 1. Compute the upper bound of 𝑤 := 𝑛 − 𝑚.

Step 2. Compute the upper bound of 𝑤 := 𝑛.

Now, we compute Step 1 of the reduction. Since

𝐹𝑛
2 =

𝛼2𝑛

5
− 2𝛼𝑛𝛽𝑛

5
+ 𝛽2𝑛

5
,

we have that

𝛼2𝑛

5
= 𝐹𝑛

2 + 2𝛼𝑛𝛽𝑛

5
− 𝛽2𝑛

5

< 𝐹𝑛
2 + 2

5
< 𝐹𝑛

2 + 𝐹𝑚2 = 2𝑎 .

Hence, 𝛼2𝑛

5 < 2𝑎 or 1 < 2𝑎 · 5 · 𝛼−2𝑛. Taking logarithms on both sides, we obtain

𝑧1 := 𝑎 log 2 − 2𝑛 log𝛼 + log 5 > 0.

Then, since
0 < 𝑧1 ≤ 𝑒𝑧1 − 1 <

7
𝛼𝑛−𝑚

by inequality (2), we obtain an inequality

0 < 𝑎 log 2 − 2𝑛 log𝛼 + log 5 <
7

𝛼𝑛−𝑚

and thus
0 < 𝑎

(
log 2
log𝛼

)
− 2𝑛 +

(
log 5
log𝛼

)
<

7
log𝛼

· 𝛼−(𝑛−𝑚) < 15𝛼−(𝑛−𝑚) .
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Now, let

𝑢 = 𝑎, 𝛾 =
log 2
log𝛼

∉ Q, 𝑣 = 2𝑛, 𝜇 =
log 5
log𝛼

,

𝐴 = 15 > 0, 𝐵 = 𝛼 > 1, 𝑤 = 𝑛 − 𝑚.

Since 𝑛 < 3.18683 × 1030 in the previous section and

𝑢 = 𝑎 ≤ 2𝑛 < 2 · 3.18683 × 1030 < 6.4 × 1030,

we can set 𝑀 := 6.4 × 1030. Then 𝑞 = 𝑞70 > 6𝑀 from the 70th convergent

𝑝70

𝑞70
=

228666343422267608843910896109913
158749759840390984049158390593424

of 𝛾 and

𝜖 =∥𝜇𝑞∥ − 𝑀 ∥𝛾𝑞∥
=0.050737 . . . − 0.036496 . . . = 0.01424 . . . .

Then, by Lemma 1

𝑛 − 𝑚 <
log(𝐴𝑞/𝜖)

log 𝐵
< 168.542 . . .

and, by inequality (5) of Step 2 in the previous section,

𝑛 log𝛼 < log 6 + (1.3 × 1014) (1 + log 2𝑛) (2(𝑛 − 𝑚) log𝛼 + 1.4)
≤ log 6 + (1.3 × 1014) (1 + log 2𝑛) (2 · 168 · log𝛼 + 1.4).

This inequality yields 1 ≤ 𝑛 < 1.92962×1018. Now, we compute Step 2 of the reduction. By inequality (4),

|1 − 𝑒𝑧2 | < 6
𝛼𝑛

holds if we set 𝜑(𝑡) = 5
(
1 + 𝛼2𝑡 )−1 and

𝑧2 := 𝑎 log 2 − 2𝑚 log𝛼 + log 𝜑(𝑛 − 𝑚).

If 𝑧2 > 0, then
0 < 𝑧2 < 𝑒𝑧2 − 1 <

6
𝛼𝑛
.

On the other hand, if 𝑧2 < 0, then
|1 − 𝑒𝑧2 | < 6

𝛼𝑛
< 6 · 1

12
=

1
2

for 𝑛 > 6, and thus
0 < |𝑧2 | ≤ 𝑒 |𝑧2 | − 1 = 𝑒 |𝑧2 | |𝑒𝑧2 − 1| < 2 · 6

𝛼𝑛
=

12
𝛼𝑛

holds. Hence we have
0 < |𝑧2 | <

12
𝛼𝑛
.

Dividing both sides by log𝛼, we obtain

0 <
����𝑎 (

log 2
log𝛼

)
− 2𝑚 +

(
log 𝜑(𝑛 − 𝑚)

log𝛼

)���� < 12
log𝛼

· 𝛼−𝑛 < 25𝛼−𝑛

and set

𝑢 = 𝑎, 𝛾 =
log 2
log𝛼

∉ Q, 𝑣 = 2𝑚, 𝜇 =
log 𝜑(𝑛 − 𝑚)

log𝛼
,

𝐴 = 25 > 0, 𝐵 = 𝛼 > 1, 𝑤 = 𝑛.
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Since
𝑢 = 𝑎 ≤ 2𝑛 < 2 · 1.92962 × 1018 < 4 · 1018,

we can set 𝑀 := 4 · 1018. Then 𝑞 = 𝑞92 > 6𝑀 from the 92nd convergent

𝑝92

𝑞92
=

110504885181872237696754298142651378827960967
76717122954194627742532516113798302944300109

of 𝛾 and 𝜖 = ∥𝜇𝑞∥ − 𝑀 ∥𝛾𝑞∥ > 0 for each 𝑛 − 𝑚 = 1, 2, . . . , 168. Then, by Lemma 1,

𝑤 = 𝑛 <
log(𝐴𝑞/𝜖)

log 𝐵

holds for each value of 𝑛 −𝑚. The largest value of the RHS is 230.46555 . . . when 𝑛 −𝑚 = 35. So, we may
check 𝐹2

𝑛 + 𝐹2
𝑚 = 2𝑎 for 0 ≤ 𝑚 ≤ 𝑛 ≤ 230. We can find all nonnegative solutions of the equation with the

help of computers for this feasible bound.
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