Math. Commun. **30** (2025), 171–177 DOI: 10.1000/100

Mathematical Communications

On the Diophantine equation $F_n^2 + F_m^2 = 2^a$

GA-HYUN JEONG AND POO-SUNG PARK*

Department of Mathematics Education, Kyungnam University, Changwon 51 767, Republic of Korea

Abstract. Let F_n be the *n*-th Fibonacci number. In this paper, we show that the only nonnegative solutions (n, m, a) of the Diophantine equation $F_n^2 + F_m^2 = 2^a$ with $n \ge m \ge 0$ are (1, 0, 0), (2, 0, 0), (3, 0, 2), (6, 0, 6), (1, 1, 1), (2, 1, 1), (2, 2, 1), (3, 3, 3), (6, 6, 7).

AMS subject classifications: 11B39, 11J86, 11D61 **Keywords**: Fibonacci numbers; Diophantine equation; linear forms in logarithms; reduction method Received November 28, 2024; accepted March 24, 2025

1. Introduction

Let $(F_n)_{\geq 0}$ be the Fibonacci sequence given by $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_{n+1} + F_n$, for all $n \geq 0$. Lots of mathematicians have studied the interesting properties of the Fibonacci sequence.

Bravo and Luca [3] showed that the Diophantine equation $F_n + F_m = 2^a$ in nonnegative integers n, m, a has finitely many solutions. Bravo and Bravo [1] extended it so that the Diophantine equation $F_n + F_m + F_\ell = 2^a$ also has finitely many solutions. The number of Fibonacci numbers on the LHS has been studied up to five [13, 14].

The equation $F_n \pm F_m = y^a$ has also been studied [6, 8, 9, 10, 11, 5, 15]. Recently, Bravo, Díaz, and Luca [2] have found all nonnegative solutions of $(F_n + F_m)/(F_r + F_s) = 2^a$. As such, various forms of the equations are being studied.

In the present paper, we investigate the Diophantine equation

$$F_n^2 + F_m^2 = 2^a$$

in nonnegative integers n, m, a. As in the previous papers, we use the Matveev theorem to show the finiteness of the solutions in §2 and the Dujella-Pethő theorem to reduce the bound for n in §3. The result is as follows.

Theorem 1. The only solutions of the Diophantine equation

$$F_n^2 + F_m^2 = 2^a$$

in nonnegative integers n, m and a with $n \ge m$ are given by

$$(n, m, a) \in \left\{ \begin{array}{c} (1, 0, 0), (2, 0, 0), (3, 0, 2), (6, 0, 6), (1, 1, 1), \\ (2, 1, 1), (2, 2, 1), (3, 3, 3), (6, 6, 7) \end{array} \right\}.$$

2. Finiteness

To find a bound for *n* we apply Matveev's theorem (Theorem 2) to $\Lambda = \Lambda_1, \Lambda_2$ in two steps.

Step 1. Compute $\Lambda_1 = 2^a \cdot \sqrt{5}^2 \cdot \alpha^{-2n}$ to obtain $(n - m) \log \alpha < (\text{an expression with } \log 2n)$.

Step 2. Compute $\Lambda_2 = 2^a \cdot \sqrt{5}^2 \alpha^{-2m} (1 + \alpha^{2n-2m})^{-1}$ to obtain $n \log \alpha < (\text{an expression with } (n-m)\log \alpha)$.

Combining two inequalities, we obtain a bound of n. In this process, we need the logarithmic height.

https://www.mathos.unios.hr/mc

Email addresses: gahyeon.math@gmail.com (G.-H. Jeong), pspark@kyungnam.ac.kr (P.-S. Park) *Corresponding author.

^{© 2025} School of Applied Mathematics and Informatics, University of Osijek

G.-H. Jeong and P.-S. Park

Definition 1. Let η be an algebraic number of degree *d* with minimal polynomial

$$a_d x^d + a_{d-1} x^{d-1} + \dots + a_0 = a_d \prod_{i=1}^d (x - \eta^{(i)}),$$

where a_i 's are relatively prime integers with $a_d > 0$, and $\eta^{(i)}$'s are conjugates of η . Then

$$h(\eta) = \frac{1}{d} \left(\log a_d + \sum_{i=1}^d \log \left(\max\{|\eta^{(i)}|, 1\} \right) \right)$$

is called the *logarithmic height* of η .

In particular, if $\eta = p/q$ is a rational number with gcd(p,q) = 1, then $h(\eta) = \log \max\{|p|, |q|\}$. The following properties holds:

- $h(\eta \pm \gamma) \le h(\eta) + h(\gamma) + \log 2$.
- $h(\eta \gamma^{\pm 1}) \le h(\eta) + h(\gamma)$.
- $h(\eta^s) = |s|h(\eta)$.

Theorem 2 (Matveev [12, Corollary 2.3], [4, Theorem 9.4]). Assume that $\gamma_1, \ldots, \gamma_t$ are positive real algebraic numbers in a real algebraic number field K of degree D, $b_1, \ldots, b_t \in \mathbb{Z}$, and

$$\Lambda \coloneqq \gamma_1^{b_1} \cdots \gamma_t^{b_t} - 1$$

is not zero. Then

$$|\Lambda| > \exp(-1.4 \times 30^{t+3} \times t^{4.5} \times D^2(1 + \log D)(1 + \log B)A_1 \cdots A_t).$$

when the following holds:

- $B \ge \max\{|b_1|, ..., |b_t|\}$
- $A_i \ge \max\{Dh(\gamma_i), |\log \gamma_i|, 0.16\}$ for all i = 1, ..., t.

First, we compute Step 1. By the Binet formula

$$F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n) \text{ for } n \ge 0$$

where

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 and $\beta = \frac{1-\sqrt{5}}{2}$

Note that $1 < \alpha < 2$ and

$$\alpha^{n-2} < F_n < \alpha^{n-1} < \alpha^n.$$

Thus, since

$$2^{a} = F_{n}^{2} + F_{m}^{2} < \alpha^{2n} + \alpha^{2m} < 2\alpha^{2n} < 2 \cdot 2^{2n} = 2^{2n+1},$$

we have $a \leq 2n$. Arranging the equation

$$\left(\frac{\alpha^n - \beta^n}{\sqrt{5}}\right)^2 + \left(\frac{\alpha^m - \beta^m}{\sqrt{5}}\right)^2 = 2^a,\tag{1}$$

we obtain

$$\begin{aligned} \left| \frac{\alpha^{2n}}{5} - 2^{\alpha} \right| &= \left| \frac{2\alpha^{n}\beta^{n}}{5} - \frac{\beta^{2n}}{5} - \frac{\alpha^{2m}}{5} + \frac{2\alpha^{m}\beta^{m}}{5} - \frac{\beta^{2m}}{5} \right| \\ &< \frac{2\alpha^{n+m}}{5} + \frac{\alpha^{n+m}}{5} + \frac{\alpha^{m+n}}{5} + \frac{2\alpha^{m+n}}{5} + \frac{\alpha^{n+m}}{5} \\ &= \frac{7}{5}\alpha^{n+m}, \end{aligned}$$

On the Diophantine equation $F_n^2 + F_m^2 = 2^a$

since $\alpha > 1$ and $|\beta| < 1$. Dividing by $\frac{\alpha^{2n}}{5}$, we obtain an inequality

$$\left|1 - 2^a \cdot \frac{5}{\alpha^{2n}}\right| < \frac{7}{\alpha^{n-m}}.$$
(2)

We apply the Matveev theorem to

$$\Lambda_1 = 2^a \cdot \frac{5}{\alpha^{2n}} - 1.$$

It is clear that $\Lambda_1 \neq 0$. Assume that t = 3 and

$$\gamma_1 = 2, \gamma_2 = \sqrt{5}, \gamma_3 = \alpha; \quad b_1 = a, b_2 = 2, b_3 = -2n.$$

Then

$$B \coloneqq 2n \ge \max\{|b_1|, |b_2|, |b_3|\}$$

and

$$A_1 := 1.4 \ge \max\{Dh(\gamma_1), |\log \gamma_1|, 0.16\}$$
$$= \max\{2 \log 2, |\log 2|, 0.16\}$$
$$= 2 \log 2 = 1.386...,$$

where $D = [\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$. Next, we choose A_2 . Note that the minimal polynomial of $\gamma_2 = \sqrt{5}$ is $x^2 - 5$ and

$$h(\gamma_2) = \frac{1}{2}(\log 1 + \log \sqrt{5} + \log |-\sqrt{5}|) = \frac{1}{2}\log 5.$$

Then

$$A_2 := 1.7 \ge \max\{Dh(\gamma_2), |\log \gamma_2|, 0.16\}$$
$$= \max\{2 \cdot \frac{1}{2}\log 5, |\log \sqrt{5}|, 0.16\}$$
$$= \log 5 = 1.609 \dots$$

Finally, let us choose A_3 as follows:

$$A_3 \coloneqq 0.49 \ge \max\{Dh(\gamma_3), |\log \gamma_3|, 0.16\} \\ = \max\{2 \cdot \frac{1}{2} \log \alpha, |\log \alpha|, 0.16\} \\ = \log \alpha = 0.4812....$$

Let

$$C_1 = 1.4 \times 30^{t+3} \cdot t^{4.5} \cdot D^2 (1 + \log D) \cdot A_1 \cdot A_2 \cdot A_3$$

= 1.4 × 30⁶ · 3^{4.5} · 2² (1 + log 2) × 1.4 × 1.7 × 0.49
= 1.13091 ... × 10¹².

Then, by Theorem 2 and inequality (2), we obtain the inequality

$$\exp(-C_1 \cdot (1 + \log 2n)) < |\Lambda_1| < \frac{7}{\alpha^{n-m}}$$

Thus,

$$-C_1 \cdot (1 + \log 2n) < \log 7 - (n - m) \log \alpha$$

and then

$$(n-m)\log\alpha < \log 7 + C_1(1+\log 2n) < \log 7 + 1.131 \times 10^{12}(1+\log 2n) < 1.14 \times 10^{12}(1+\log 2n).$$
(3)

Now, we compute Step 2. By arranging (1), we obtain

$$\frac{\alpha^{2n}}{5} + \frac{\alpha^{2m}}{5} - 2^a = \frac{2\alpha^n \beta^n}{5} - \frac{\beta^{2n}}{5} + \frac{2\alpha^m \beta^m}{5} - \frac{\beta^{2m}}{5}$$

Since $|\beta| < 1$, $\alpha > 1$, and $n \ge m$, the inequality

$$\left|\frac{\alpha^{2n}}{5} + \frac{\alpha^{2m}}{5} - 2^a\right| < \frac{2}{5}\alpha^n + \frac{1}{5}\alpha^n + \frac{2}{5}\alpha^n + \frac{1}{5}\alpha^n = \frac{6}{5}\alpha^n$$

holds. Dividing both sides by $\frac{1}{5}(\alpha^{2m} + \alpha^{2n})$, we obtain an inequality

$$\left|1 - 2^a \cdot \frac{5}{\alpha^{2m} + \alpha^{2n}}\right| < \frac{6}{\alpha^n}.$$
(4)

If we set t = 4 and

$$\gamma_1 = 2, \gamma_2 = \sqrt{5}, \gamma_3 = \alpha, \gamma_4 = 1 + \alpha^{2n-2m};$$

 $b_1 = a, b_2 = 2, b_3 = -2m, b_4 = -1,$

then the LHS of (4) becomes

$$\Lambda_2 \coloneqq 2^a \cdot \frac{5}{\alpha^{2m} + \alpha^{2n}} - 1 = \gamma_1^{b_1} \gamma_2^{b_2} \gamma_3^{b_3} \gamma_4^{b_4} - 1.$$

If $\Lambda_2 = 0$, by Galois conjugation $\overline{\alpha} = \beta$ in $\mathbb{Q}(\sqrt{5})$,

$$\alpha^{2n} \le \alpha^{2m} + \alpha^{2n} = 2^a \cdot 4 = |\beta^{2m} + \beta^{2n}| \le |\beta|^{2m} + |\beta|^{2n} \le 2$$

which yields a contradiction. So $\Lambda_2 \neq 0$. Note that

$$B \coloneqq 2n \ge \max\{|b_1|, |b_2|, |b_3|, |b_4|\},\$$

and we can set $A_1 = 1.4$, $A_2 = 1.7$, $A_3 = 0.49$ as in the previous step for Λ_1 . Since

$$h(\gamma_4) = h(1 + \alpha^{2n-2m})$$

$$\leq h(1) + h(\alpha^{2n-2m}) + \log 2$$

$$= |2n - 2m|h(\alpha) + \log 2$$

$$= (n - m) \log \alpha + \log 2,$$

we have that

$$\begin{aligned} \max\{2h(\gamma_4), |\log \gamma_4|, 0.16\} &\leq \max\{2(n-m)\log \alpha + \log 4, \log(2\alpha^{2n-2m}), 0.16\} \\ &= 2(n-m)\log \alpha + \log 4 \\ &= 2(n-m)\log \alpha + 1.386\dots, \end{aligned}$$

and thus we can set

$$A_4 \coloneqq 2(n-m)\log\alpha + 1.4.$$

Then, by Theorem 2 and inequality (4), we obtain

$$\exp(-C_2 \cdot (1 + \log 2n) \cdot A_4) < |\Lambda_2| < \frac{6}{\alpha^n},$$

where

$$C_2 = 1.4 \times 30^7 \times 4^{4.5} \times 2^2 (1 + \log 2) \times 1.4 \times 1.7 \times 0.49$$

= 1.23815 ... × 10¹⁴.

On the Diophantine equation $F_n^2 + F_m^2 = 2^a$

Taking logarithms on both sides, we obtain

$$n \log \alpha < \log 6 + C_2(1 + \log 2n) \times A_4$$

$$< \log 6 + (1.3 \cdot 10^{14})(1 + \log 2n) \times (2(n - m) \log \alpha + 1.4)$$

$$< \log 6 + (1.3 \cdot 10^{14})(1 + \log 2n)$$

$$\times (2 \cdot 1.14 \cdot 10^{12} \cdot (1 + \log 2n) + 1.4)$$
(5)

by using (3). This inequality does not hold for $n > 3.18683 \times 10^{30}$, i.e. the set of integer solutions of $F_n^2 + F_m^2 = 2^a$ is finite.

3. Reduction on n

To lower the upper bound of n we use Dujella–Pethő's reduction method. The following lemma is an immediate variation of the result due to Dujella and Pethő from [7].

Lemma 1. Let *M* be a positive integer, let p/q be a convergent of the continued fraction of the irrational number γ such that q > 6M, and let A, B, μ be some real numbers with A > 0 and B > 1. Let $\epsilon := \|\mu q\| - M \|\gamma q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\epsilon > 0$, then there exists no solution to the inequality

$$0 < |u\gamma - v + \mu| < AB^{-w}$$

in positive integers u, v and w with

$$u \le M$$
 and $w \ge \frac{\log(Aq/\epsilon)}{\log B}$

We use this reduction in two steps.

Step 1. Compute the upper bound of $w \coloneqq n - m$.

Step 2. Compute the upper bound of w := n.

Now, we compute Step 1 of the reduction. Since

$$F_n^2 = \frac{\alpha^{2n}}{5} - \frac{2\alpha^n \beta^n}{5} + \frac{\beta^{2n}}{5},$$

we have that

$$\frac{\alpha^{2n}}{5} = F_n^2 + \frac{2\alpha^n \beta^n}{5} - \frac{\beta^2 n}{5}$$
$$< F_n^2 + \frac{2}{5} < F_n^2 + F_m^2 = 2^a.$$

Hence, $\frac{\alpha^{2n}}{5} < 2^a$ or $1 < 2^a \cdot 5 \cdot \alpha^{-2n}$. Taking logarithms on both sides, we obtain

$$z_1 \coloneqq a \log 2 - 2n \log \alpha + \log 5 > 0.$$

Then, since

$$0 < z_1 \le e^{z_1} - 1 < \frac{7}{\alpha^{n-m}}$$

by inequality (2), we obtain an inequality

$$0 < a \log 2 - 2n \log \alpha + \log 5 < \frac{7}{\alpha^{n-m}}$$

and thus

$$0 < a\left(\frac{\log 2}{\log \alpha}\right) - 2n + \left(\frac{\log 5}{\log \alpha}\right) < \frac{7}{\log \alpha} \cdot \alpha^{-(n-m)} < 15\alpha^{-(n-m)}.$$

Now, let

$$u = a, \quad \gamma = \frac{\log 2}{\log \alpha} \notin \mathbb{Q}, \quad v = 2n, \quad \mu = \frac{\log 5}{\log \alpha},$$

$$A = 15 > 0, \quad B = \alpha > 1, \quad w = n - m.$$

Since $n < 3.18683 \times 10^{30}$ in the previous section and

$$u = a \le 2n < 2 \cdot 3.18683 \times 10^{30} < 6.4 \times 10^{30},$$

we can set $M := 6.4 \times 10^{30}$. Then $q = q_{70} > 6M$ from the 70th convergent

$$\frac{p_{70}}{q_{70}} = \frac{228666343422267608843910896109913}{158749759840390984049158390593424}$$

of γ and

$$\epsilon = \|\mu q\| - M \|\gamma q\|$$

= 0.050737... - 0.036496... = 0.01424...

Then, by Lemma 1

$$m-m < rac{\log(Aq/\epsilon)}{\log B} < 168.542\dots$$

and, by inequality (5) of Step 2 in the previous section,

$$n \log \alpha < \log 6 + (1.3 \times 10^{14})(1 + \log 2n)(2(n - m) \log \alpha + 1.4)$$

$$\leq \log 6 + (1.3 \times 10^{14})(1 + \log 2n)(2 \cdot 168 \cdot \log \alpha + 1.4).$$

This inequality yields $1 \le n < 1.92962 \times 10^{18}$. Now, we compute Step 2 of the reduction. By inequality (4),

$$|1 - e^{z_2}| < \frac{6}{\alpha^n}$$

holds if we set $\varphi(t) = 5(1 + \alpha^{2t})^{-1}$ and

$$z_2 \coloneqq a \log 2 - 2m \log \alpha + \log \varphi(n - m).$$

If $z_2 > 0$, then

$$0 < z_2 < e^{z_2} - 1 < \frac{6}{\alpha^n}.$$

On the other hand, if $z_2 < 0$, then

$$|1 - e^{z_2}| < \frac{6}{\alpha^n} < 6 \cdot \frac{1}{12} = \frac{1}{2}$$

for n > 6, and thus

$$0 < |z_2| \le e^{|z_2|} - 1 = e^{|z_2|} |e^{z_2} - 1| < 2 \cdot \frac{6}{\alpha^n} = \frac{12}{\alpha^n}$$

holds. Hence we have

$$0 < |z_2| < \frac{12}{\alpha^n}.$$

Dividing both sides by $\log \alpha$, we obtain

$$0 < \left| a \left(\frac{\log 2}{\log \alpha} \right) - 2m + \left(\frac{\log \varphi(n-m)}{\log \alpha} \right) \right| < \frac{12}{\log \alpha} \cdot \alpha^{-n} < 25\alpha^{-n}$$

and set

$$u = a, \quad \gamma = \frac{\log 2}{\log \alpha} \notin \mathbb{Q}, \quad v = 2m, \quad \mu = \frac{\log \varphi(n - m)}{\log \alpha},$$

$$A = 25 > 0, \quad B = \alpha > 1, \quad w = n.$$

On the Diophantine equation $F_n^2 + F_m^2 = 2^a$

Since

$$u = a \le 2n < 2 \cdot 1.92962 \times 10^{18} < 4 \cdot 10^{18},$$

we can set $M := 4 \cdot 10^{18}$. Then $q = q_{92} > 6M$ from the 92nd convergent

$$\frac{p_{92}}{q_{92}} = \frac{11050488518187223769675429814265137882796096777}{7671712295419462774253251611379830294430010977}$$

of γ and $\epsilon = \|\mu q\| - M \|\gamma q\| > 0$ for each $n - m = 1, 2, \dots, 168$. Then, by Lemma 1,

$$w = n < \frac{\log(Aq/\epsilon)}{\log B}$$

holds for each value of n - m. The largest value of the RHS is 230.46555... when n - m = 35. So, we may check $F_n^2 + F_m^2 = 2^a$ for $0 \le m \le n \le 230$. We can find all nonnegative solutions of the equation with the help of computers for this feasible bound.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2021-NR058832).

The authors would like to thank referees for their valuable comments.

References

- E. F. BRAVO and J. J. BRAVO, Powers of two as sums of three Fibonacci numbers, *Lith. Math. J.* 55 (2015), no. 3, 301–311.
- J. J. BRAVO, M. DÍAZ, and F. LUCA, Ratios of sums of two Fibonacci numbers equal to powers of 2, *Math. Commun.* 25 (2020), no. 2, 185–199.
- [3] J. J. BRAVO and F. LUCA, On the Diophantine equation $F_n + F_m = 2^a$, Quaest. Math. 39 (2016), no. 3, 391–400.
- [4] Y. BUGEAUD, M. MIGNOTTE, and S. SIKSEK, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969–1018.
- [5] Z. ŞIAR and R. KESKIN, On the Diophantine equation $F_n F_m = 2^a$, Colloq. Math. 159 (2020), no. 1, 119–126.
- [6] B. DEMIRTÜRK BITIM and R. KESKIN, On solutions of the diophantine equation $F_n F_m = 3^a$, *Proc. Indian Acad. Sci. Math. Sci.* **129** (2019), no. 5, Paper No. 81, 10.
- [7] A. DUJELLA and A. PETHŐ, A generalization of a theorem of Baker and Davenport, *Quart. J. Math. Oxford Ser.* (2) 49 (1998), no. 195, 291–306.
- [8] F. ERDUVAN and R. KESKIN, Nonnegative integer solutions of the equation $F_n F_m = 5^a$, Turkish J. Math. 43 (2019), no. 3, 1115–1123.
- [9] S. KEBLI, O. KIHEL, J. LARONE, and F. LUCA, On the nonnegative integer solutions to the equation $F_n \pm F_m = y^a$, *J. Number Theory* **220** (2021), 107–127.
- [10] O. KIHEL and J. LARONE, On the nonnegative integer solutions of the equation $F_n \pm F_m = y^a$, Quaest. Math. 44 (2021), no. 8, 1133–1139.
- [11] F. LUCA and V. PATEL, On perfect powers that are sums of two Fibonacci numbers, J. Number Theory 189 (2018), 90–96.
- [12] E. M. MATVEEV, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, *Izv. Ross. Akad. Nauk Ser. Mat.* 64 (2000), no. 6, 125–180.
- [13] P. TIEBEKABE and I. DIOUF, On solutions of the Diophantine equation $F_{n_1} + F_{n_2} + F_{n_3} + F_{n_4} = 2^a$, J. Algebra Relat. Topics 9 (2021), no. 2, 131–148.
- [14] P. TIEBEKABE and I. DIOUF, On the Diophantine equation $\sum_{k=1}^{5} F_{n_k} = 2^a$, Fibonacci Quart. 60 (2022), no. 5, 384–400.
- [15] V. ZIEGLER, Sums of Fibonacci numbers that are perfect powers, Quaest. Math. 46 (2023), no. 8, 1717–1742.