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Abstract. This paper is concerned with the following Kirchhoff-type equation:

−
(
𝑎 + 𝑏

∫ +∞

0
|𝑢′ (𝑥) |2𝑑𝑥

)
𝑢′′ + 𝑝(𝑥)𝑢 = 𝑞(𝑥) 𝑓 (𝑢), 𝑥 ∈ (0,+∞),

where 𝑎 > 0, 𝑏 ≥ 0, are constants, 𝑓 ∈ 𝐶 (R), 𝑝 ∈ 𝐶 (R+,R+
∗ ) and 𝑞 ∈ 𝐿1 (0,+∞). Firstly, by using Ekeland’s variational

principle, we show the existence of solutions to the above equation in the case where 𝑓 is a sublinear function. Then,
we establish the existence of solutions in the case where 𝑓 is a superlinear function by using the mountain pass theorem.
Moreover, we discuss the asymptotic behavior of the obtained solutions in both cases with respect to the parameter 𝑏.
Some recent results are complemented and extended.
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1. Introduction

In this paper, we consider the following Kirchhoff-type equation:
−

(
𝑎 + 𝑏

∫ +∞

0
|𝑢′ (𝑥) |2𝑑𝑥

)
𝑢′′ + 𝑝(𝑥)𝑢 = 𝑞(𝑥) 𝑓 (𝑢), 𝑥 ∈ (0,+∞),

𝑢(0) = 0,
(P𝑏)

where 𝑎 > 0 and 𝑏 ≥ 0 are constants, 𝑓 ∈ 𝐶 (R), 𝑝 ∈ 𝐶 (R+,R+
∗ ), and 𝑞 ∈ 𝐿1 (0,+∞).

The problem (P𝑏) is related to the stationary analogue of the following Kirchhoff equation:

𝜕2𝑢

𝜕𝑡2
−

(
𝛼 + 𝛽

∫ +∞

0

����𝜕𝑢𝜕𝑥 ����2 𝑑𝑥
)
𝜕2𝑢

𝜕𝑥2 = 𝑔(𝑥, 𝑢),

which was introduced by Kirchhoff [16] as a generalization of the well-known D’Alembert’s wave equation

𝜌
𝜕2𝑢

𝜕𝑡2
−

(
𝜌0
ℎ

+ 𝐸

2𝐿

∫ 𝐿

0

����𝜕𝑢𝜕𝑥 ����2 𝑑𝑥
)
𝜕2𝑢

𝜕𝑥2 = 𝑔(𝑥, 𝑢), (1)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string
produced by transverse vibrations.
In (1), 𝑢 denotes the displacement, 𝑔(𝑥, 𝑢) is the external force and the other parameters have the following
meaning: 𝐿 is the length of the string, ℎ is the area of cross section, 𝐸 is the Young modulus of the material,
𝜌 is the mass density, and 𝜌0 is the initial tension.

Email addresses: ikettaf@usthb.dz (I. Kettaf), skhoutir@usthb.dz (S. Khoutir), hkasri@usthb.dz(H. Kasri)
∗Corresponding author.

https://www.mathos.unios.hr/mc

© 2026 School of Applied Mathematics and Informatics, University of Osijek

https://doi.org/10.1000/100
https://orcid.org/0009-0004-8591-334X
https://orcid.org/0000-0002-3762-2474
https://orcid.org/0009-0003-8997-9293
mailto:ikettaf@usthb.dz
mailto:skhoutir@usthb.dz
mailto:hkasri@usthb.dz
https://www.mathos.unios.hr/mc


I. Kettaf, S. Khoutir, and H. Kasri

We notice that problem (1) appears in other fields such as biological systems, where 𝑢 describes a process
which depends on the average of the density itself (for instance, population density). For more information
on the physical background of problem (1), we refer the readers to [1, 4, 17, 21] and the references therein.

In the recent decades, the following Kirchhoff-type equation:

−
(
𝑎 + 𝑏

∫
Ω

|∇𝑢 |2𝑑𝑥
)
Δ𝑢 +𝑉 (𝑥)𝑢 = 𝑓 (𝑥, 𝑢), 𝑥 ∈ Ω,

where Ω is a smooth bounded domain of R𝑁 or Ω = R𝑁 , has been extensively investigated, and many
interesting results have been obtained by means of variational methods, see for instance [3, 9, 11, 14, 18,
20, 23, 24, 26] and the references therein.

However, there are a few papers dealing with the original case (1) posed on intervals 𝐼 ⊆ R, see
[8, 13, 15]. In [13], the authors considered the following class of the Kirchhoff-type second-order impulsive
differential problem:

𝐾

(∫ +∞
0

(
|𝑢′ (𝑡) |2 + 𝑞(𝑡) |𝑢(𝑡) |2

)
𝑑𝑡

)
(−𝑢′′ (𝑡) + 𝑞(𝑡)𝑢(𝑡)) = 𝜆 𝑓 (𝑡, 𝑢(𝑡)), 𝑡 ∈ [0,+∞), 𝑡 ≠ 𝑡 𝑗 ,

Δ
(
𝑢′

(
𝑡 𝑗

) )
= 𝜆𝐼 𝑗

(
𝑢

(
𝑡 𝑗

) )
,

𝑢′ (0+) = 𝑔(𝑢(0)), 𝑢′ (+∞) = 0,

where 𝐾 : [0,+∞) → R is a continuous function, 𝑞 ∈ 𝐿∞ [0,+∞), 𝜆 is a control parameter, 𝐼 𝑗 ∈ 𝐶 (R,R)
for 1 ⩽ 𝑗 ⩽ 𝑝, 0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑝 < +∞, Δ

(
𝑢′

(
𝑡 𝑗

) )
= 𝑢′

(
𝑡+
𝑗

)
− 𝑢′

(
𝑡−
𝑗

)
= lim

𝑡→𝑡+
𝑗

𝑢′ (𝑡) − lim
𝑡→𝑡−

𝑗

𝑢′ (𝑡),

𝑓 : [0,+∞) × R → R is an 𝐿2-Carathéodory function, and 𝑔 : R → R is a Lipschitz continuous function.
Using variational methods, they established the existence of at least one weak solution as well as infinitely
many weak solutions for the above problem.

In [8], the authors investigated the following Kirchhoff-type second-order boundary value problem:{ (
𝑎 + 𝜆

∫ +∞
0

(
𝑢′ (𝑡)2 + 𝑏𝑢(𝑡)2) d𝑡

)
(−𝑢′′ (𝑡) + 𝑏𝑢(𝑡)) = 𝑓 (𝑢(𝑡)) for a.e. 𝑡 ∈ (0,+∞),

𝑢(0) = 𝑢(+∞) = 0,

where 𝑎 and 𝑏 are positive constants, 𝜆 ≥ 0 is a parameter and 𝑓 ∈ 𝐶 (R+,R+). By using the mountain pass
lemma in combination with the Pohozaev identity, they established the existence of a positive solution for
the above equation in the case where 𝑓 is superlinear.

When 𝑏 = 0 and 𝑎 = 1 in (P𝑏), equation (P𝑏) becomes the following semilinear equation:

−𝑢′′ + 𝑝(𝑥)𝑢 = 𝑓 (𝑥, 𝑢). (2)

Some interesting studies related to (2) by variational methods can be found in [5, 6, 7, 12, 19, 22].
Motivated by the above works, in the present paper, by using Ekeland’s variational principle we first

investigate the existence of solutions to problem (P𝑏) with sublinear nonlinearity 𝑓 . Then, we study the
existence of solutions in the case where 𝑓 is a superlinear function by using the mountain pass theorem.
Finally, we discuss the asymptotic behavior of the obtained solutions in both cases with respect to the
parameter 𝑏.

The outline of this paper is as follows. In Section 2, we introduce the variational framework associated
with problem (P𝑏). Section 3 is devoted to the study of the sublinear case and the proof of Theorems 1 and
2. In Section 4, we focus on the study of the superlinear case and establish the proof of Theorem 4.

2. Variational framework

Throughout this paper, we use the following notations:

• ∥.∥𝑟 denotes the usual 𝐿𝑟−norm for 𝑟 ∈ [1,+∞];

• 𝑋∗ denotes the topological dual space of the Banach space 𝑋;
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• 𝐶𝑐 (0,+∞) denotes the space of continuous functions with compact support in (0,+∞);

• ⇀ denotes the weak convergence in 𝑋;

• 𝐵𝜌 denotes the open ball of center 0 and radius 𝜌;

• 𝐵𝜌 denotes the closed ball of center 0 and radius 𝜌;

• 𝜕𝐵𝜌 := {𝑦 ∈ 𝑋 : ∥𝑦∥ = 𝜌};

• 𝑜𝑛 (1) → 0 as 𝑛→ ∞;

We consider the Sobolev space

𝐻1
0 (0,+∞) =

{
𝑢 ∈ 𝐿2 (0,+∞) : 𝑢′ ∈ 𝐿2 (0,+∞), 𝑢(0) = 0

}
,

and let 𝐻 be the subspace of 𝐻1
0 (0,+∞) defined by

𝐻 =

{
𝑢 ∈ 𝐻1

0 (0,+∞) :
∫ +∞

0
𝑝(𝑥)𝑢2𝑑𝑥 < +∞

}
.

Obviously, 𝐻 is a Hilbert space with a scalar product and norm given by

(𝑢, 𝑣) =
∫ +∞

0
(𝑎𝑢′𝑣′ + 𝑝(𝑥)𝑢𝑣)𝑑𝑥 and ∥𝑢∥2 =

∫ +∞

0
(𝑎 |𝑢′ |2 + 𝑝(𝑥)𝑢2)𝑑𝑥,

for all 𝑢, 𝑣 ∈ 𝐻.
Under the assumption (𝑃), it is easy to show that 𝐻 is embedded continuously into 𝐻1

0 (0,+∞) and therefore
also into 𝐿𝑟 (0,+∞) for 𝑟 ∈ [2,+∞]. Thus, there exists 𝜇𝑟 > 0 such that

∥𝑢∥𝑟 ≤ 𝜇𝑟 ∥𝑢∥, ∀𝑢 ∈ 𝐻. (3)

We notice that if 𝑢 ∈ 𝐻, then lim
𝑥→+∞

𝑢(𝑥) = 0.
For the problem (P𝑏), the associated energy functional is defined on 𝐻 as follows:

𝐼𝑏 (𝑢) =
1
2
∥𝑢∥2 + 𝑏

4

( ∫ +∞

0
|𝑢′ |2𝑑𝑥

)2
−

∫ +∞

0
𝑞(𝑥)𝐹 (𝑢)𝑑𝑥, (4)

where 𝐹 (𝑢) =
∫ 𝑢

0
𝑓 (𝑠)𝑑𝑠.

We have the following result.

Lemma 1. The functional 𝐼𝑏 is of class 𝐶1 on 𝐻, and

⟨𝐼 ′𝑏 (𝑢), 𝑣⟩ = (𝑢, 𝑣) + 𝑏
( ∫ +∞

0
|𝑢′ |2𝑑𝑥

) ∫ +∞

0
𝑢′𝑣′𝑑𝑥 −

∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢)𝑣𝑑𝑥,

for all 𝑢, 𝑣 ∈ 𝐻.

Proof. We consider the functional 𝐽 defined on 𝐻 by

𝐽 (𝑢) =
∫ +∞

0
𝑞(𝑥)𝐹 (𝑢)𝑑𝑥.

By combining ( 𝑓1) and (𝐹1) (which are introduced in Section 3 and Section 4) with (3), we can easily derive
that for any 𝑢 ∈ 𝐻, the inequality

| 𝑓 (𝑢) | ≤ 𝐶∥𝑢∥ , (5)

3
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where 𝐶∥𝑢∥ > 0 is the constant given by

𝐶∥𝑢∥ =

{
𝛼1𝜇

𝜃−1
∞ ∥𝑢∥ 𝜃−1, if ( 𝑓1) holds,

𝛼2 + 𝛽𝜇𝜃−1
∞ ∥𝑢∥ 𝜃−1, if (𝐹1) holds.

Then, it follows that
|𝐹 (𝑢) | ≤ 𝜇∞𝐶∥𝑢∥ ∥𝑢∥, ∀𝑢 ∈ 𝐻,

which implies that 𝐽 is well-defined on 𝐻 since 𝑞 ∈ 𝐿1 (0,+∞).
To prove that 𝐼𝑏 is of class 𝐶1 on 𝐻, it is sufficient to prove this property only for 𝐽. For this purpose, firstly
we prove that 𝐽 is Gâteaux differentiable, and then we show that 𝐽′

𝐺
is continuous.

Claim 1. 𝐽 is Gâteaux differentiable.
It is obvious that for all 𝑢, 𝑣 ∈ 𝐻, and almost every 𝑥 ∈ (0,+∞)

lim
𝑡−→0

𝑞(𝑥) 𝐹 (𝑢(𝑥) + 𝑡𝑣(𝑥)) − 𝐹 (𝑢(𝑥))
𝑡

= 𝑞(𝑥) 𝑓 (𝑢(𝑥))𝑣(𝑥).

Indeed, by the mean value theorem there exists a real number 0 < 𝜃𝑡 < |𝑡 | with |𝑡 | ≤ 1 such that

𝑞(𝑥)
(
𝐹
(
𝑢(𝑥) + 𝑡𝑣(𝑥)

)
− 𝐹

(
𝑢(𝑥)

) )
= 𝑡𝑞(𝑥) 𝑓

(
𝑢(𝑥) + 𝜃𝑡𝑣(𝑥)

)
𝑣(𝑥), (6)

and by continuity of 𝑓 we obtain the result.
Once again, from ( 𝑓1), (𝐹1), (3) and the inequality |𝑎 + 𝑏 |𝑟 ≤ 𝛾𝑟 ( |𝑎 |𝑟 + |𝑏 |𝑟 ) with 𝑎, 𝑏 ∈ R we check that�� 𝑓 (𝑢(𝑥) + 𝜃𝑡𝑣(𝑥))𝑣(𝑥)�� ≤ 𝐶∥𝑢∥ ,∥𝑣 ∥ , (7)

where 𝐶∥𝑢∥ ,∥𝑣 ∥ > 0 denotes the constant given by

𝐶∥𝑢∥ ,∥𝑣∥ = 𝜇∞∥𝑣∥
{
𝛼1𝛾𝜃−1𝜇

𝜃−1
∞

(
∥𝑢∥ 𝜃−1 + ∥𝑣∥ 𝜃−1) , if ( 𝑓1) holds,

𝛼2 + 𝛽𝛾𝜃−1𝜇
𝜃−1
∞

(
∥𝑢∥ 𝜃−1 + ∥𝑣∥ 𝜃−1) , if (𝐹1) holds.

Hence, from (6) and (7), we conclude that

𝑞(𝑥)
�����𝐹 (

𝑢(𝑥) + 𝑡𝑣(𝑥)
)
− 𝐹

(
𝑢(𝑥)

)
𝑡

����� = 𝑞(𝑥)��� 𝑓 (𝑢(𝑥) + 𝜃𝑡𝑣(𝑥))𝑣(𝑥)���
≤ 𝐶∥𝑢∥ ,∥𝑣 ∥𝑞(𝑥).

As the function 𝑞 ∈ 𝐿1 (0,+∞), by the Lebesgue dominated convergence theorem we have

lim
𝑡−→0

∫ +∞

0
𝑞(𝑥) 𝐹 (𝑢 + 𝑡𝑣) − 𝐹 (𝑢)

𝑡
𝑑𝑥 =

∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢)𝑣𝑑𝑥.

Since the right-hand side, as a function of 𝑣, is a continuous and linear functional on 𝐻, it is the Gâteaux
differential 𝐽′

𝐺
of 𝐽.

Claim 2. 𝐽′
𝐺

is continuous.
We complete the proof by checking that the function 𝐽′

𝐺
is continuous on 𝐻∗. For this purpose, let take {𝑢𝑛}

in 𝐻 such that 𝑢𝑛 −→ 𝑢 as 𝑛 −→ +∞. Up to a subsequence, we may assume that

1. 𝑢𝑛 −→ 𝑢 in 𝐿𝑟 (0,+∞), ∀𝑟 ∈ [2,+∞];

2. 𝑢𝑛 (𝑥) −→ 𝑢(𝑥) a.e in (0,+∞).

We have for all 𝑣 ∈ 𝐻 ���⟨𝐽′𝐺 (𝑢𝑛) − 𝐽′𝐺 (𝑢), 𝑣⟩
��� ≤ ∫ +∞

0
𝑞(𝑥) | 𝑓 (𝑢𝑛) − 𝑓 (𝑢) | |𝑣 |𝑑𝑥.

4
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By continuity of 𝑓 , it is clear that

𝑓
(
𝑢𝑛 (𝑥)

)
−→ 𝑓

(
𝑢(𝑥)

)
, a.e 𝑥 ∈ (0,+∞).

Since the sequence {𝑢𝑛} is convergent, it is bounded in 𝐻, and therefore there exists a constant 𝑀 > 0 such
that

∥𝑢𝑛∥ ≤ 𝑀, ∀𝑛 ∈ N. (8)

Thus, taking into account (5) and (8), one has

𝑞(𝑥)
��� 𝑓 (𝑢𝑛 (𝑥)) ��� ≤ 𝐶𝑞(𝑥) ∈ 𝐿1 (0,+∞),

where 𝐶 > 0 is defined as

𝐶 =

{
𝛼1𝜇

𝜃−1
∞ 𝑀 𝜃−1, if ( 𝑓1) holds,

𝛼2 + 𝛽𝜇𝜃−1
∞ 𝑀 𝜃−1, if (𝐹1) holds,

and once again by the Lebesgue dominated convergence theorem, we get∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢𝑛)𝑑𝑥 −→

∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢)𝑑𝑥 as 𝑛 −→ +∞.

Hence ���⟨𝐽′𝐺 (𝑢𝑛) − 𝐽′𝐺 (𝑢), 𝑣⟩
��� ≤ ∫ +∞

0
𝑞(𝑥) | 𝑓 (𝑢𝑛) − 𝑓 (𝑢) | |𝑣 |𝑑𝑥,

≤ 𝜇∞∥𝑣∥
∫ +∞

0
𝑞(𝑥) | 𝑓 (𝑢𝑛) − 𝑓 (𝑢) |𝑑𝑥, ∀𝑣 ∈ 𝐻,

and this implies that

sup
∥𝑣 ∥≤1

���⟨𝐽′𝐺 (𝑢𝑛) − 𝐽′𝐺 (𝑢), 𝑣⟩
��� ≤ 𝜇∞

∫ +∞

0
𝑞(𝑥) | 𝑓 (𝑢𝑛) − 𝑓 (𝑢) |𝑑𝑥 −→ 0, as 𝑛 −→ +∞.

Consequently, we conclude that

∥𝐽′𝐺 (𝑣𝑛) − 𝐽′𝐺 (𝑣)∥𝐻∗ −→ 0, as 𝑛 −→ +∞,

which implies the continuity of 𝐽′
𝐺

. The proof is completed. □

Definition 1. We say that 𝑢 is a weak solution of problem (P𝑏) if for any 𝑣 ∈ 𝐻 we have

(𝑢, 𝑣) + 𝑏
( ∫ +∞

0
|𝑢′ |2𝑑𝑥

) ∫ +∞

0
𝑢′𝑣′𝑑𝑥 −

∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢)𝑣𝑑𝑥 = 0.

Remark 1. From Lemma 1 and Definition 1, we deduce that the critical points of 𝐼𝑏 correspond to the weak
solutions of (P𝑏).

3. The sublinear case

In this section, we investigate problem (P𝑏) in the case where the nonlinear term 𝑓 has sublinear growth.
The main results of this section are stated as follows.

Theorem 1. Assume that

(𝑃) 𝑝 ∈ 𝐶 (R+) and inf
𝑥∈R+

𝑝(𝑥) ≥ 𝑝0 > 0;

(𝑄) 𝑞 : R+ → R+
∗ such that 𝑞 ∈ 𝐿1 (0,+∞).
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( 𝑓1) There exist 𝛼1 > 0 and 𝜃 ∈ (1, 2) such that

| 𝑓 (𝑠) | ≤ 𝛼1 |𝑠 |𝜃−1, ∀𝑠 ∈ R;

( 𝑓2) lim
𝑠→0

𝑓 (𝑠)
|𝑠 | = +∞.

Then problem (P𝑏) has at least one nontrivial solution.

Theorem 2. Let (𝑃), (𝑄), ( 𝑓1) and ( 𝑓2) hold. Then, for any sequence {𝑏𝑛} ⊂ (0,+∞) with 𝑏𝑛 −→ 0 as
𝑛 −→ +∞, there exist a subsequence, still denoted by {𝑏𝑛}, and 𝑢∗ ∈ 𝐻 such that 𝑢𝑛 −→ 𝑢∗ in 𝐻, where 𝑢∗
is a solution of the equation {

−𝑎𝑢′′ + 𝑝(𝑥)𝑢 = 𝑞(𝑥) 𝑓 (𝑢), 𝑥 ∈ (0,+∞),
𝑢(0) = 0.

(P0)

Remark 2. Since equation (P𝑏) is set on the unbounded interval [0,∞), the main difficulty is the lack of
compactness of the embedding 𝐻1

0 (0,+∞) ↩→ 𝐿𝑟 (0,+∞) for 𝑟 ≥ 2. Indeed, when using variational meth-
ods, we need to prove that the energy functional associated to (P𝑏) satisfies the Palais-Smale compactness
condition, that is, any sequence {𝑢𝑛} ⊂ 𝐻1 (0,+∞) satisfying (27) has a convergent subsequence. To this
end, a careful analysis of the energy functional and its derivative is given (see pp. 14-15) to prove the
convergence of the (𝑃𝑆) sequence.

3.1. Technical lemmas
In this subsection, we will prove some lemmas which will be used for proving theorem 1.

Lemma 2. The functional 𝐼𝑏 is bounded from below on 𝐵𝜌, where 𝜌 > 0.

Proof. From ( 𝑓1), one has
| 𝑓 (𝑠) |
|𝑠 | ≤ 𝛼1 |𝑠 |𝜃−2, ∀𝑠 ∈ R∗.

Since 1 < 𝜃 < 2, we deduce that

lim
𝑠→+∞

𝑓 (𝑠)
𝑠

= 0,

and then, for all 𝜀 > 0, we get

| 𝑓 (𝑢) | ≤ 𝜀 |𝑢 | + 𝛼1 |𝑢 |𝜃−1 and |𝐹 (𝑢) | ≤ 𝜀

2
|𝑢 |2 + 𝛼1

𝜃
|𝑢 |𝜃 , ∀𝑢 ∈ R. (9)

Therefore, by (3), (4), (9), and the fact that 𝑏 ≥ 0, for all 𝑢 ∈ 𝐻 we get

𝐼𝑏 (𝑢) =
1
2
∥𝑢∥2 + 𝑏

4

( ∫ +∞

0
|𝑢′ |2𝑑𝑥

)2
−

∫ +∞

0
𝑞(𝑥)𝐹 (𝑢)𝑑𝑥

≥ 1
2
∥𝑢∥2 −

∫ +∞

0
𝑞(𝑥)

[ 𝜀
2
|𝑢 |2 + 𝛼1

𝜃
|𝑢 |𝜃

]
𝑑𝑥

=
1
2
∥𝑢∥2 − 𝜀

2

∫ +∞

0
𝑞(𝑥) |𝑢 |2𝑑𝑥 − 𝛼1

𝜃

∫ +∞

0
𝑞(𝑥) |𝑢 | 𝜃𝑑𝑥

≥ 1
2
∥𝑢∥2 − 𝜇2

∞𝜀

2
∥𝑞∥1∥𝑢∥2 − 𝜇𝜃

∞𝛼1

𝜃
∥𝑞∥1∥𝑢∥ 𝜃

=
1
2

(
1 − 𝜀𝜇2

∞∥𝑞∥1

)
∥𝑢∥2 − 𝛼1𝜇

𝜃
∞

𝜃
∥𝑞∥1∥𝑢∥ 𝜃 .
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By choosing 0 < 𝜀 ≤ 1
2𝜇2

∞∥𝑞∥1
, we obtain

𝐼𝑏 (𝑢) ≥
1
4
∥𝑢∥2 − 𝛼1𝜇

𝜃
∞

𝜃
∥𝑞∥1∥𝑢∥ 𝜃

=
1
4

(
1 − 𝐶∥𝑢∥ 𝜃−2

)
∥𝑢∥2.

Since 1 < 𝜃 < 2, choosing 𝜌 > 0 sufficiently large, we conclude that there exists a constant 𝛼 > 0 such that

𝐼𝑏 (𝑢) ≥ 𝛼 > 0 whenever ∥𝑢∥ = 𝜌, and then inf
𝑢∈𝜕𝐵𝜌

𝐼𝑏 (𝑢) > 0.

If ∥𝑢∥ ≤ 𝜌, then
𝐼𝑏 (𝑢) ≥

1
4

(
∥𝑢∥2 − 𝐶∥𝑢∥ 𝜃

)
≥ −𝐶

4
𝜌𝜃 := −𝐶1.

Thus, the functional 𝐼𝑏 is bounded from below on 𝐵𝜌.
Therefore, inf

𝑢∈𝐵𝜌

𝐼𝑏 (𝑢) exists, and we put

𝑐𝑏 := inf
𝑢∈𝐵𝜌

𝐼𝑏 (𝑢).

□

Lemma 3. We have 𝑐𝑏 < 0.

Proof. By combining ( 𝑓1) and ( 𝑓2), it follows that for all 𝑀 > 0

𝐹 (𝑢) ≥ 𝑀 |𝑢 |2 − 𝛼1
𝜃
|𝑢 |𝜃 , ∀𝑢 ∈ R. (10)

Let 𝑅 > 1 and let 𝜓𝑅 be the function defined on [0,+∞) by

𝜓𝑅 (𝑥) =



𝑥

𝑅2 , if 𝑥 ∈ [0, 𝑅],
1
𝑅
, if 𝑥 ∈ [𝑅, 2𝑅],

− 𝑥

𝑅2 + 3
𝑅
, if 𝑥 ∈ [2𝑅, 3𝑅],

0, if 𝑥 ∈ [3𝑅,+∞).

(11)

Since 𝜓𝑅 ∈ 𝐶𝑐 (0,+∞), it follows that 𝜓𝑅 ∈ 𝐻. Let

𝜑𝑅 =
𝜌

2∥𝜓𝑅 ∥
𝜓𝑅 .

It is clear that 𝜑𝑅 ∈ 𝐻 and by a straightforward computation we get

∥𝜑𝑅 ∥ =
𝜌

2
, ∥𝜓′∥2

2 =
2
𝑅3 and ∥𝜑′𝑅 ∥2

2 =
𝜌2

2∥𝜓𝑅 ∥2𝑅3 , (12)

which implies that 𝜑𝑅 ∈ 𝐵𝜌 for all 𝑅 > 1.
Moreover, by (10), (11) and (12), we have

𝐼𝑏 (𝜑𝑅) =
1
2
∥𝜑𝑅 ∥2 + 𝑏

4
∥𝜑′𝑅 ∥4

2 −
∫ +∞

0
𝑞(𝑥)𝐹 (𝜑𝑅)𝑑𝑥

=
𝜌2

8
+ 𝑏

4
∥𝜑′𝑅 ∥4

2 −
∫ +∞

0
𝑞(𝑥)𝐹 (𝜑𝑅)𝑑𝑥

≤ 𝜌2

8
+ 𝑏𝜌4

16∥𝜓𝑅 ∥4𝑅6 − 𝑀
∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥 +
𝛼1
𝜃

∫ +∞

0
𝑞(𝑥)𝜑𝜃

𝑅 (𝑥)𝑑𝑥

≤ 𝜌2

8
+ 𝑏𝜌4

64𝑎2 − 𝑀
∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥 +
𝛼1𝜌

𝜃

2𝜃𝜃
𝜇𝜃
∞∥𝑞∥1,

7



I. Kettaf, S. Khoutir, and H. Kasri

and then
𝐼𝑏 (𝜑𝑅) ≤ 𝑔(𝜌) − 𝑀

∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥,

where 𝑔(𝜌) = 𝜌2

8
+ 𝑏𝜌4

64𝑎2 + 𝛼1𝜇
𝜃
∞

2𝜃𝜃
∥𝑞∥1𝜌

𝜃 > 0.
By choosing

𝑀 >
𝑔(𝜌)∫ +∞

0 𝑞(𝑥)𝜑2
𝑅
(𝑥)𝑑𝑥

,

one has
𝐼𝑏 (𝜑𝑅) < 0.

Consequently, we get
𝑐𝑏 = inf

𝑢∈𝐵𝜌

𝐼𝑏 (𝑢) ≤ 𝐼𝑏 (𝜑𝑅) < 0.

This completes the proof. □

From Lemma 2 and Lemma 3, we deduce that

inf
𝑢∈𝐵𝜌

𝐼𝑏 (𝑢) < 0 < inf
𝑢∈𝜕𝐵𝜌

𝐼𝑏 (𝑢).

3.2. Proof of the main result
In this subsection, we shall give the proof of Theorem 1 with the use of the following variational principle.

Theorem 3 (Ekeland’s variational principle, [10]). Let 𝑀 be a complete metric space with metric 𝑑 and let
𝐽 : 𝑀 −→ R a lower semicontinuous functional bounded from below. Then, for each 𝜀 > 0, there exists
𝑢𝜀 ∈ 𝑀 such that

𝐽 (𝑢𝜀) ≤ inf
𝑀
𝐽 + 𝜀,

and whenever 𝑤 ∈ 𝑀
𝐽 (𝑢𝜀) ≤ 𝐽 (𝑤) + 𝜀𝑑 (𝑢𝜀 , 𝑤).

Proof of Theorem 1. From Lemma 1 and Lemma 2, it is clear that the functional 𝐼𝑏 is lower semicontinuous
and bounded from below in the complete metric space 𝐵𝜌. Then, by applying Ekeland’s variational principle,
there exists a sequence {𝑢𝑛} ⊂ 𝐵𝜌 such that

𝐼𝑏 (𝑢𝑛) ≤ 𝑐𝑏 +
1
𝑛

and 𝐼𝑏 (𝑢𝑛) ≤ 𝐼𝑏 (𝑤) +
1
𝑛
∥𝑤 − 𝑢𝑛∥, ∀𝑤 ∈ 𝐵𝜌 .

Note that for 𝑛 ∈ N with
1
𝑛
∈

(
0, inf

𝜕𝐵𝜌

𝐼𝑏 − inf
𝐵𝜌

𝐼𝑏

)
,

one has
𝐼𝑏 (𝑢𝑛) ≤ 𝑐𝑏 +

1
𝑛
< inf

𝜕𝐵𝜌

𝐼𝑏,

which implies that 𝑢𝑛 ∈ 𝐵𝜌 for 𝑛 ∈ N large enough.
On the one hand, for 𝑤 = 𝑢𝑛 + 𝑡𝑣 with 𝑡 > 0 and 𝑣 ∈ 𝐻, we get

𝐼𝑏 (𝑢𝑛) − 𝐼𝑏 (𝑢𝑛 + 𝑡𝑣)
𝑡

≤ 1
𝑛
∥𝑣∥

and then
−⟨𝐼 ′𝑏 (𝑢𝑛), 𝑣⟩ ≤

1
𝑛
∥𝑣∥. (13)
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On the other hand, if we put 𝑤 = 𝑢𝑛 − 𝑡𝑣, we obtain

⟨𝐼 ′𝑏 (𝑢𝑛), 𝑣⟩ ≤
1
𝑛
∥𝑣∥. (14)

Combining (13) with (14), we can assert that

|⟨𝐼 ′𝑏 (𝑢𝑛), 𝑣⟩| ≤
1
𝑛
∥𝑣∥, ∀𝑣 ∈ 𝐻,

and then

sup
∥𝑣∥≤1

|⟨𝐼 ′𝑏 (𝑢𝑛), 𝑣⟩| ≤
1
𝑛
,

which implies that
∥𝐼 ′𝑏 (𝑢𝑛)∥𝐻∗ −→ 0, as 𝑛 −→ +∞.

Consequently, we have proved that

𝐼𝑏 (𝑢𝑛) −→ 𝑐𝑏 and 𝐼 ′𝑏 (𝑢𝑛) −→ 0 in 𝐻∗. (15)

Since {𝑢𝑛} is bounded in 𝐵𝜌, which is a closed set, there exist a subsequence still denoted by {𝑢𝑛} and
𝑢0 ∈ 𝐵𝜌 ⊂ 𝐻 such that

𝑢𝑛 ⇀ 𝑢0 weakly in 𝐻,

𝑢′𝑛 ⇀ 𝑢′0 weakly in 𝐿2 (0,+∞),
𝑢𝑛 (𝑥) → 𝑢0 (𝑥) a.e in (0,+∞).

(16)

It follows from (16) and the continuity of 𝑓 that

𝑞(𝑥)
[
𝑓
(
𝑢𝑛 (𝑥)

)
− 𝑓

(
𝑢0 (𝑥)

) ] (
𝑢𝑛 (𝑥) − 𝑢0 (𝑥)

)
−→ 0, as 𝑛 −→ +∞.

Moreover, by ( 𝑓1), (3) and the boundedness of {𝑢𝑛}, one has

𝑞(𝑥)
��� [ 𝑓 (𝑢𝑛 (𝑥)) − 𝑓

(
𝑢0 (𝑥)

) ] (
𝑢𝑛 (𝑥) − 𝑢0 (𝑥)

) ��� ≤ 𝑞(𝑥) [�� 𝑓 (𝑢𝑛 (𝑥)) �� + �� 𝑓 (𝑢0 (𝑥)
) ��] (��𝑢𝑛 (𝑥)�� + ��𝑢0 (𝑥)

��)
≤ 𝛼2

1𝑞(𝑥)
(
∥𝑢𝑛∥ 𝜃−1

∞ + ∥𝑢0∥ 𝜃−1
∞

) (
∥𝑢𝑛∥∞ + ∥𝑢0∥∞

)
≤ 𝛼2

1𝜇
𝜃
∞𝑞(𝑥)

(
∥𝑢𝑛∥ 𝜃−1 + ∥𝑢0∥ 𝜃−1) (∥𝑢𝑛∥ + ∥𝑢0∥

)
≤ 𝐶𝑞(𝑥).

As the function 𝑞 is in 𝐿1 (0,+∞), by the Lebesgue dominated convergence theorem we get∫ +∞

0
𝑞(𝑥)

[
𝑓 (𝑢𝑛) − 𝑓 (𝑢0)

]
(𝑢𝑛 − 𝑢0) 𝑑𝑥 −→ 0, as 𝑛 −→ +∞. (17)

On the other hand, since 𝐼 ′
𝑏
(𝑢𝑛) −→ 0 in 𝐻∗ and by (16), one has

⟨𝐼 ′𝑏 (𝑢𝑛) − 𝐼
′
𝑏 (𝑢0), 𝑢𝑛 − 𝑢0⟩ −→ 0, as 𝑛 −→ +∞. (18)

By a straightforward computation we get

∥𝑢𝑛 − 𝑢0∥2 = ⟨𝐼 ′𝑏 (𝑢𝑛) − 𝐼
′
𝑏 (𝑢0), 𝑢𝑛 − 𝑢0⟩ − 𝑏∥𝑢′𝑛∥2

2

∫ +∞

0
𝑢′𝑛 (𝑢′𝑛 − 𝑢′0)𝑑𝑥 + 𝑏∥𝑢

′
0∥

2
2

∫ +∞

0
𝑢′0 (𝑢

′
𝑛 − 𝑢′0)𝑑𝑥

+
∫ +∞

0
𝑞(𝑥)

[
𝑓 (𝑢𝑛) − 𝑓 (𝑢0)

]
(𝑢𝑛 − 𝑢0)𝑑𝑥,

9
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and taking into account (17), (18), Young’s inequality and Hölder’s inequality, we obtain

𝑜𝑛 (1) = ∥𝑢𝑛 − 𝑢0∥2 + 𝑏∥𝑢′𝑛∥2
2

∫ +∞

0
𝑢′𝑛 (𝑢′𝑛 − 𝑢′0)𝑑𝑥 − 𝑏∥𝑢

′
0∥

2
2

∫ +∞

0
𝑢′0 (𝑢

′
𝑛 − 𝑢′0)𝑑𝑥

= ∥𝑢𝑛 − 𝑢0∥2 + 𝑏
(
∥𝑢′𝑛∥4

2 − ∥𝑢′𝑛∥2
2

∫ +∞

0
𝑢′𝑛𝑢

′
0𝑑𝑥 − ∥𝑢′0∥

2
2

∫ +∞

0
𝑢′𝑛𝑢

′
0𝑑𝑥 + ∥𝑢′0∥

4
2

)
≥ ∥𝑢𝑛 − 𝑢0∥2 + 𝑏

(
∥𝑢′𝑛∥4

2 −
1
2
∥𝑢′𝑛∥4

2 −
1
2
∥𝑢′𝑛∥2

2∥𝑢
′
0∥

2
2 −

1
2
∥𝑢′0∥

2
2∥𝑢

′
𝑛∥2

2 −
1
2
∥𝑢′0∥

4
2 + ∥𝑢′0∥

4
2

)
= ∥𝑢𝑛 − 𝑢0∥2 + 𝑏

(1
2
∥𝑢′𝑛∥4

2 − ∥𝑢′𝑛∥2
2∥𝑢

′
0∥

2
2 +

1
2
∥𝑢′0∥

4
2

)
= ∥𝑢𝑛 − 𝑢0∥2 + 𝑏

2

(
∥𝑢′𝑛∥2

2 − ∥𝑢′0∥
2
2

)2
. (19)

By passing to the limit in (19) as 𝑛 −→ +∞, one has

𝑢𝑛 −→ 𝑢0 strongly in 𝐻 and ∥𝑢′𝑛∥2 −→ ∥𝑢′0∥2. (20)

From (16) and (20) we deduce that

lim
𝑛−→+∞

( ∫ +∞

0
|𝑢′𝑛 |2𝑑𝑥

) ∫ +∞

0
𝑢′𝑛𝑣

′𝑑𝑥 =
( ∫ +∞

0
|𝑢′0 |

2𝑑𝑥
) ∫ +∞

0
𝑢′0𝑣

′𝑑𝑥.

Consequently, by passing to the limit in ⟨𝐼 ′
𝑏
(𝑢𝑛), 𝑣⟩ as 𝑛 −→ +∞ and by using once again the dominated

convergence theorem, we obtain for all 𝑣 ∈ 𝐻

lim
𝑛−→+∞

⟨𝐼 ′𝑏 (𝑢𝑛), 𝑣⟩ = (𝑢0, 𝑣) + 𝑏
( ∫ +∞

0
|𝑢′0 |

2𝑑𝑥
) ∫ +∞

0
𝑢′0𝑣

′𝑑𝑥 −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢0)𝑣𝑑𝑥,

and from (15) we deduce that

(𝑢0, 𝑣) + 𝑏
( ∫ +∞

0
|𝑢′0 |

2𝑑𝑥
) ∫ +∞

0
𝑢′0𝑣

′𝑑𝑥 −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢0)𝑣𝑑𝑥 = 0, ∀𝑣 ∈ 𝐻.

Finally, from (15), (20) and the fact that 𝐼 ∈ 𝐶1 (𝐻,R), we deduce that

𝐼 ′𝑏 (𝑢0) = 0 and 𝐼𝑏 (𝑢0) = 𝑐𝑏,

which means that 𝑢0 is a critical point of 𝐼𝑏 and then a weak solution of problem (P𝑏). The proof is complete.
□

3.3. The asymptotic behavior of solutions
In this subsection, we investigate the asymptotic behavior of solutions obtained in Theorem 1 with respect
to the parameter 𝑏.

Proof of Theorem 2. Noticing that 𝑏 = 0 is allowed in the proof of Theorem 1. Therefore, there exists a
solution 𝑣∗ ∈ 𝐻 to problem (P0) such that

𝐼0 (𝑣∗) = 𝑐0 and 𝐼 ′0 (𝑣∗) = 0,

where 𝑐0 = inf
𝑢∈𝐵𝜌

𝐼0 (𝑢).

For any sequence {𝑏𝑛} ⊂ (0,+∞) with 𝑏𝑛 −→ 0 as 𝑛 −→ +∞, let 𝑢𝑛 := 𝑢𝑏𝑛 ∈ 𝐵𝜌 ⊂ 𝐻 be a solution of
problem (P𝑏) obtained by Theorem 1. Then we have

𝐼𝑏𝑛 (𝑢𝑛) = 𝑐𝑏𝑛 < 0 and 𝐼 ′𝑏𝑛 (𝑢𝑛) = 0 in 𝐻∗ (21)

10
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with 𝑐𝑏𝑛 = inf
𝑢∈𝐵𝜌

𝐼𝑏𝑛 (𝑢). Therefore

(𝑢𝑛, 𝑣) + 𝑏𝑛
( ∫ +∞

0
|𝑢′𝑛 |2𝑑𝑥

) ∫ +∞

0
𝑢′𝑛𝑣

′ 𝑑𝑥 −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢𝑛)𝑣 𝑑𝑥 = 0, ∀𝑣 ∈ 𝐻. (22)

Since 𝑢𝑛 ∈ 𝐵𝜌, it follows that the sequence {𝑢𝑛} is bounded in 𝐻, and then there exists 𝑢∗ ∈ 𝐻 such that up
to a subsequence

𝑢𝑛 ⇀ 𝑢∗ weakly in 𝐻,

𝑢′𝑛 ⇀ 𝑢′∗ weakly in 𝐿2 (0,+∞),
𝑢𝑛 (𝑥) → 𝑢∗ (𝑥) a.e in (0,+∞).

(23)

By using (21), (23), the dominated convergence theorem and the fact that 𝑏𝑛 −→ 0, it is easy to show that

⟨𝐼 ′𝑏𝑛 (𝑢𝑛) − 𝐼
′
𝑏𝑛
(𝑢∗), 𝑢𝑛 − 𝑢∗⟩ −→ 0, as 𝑛 −→ +∞.

By similar arguments as in (19), we prove that

𝑢𝑛 −→ 𝑢∗ strongly in 𝐻 and ∥𝑢′𝑛∥2 −→ ∥𝑢′∗∥2. (24)

By passing to the limit in (22) as 𝑛 −→ ∞, one has

(𝑢∗, 𝑣) −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢∗)𝑣 𝑑𝑥 = 0, ∀𝑣 ∈ 𝐻,

which means that 𝑢∗ is a weak solution of the following equation:{
−𝑎𝑢′′ + 𝑝(𝑥)𝑢 = 𝑞(𝑥) 𝑓 (𝑢), 𝑥 ∈ (0,+∞),
𝑢(0) = 0.

Next, we prove that 𝐼0 (𝑢∗) = 𝑐0. By using once again the dominated convergence theorem, and combining
(23) and (24) with the fact that 𝑏𝑛 −→ 0, it holds that

𝑐𝑏𝑛 −→ 𝐼0 (𝑢∗).

In view of the definition of 𝑐0, we assert that

𝐼0 (𝑢∗) ≥ 𝑐0. (25)

Thus, it follows from (4) and (25)

𝑐0 = 𝐼0 (𝑣∗) = 𝐼𝑏𝑛 (𝑣∗) −
𝑏𝑛

4
| |𝑣′∗ | |42 ≥ 𝑐𝑏𝑛 −

𝑏𝑛

4
| |𝑣′∗ | |42,

which yields
lim

𝑛−→+∞
𝑐𝑏𝑛 ≤ 𝑐0,

or else
𝐼0 (𝑢∗) ≤ 𝑐0. (26)

Hence, by (25) and (26) we deduce that
𝐼0 (𝑢∗) = 𝑐0.

The proof is complete. □

3.4. Example

Let 𝑓 (𝑥) = 𝑥 1
5 , 𝑝(𝑥) = 𝑒𝑥 and 𝑞(𝑥) = 1

1 + 𝑥2 . It can be seen that (𝑃), (𝑄), ( 𝑓1) and ( 𝑓2) are satisfied.
Then, by Theorem 1, the problem

−
(
𝑎 + 𝑏

∫ +∞

0
|𝑢′ |𝑑𝑥

)
𝑢′′ + 𝑒𝑥𝑢 =

1
1 + 𝑥2 𝑢

1
5 , 𝑥 ∈ (0,+∞);

𝑢(0) = 0

has at least one nontrivial solution.

11
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4. The superlinear case

In this section, we analyze problem (P𝑏) in the case where the nonlinear term 𝑓 exhibits superlinear growth.
The main results of this section are stated in the following theorem.

Theorem 4. Assume that (𝑃), (𝑄) hold and 𝑓 satisfies

(𝐹1) 𝑓 ∈ 𝐶 (R) and there exist 𝜃 > 2, 𝛼2, 𝛽 > 0 such that

| 𝑓 (𝑠) | ≤ 𝛼2 + 𝛽 |𝑠 |𝜃−1 ∀𝑠 ∈ R;

(𝐹2) lim
𝑠→0

𝑓 (𝑠)
𝑠

= 0;

(𝐹3) lim
𝑠→∞

𝐹 (𝑠)
𝑠2

= +∞, where 𝐹 (𝑠) =
∫ 𝑠

0
𝑓 (𝑡)𝑑𝑡;

(𝐹4) there exists 𝐿 > 0 such that

4𝐹 (𝑠) ≤ 𝑓 (𝑠)𝑠, ∀|𝑠 | ≥ 𝐿.

Then, problem (P𝑏) has at least one nontrivial solution. Moreover, for every vanishing sequence {𝑏𝑛}, let
𝑢𝑏𝑛 be a solution of problem (P𝑏). Then, the sequence {𝑢𝑏𝑛 } converges to 𝑢0 in 𝐻, where 𝑢0 is a solution
of the problem {

−𝑎𝑢′′ + 𝑝(𝑥)𝑢 = 𝑞(𝑥) 𝑓 (𝑢), 𝑥 ∈ (0,+∞),
𝑢(0) = 0.

(P0)

Remark 3. Since the energy functional associated to (P𝑏) involves a 4-order homogeneous term (i.e.,(∫ +∞

0
|𝑢′ |2𝑑𝑥

)2
), it is natural to impose the well-known Ambrosetti–Rabinowitz condition (see [2]), namely,

there exists 𝜇 > 4 such that 0 < 𝜇𝐹 (𝑢) ≤ 𝑢 𝑓 (𝑢) for all 𝑢 ∈ R. (AR)

This condition has two crucial uses. The first one is to check the mountain pass geometry for the energy
functional 𝐼𝑏 and the second one is to guarantee the Palais-Smale compactness condition. Our assumptions
(𝐹3) and (𝐹4) are very relaxed compared with (AR)-condition. To see this, consider the function 𝐹 (𝑢) =
𝑢4 ln(1 + 𝑢2). It is easy to check that 𝐹 and its derivative 𝑓 satisfy (𝐹3)-(𝐹4) but not (AR).

In order to prove Theorem 4, we will need the following definition and theorem.

Definition 2. A functional 𝐼 ∈ 𝐶1 (𝑋,R) satisfies the Palais-Smale condition at level 𝑐 ∈ R, denoted by
(𝑃𝑆)𝑐 if every sequence {𝑢𝑛} ⊂ 𝑋 satisfies

𝐼 (𝑢𝑛) −→ 𝑐 and 𝐼 ′ (𝑢𝑛) −→ 0, 𝑛 −→ +∞, (27)

possesses a strongly convergent subsequence.

Remark 4. If 𝐼 satisfies the (𝑃𝑆)𝑐 condition for every 𝑐 ∈ R, then we say that 𝐼 satisfies the (𝑃𝑆) condition.

Theorem 5. ([25, Theorem 1.15], mountain pass theorem) Let 𝑋 be a Banach space, 𝐼 ∈ 𝐶1 (𝑋,R) satisfies
the (𝑃𝑆) condition, 𝐼 (0) = 0 and

1. There exist 𝜌, 𝛼 > 0 such that 𝐼 (𝑣) ≥ 𝛼 whenever ∥𝑣∥ = 𝜌.

2. There exists 𝑒 ∈ 𝑋 with ∥𝑒∥ > 𝜌 such that 𝐼 (𝑒) ≤ 0.

Then, 𝐼 has at least a critical value 𝑐 ≥ 𝛼, which is characterized by

𝑐 = inf
𝛾∈Γ

max
𝑡∈[0,1]

𝐼
(
𝛾(𝑡)

)
,

where
Γ =

{
𝛾 ∈ 𝐶 ( [0, 1], 𝑋) : 𝛾(0) = 0, 𝛾(1) = 𝑒

}
.

12
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4.1. Some useful lemmas
In this section, we introduce some technical lemmas which will be used to prove our main result.
Lemma 4. Assume that (𝐹1) and (𝐹2) hold. Then there exist 𝜌∗, 𝛼∗ > 0 such that 𝐼𝑏 (𝑢) ≥ 𝛼∗ whenever
∥𝑢∥ = 𝜌∗.
Proof. From (𝐹1) and (𝐹2), for all 𝜀 > 0, there exists 𝐶𝜀 > 0 such that

| 𝑓 (𝑢) | ≤ 𝜀 |𝑢 | + 𝐶𝜀 |𝑢 |𝜃−1 and |𝐹 (𝑢) | ≤ 𝜀

2
|𝑢 |2 + 𝐶𝜀

𝜃
|𝑢 |𝜃 , ∀𝑢 ∈ R. (28)

Hence, from (3), (28) and Hölder’s inequality we obtain

𝐼𝑏 (𝑢) =
1
2
∥𝑢∥2 + 𝑏

4

( ∫ +∞

0
|𝑢′ |2𝑑𝑥

)2
−

∫ +∞

0
𝑞(𝑥)𝐹 (𝑢)𝑑𝑥

≥ 1
2
∥𝑢∥2 −

∫ +∞

0
𝑞(𝑥)𝐹 (𝑢)𝑑𝑥

≥ 1
2
∥𝑢∥2 −

∫ +∞

0
𝑞(𝑥)

(
𝜀

2
|𝑢 |2 + 𝐶𝜀

𝜃
|𝑢 |𝜃

)
𝑑𝑥

≥ 1
2

(
1 − 𝜀𝜇2

∞∥𝑞∥1

)
∥𝑢∥2 − 𝐶𝜀

𝜃
𝜇𝜃
∞∥𝑞∥1∥𝑢∥ 𝜃 .

By taking 0 < 𝜀 ≤ 1
2𝜇2

∞∥𝑞∥1
, one has

𝐼𝑏 (𝑢) ≥
1
4
∥𝑢∥2 − 𝐶𝜀

𝜃
𝜇𝜃
∞∥𝑞∥1∥𝑢∥ 𝜃 , ∀𝑢 ∈ 𝐻.

Taking 𝜌∗ =
[ 𝜃

8𝐶𝜀𝜇
𝜃
∞∥𝑞∥1

] 1
𝜃−2 , then for all 𝑢 ∈ 𝐻 with ∥𝑢∥ = 𝜌∗ we get

𝐼𝑏 (𝑢) ≥
1
4

(
1 − 4𝐶𝜀

𝜃
𝜇𝜃
∞∥𝑞∥1𝜌

𝜃−2
∗

)
𝜌2
∗ =

1
8
𝜌2
∗ := 𝛼∗ > 0,

and this completes the proof. □

Lemma 5. Assume that (𝐹1) and (𝐹3) hold. Then there exists a function 𝑒 ∈ 𝐻 with ∥𝑒∥ > 𝜌∗ such that
𝐼𝑏 (𝑒) ≤ 0.
Proof. From (𝐹1) and (𝐹3), it follows that for all 𝑀 > 0 there exists a constant 𝐶𝑀 > 0 such that

𝐹 (𝑢) ≥ 𝑀 |𝑢 |2 − 𝐶𝑀 |𝑢 |, ∀𝑢 ∈ R. (29)

Let 𝑅 > 1 and we consider the function 𝜑𝑅 defined on [0,+∞) by

𝜑𝑅 =
2𝜌∗
∥𝜓𝑅 ∥

𝜓𝑅, (30)

where 𝜓𝑅 is introduced in (11).
It is clear that 𝜑𝑅 ∈ 𝐻 and by a straightforward computation we get

∥𝜑𝑅 ∥ = 2𝜌∗ and ∥𝜑′𝑅 ∥2
2 =

8𝜌∗2

∥𝜓𝑅 ∥2𝑅3 , (31)

which implies that 𝜑𝑅 ∈ 𝐻\𝐵𝜌∗ for all 𝑅 > 1.
Moreover, by (11), (12), (29), (30) and (31), one has

𝐼𝑏 (𝜑𝑅) =
1
2
∥𝜑𝑅 ∥2 + 𝑏

4
∥𝜑′𝑅 ∥4

2 −
∫ +∞

0
𝑞(𝑥)𝐹 (𝜑𝑅)𝑑𝑥

≤ 2𝜌2
∗ +

16𝑏𝜌∗4

∥𝜓𝑅 ∥4𝑅6 − 𝑀
∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥 + 𝐶𝑀

∫ +∞

0
𝑞(𝑥)𝜑𝑅 (𝑥)𝑑𝑥

≤ 2𝜌2
∗ +

4𝑏
𝑎2 𝜌∗

4 − 𝑀
∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥 + 2𝐶𝑀 ∥𝑞∥1𝜇∞𝜌∗,

13
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and then
𝐼𝑏 (𝜑𝑅) ≤ ℎ(𝜌∗) − 𝑀

∫ +∞

0
𝑞(𝑥)𝜑2

𝑅 (𝑥)𝑑𝑥,

where ℎ(𝜌∗) = 2𝜌2
∗ +

4𝑏
𝑎2 𝜌∗

4 + 2𝐶𝑀 ∥𝑞∥1𝜇∞𝜌∗ > 0.

By choosing 𝑀 >
ℎ(𝜌∗)∫ +∞

0 𝑞(𝑥)𝜑2
𝑅
(𝑥)𝑑𝑥

, we obtain

𝐼𝑏 (𝜑𝑅) < 0.

Thus, we complete the proof by taking 𝑒 = 𝜑𝑅 ∈ 𝐻\𝐵𝜌. □

Lemma 6. Assume that (𝐹1)-(𝐹3) hold. Then the functional 𝐼𝑏 satisfies the (𝑃𝑆) condition.

Proof. Let {𝑢𝑛} ⊂ 𝐻 be a Palais-Smale sequence at level 𝑐 ∈ R, namely satisfying (27). We easily see that
there exists 𝐶1 > 0 such that

|𝐼𝑏 (𝑢𝑛) | ≤ 𝐶1 and
��⟨𝐼 ′𝑏 (𝑢𝑛), 𝑢𝑛⟩�� ≤ 𝐶1∥𝑢𝑛∥, ∀𝑛 ∈ N. (32)

We divide the proof into two steps.
Step 1. We shall prove that {𝑢𝑛} is bounded in 𝐻.

Reasoning by contradiction, assume that the sequence {𝑢𝑛} is unbounded in 𝐻, that is

∥𝑢𝑛∥ −→ +∞, as 𝑛 −→ +∞, (33)

and set
Ω𝑛 =

{
𝑥 ∈ (0,+∞) : |𝑢𝑛 (𝑥) | ≤ 𝐿

}
and Ω′

𝑛 = (0,+∞)\Ω𝑛.

From (𝐹4) and (32), through a direct computation we obtain

𝐶1

(
1 + 1

4
∥𝑢𝑛∥

)
≥ 𝐼𝑏 (𝑢𝑛) −

1
4
⟨𝐼 ′𝑏 (𝑢𝑛), 𝑢𝑛⟩

=
1
2
∥𝑢𝑛∥2 + 𝑏

4
∥𝑢′𝑛∥4

2 −
∫ +∞

0
𝑞(𝑥)𝐹 (𝑢𝑛)𝑑𝑥 −

1
4

(
∥𝑢𝑛∥2 + 𝑏∥𝑢′𝑛∥4

2 −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢𝑛)𝑢𝑛𝑑𝑥

)
=

1
4
∥𝑢𝑛∥2 + 1

4

∫
Ω𝑛

𝑞(𝑥) [ 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)] 𝑑𝑥 +
1
4

∫
Ω′

𝑛

𝑞(𝑥) [ 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)] 𝑑𝑥

≥ 1
4
∥𝑢𝑛∥2 + 1

4

∫
Ω𝑛

𝑞(𝑥) [ 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)] 𝑑𝑥,

which yields

𝐶1

(
1

∥𝑢𝑛∥2 + 1
4∥𝑢𝑛∥

)
≥ 1

4
+ 1

4∥𝑢𝑛∥2

∫
Ω𝑛

𝑞(𝑥) [ 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)] 𝑑𝑥. (34)

On the other hand, for 𝑥 ∈ Ω𝑛, by (𝐹1) and (33), it follows that

𝑞(𝑥) | 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛) | ≤ 𝑞(𝑥)
(
𝛼2 |𝑢𝑛 | + 𝛽 |𝑢 | 𝜃 + 4𝛼2 |𝑢𝑛 | +

4𝛽
𝜃
|𝑢𝑛 |𝜃

)
≤

(
5𝛼2𝐿 + (𝜃 + 4)𝛽

𝜃
𝐿 𝜃

)
𝑞(𝑥),

and then

1
∥𝑢𝑛∥2

����∫
Ω𝑛

𝑞(𝑥) 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)𝑑𝑥
���� ≤ 1

∥𝑢𝑛∥2

(
5𝛼2𝐿 + (𝜃 + 4)𝛽

𝜃
𝐿 𝜃

) ∫
Ω𝑛

𝑞(𝑥)𝑑𝑥

≤ 1
∥𝑢𝑛∥2

(
5𝛼2𝐿 + (𝜃 + 4)𝛽

𝜃
𝐿 𝜃

)
∥𝑞∥1 −→ 0,
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as 𝑛 −→ +∞. Hence,

1
∥𝑢𝑛∥2

∫
Ω𝑛

𝑞(𝑥) [ 𝑓 (𝑢𝑛)𝑢𝑛 − 4𝐹 (𝑢𝑛)] 𝑑𝑥 −→ 0. (35)

Taking into account (33) and (35), by passing to the limit in (34) as 𝑛 −→ +∞, we obtain a contradiction.
Consequently, {𝑢𝑛} is bounded in 𝐻 and that what needs to be demonstrated.

Step 2. We will prove that {𝑢𝑛} converges strongly in 𝐻.
In Step 1, it can be seen that the sequence {𝑢𝑛} is bounded in 𝐻; then we may assume for a subsequence that

𝑢𝑛 ⇀ 𝑢0 weakly in 𝐻,

𝑢𝑛 (𝑥) → 𝑢0 (𝑥) a.e in (0,+∞). (36)

An easy computation shows that

∥𝑢𝑛 − 𝑢0∥2 = ⟨𝐼 ′𝑏 (𝑢𝑛) − 𝐼
′
𝑏 (𝑢0), 𝑢𝑛 − 𝑢0⟩ − 𝑏∥𝑢′𝑛∥2

2

∫ +∞

0
𝑢′𝑛 (𝑢′𝑛 − 𝑢′0)𝑑𝑥 + 𝑏∥𝑢

′
0∥

2
2

∫ +∞

0
𝑢′0 (𝑢

′
𝑛 − 𝑢′0)𝑑𝑥

+
∫ +∞

0
𝑞(𝑥)

(
𝑓 (𝑢𝑛) − 𝑓 (𝑢0)

)
(𝑢𝑛 − 𝑢0)𝑑𝑥. (37)

By (36) and the continuity of 𝑓 , it clear that for almost every 𝑥 ∈ (0,+∞)∫ +∞

0
𝑞(𝑥)

(
𝑓
(
𝑢𝑛 (𝑥)

)
− 𝑓

(
𝑢0 (𝑥)

) ) (
𝑢𝑛 (𝑥) − 𝑢0 (𝑥)

)
𝑑𝑥 −→ 0, as 𝑛 −→ +∞.

Moreover, from (𝐹1), (3) and the boundedness of {𝑢𝑛} one has���𝑞(𝑥) ( 𝑓 (𝑢𝑛) − 𝑓
(
𝑢0

) ) (
𝑢𝑛 − 𝑢0

) ��� ≤ [
2𝛼2 + 𝛽 |𝑢𝑛 |𝜃−1 + 𝛽 |𝑢0 |𝜃−1] ( |𝑢𝑛 | + |𝑢0 |) 𝑞(𝑥)

≤
[
2𝛼2 + 𝛽𝜇𝜃−1

∞

(
𝐶 𝜃−1 + ∥𝑢0∥ 𝜃−1

)]
(𝜇∞𝐶 + 𝜇∞∥𝑢0∥) 𝑞(𝑥)

≤ 𝐶𝑞(𝑥) ∈ 𝐿1 (0,+∞).

By the dominated convergence theorem we get∫ +∞

0
𝑞(𝑥)

(
𝑓 (𝑢𝑛) − 𝑓 (𝑢0)

)
(𝑢𝑛 − 𝑢0) 𝑑𝑥 −→ 0, as 𝑛 −→ +∞. (38)

Taking into account (32) and the fact that 𝑢𝑛 ⇀ 𝑢0 in 𝐻, we get

⟨𝐼 ′ (𝑢𝑛) − 𝐼 ′ (𝑢0), 𝑢𝑛 − 𝑢0⟩ −→ 0, as 𝑛 −→ +∞. (39)

Combining (38) and (39) with (37), by the same reasoning as in (19), we prove that

𝑜𝑛 (1) = ∥𝑢𝑛 − 𝑢0∥2 + 𝑏∥𝑢′𝑛∥2
2

∫ +∞

0
𝑢′𝑛 (𝑢′𝑛 − 𝑢′0)𝑑𝑥 − 𝑏∥𝑢

′
0∥

2
2

∫ +∞

0
𝑢′0 (𝑢

′
𝑛 − 𝑢′0)𝑑𝑥

≥ ∥𝑢𝑛 − 𝑢0∥2 + 𝑏

2

(
∥𝑢′𝑛∥2

2 − ∥𝑢′0∥
2
2

)2
, (40)

which yields
𝑢𝑛 −→ 𝑢0 strongly in 𝐻,

and this proves that 𝐼𝑏 satisfies the (𝑃𝑆) condition at any level 𝑐 ∈ R. □

4.2. Proof of the main result
In this subsection, we will give the proof of Theorem 4 which is divided into two steps. The first step refers
to the existence of solutions of (P𝑏), and the second one to the study of the asymptotic behavior of solutions
by considering 𝑏 as a parameter.
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Proof of Theorem 4. Step 1. We have 𝐼𝑏 ∈ 𝐶1 (𝐻,R)
and 𝐼𝑏 (0) = 0. By Lemmas 4 and 5, the functional

𝐼𝑏 satisfies the geometric property of the mountain pass theorem. Lemma 6 implies that the functional 𝐼𝑏
satisfies the (𝑃𝑆) condition. Therefore, applying the mountain pass theorem, we deduce that there exists
𝑣0 ∈ 𝐻 such that

𝐼𝑏 (𝑣0) = 𝑐 ≥ 𝛼∗ > 0 and 𝐼 ′𝑏 (𝑣0) = 0,

which means that 𝑣0 is a weak solution of (P𝑏), and this completes Step 1.
Step 2. Let {𝑏𝑛} ⊂ (0,+∞) be a sequence such that

𝑏𝑛 −→ 0, as 𝑛 −→ +∞, (41)

and let 𝑢𝑛 := 𝑢𝑏𝑛 ∈ 𝐻 be a solution of (P𝑏). Then

(𝑢𝑛, 𝑣) + 𝑏𝑛∥𝑢′𝑛∥2
2

∫ +∞

0
𝑢′𝑛𝑣

′ 𝑑𝑥 −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢𝑛)𝑣 𝑑𝑥 = 0, ∀𝑣 ∈ 𝐻. (42)

In the same way as in Step 1 in the proof of Lemma 6, we can prove that {𝑢𝑛} is bounded in 𝐻, and then
there exists 𝑢0 ∈ 𝐻 such that up to a subsequence

𝑢𝑛 ⇀ 𝑢0 weakly in 𝐻,

𝑢′𝑛 ⇀ 𝑢′0 weakly in 𝐿2 (0,+∞),
𝑢𝑛 (𝑥) → 𝑢0 (𝑥) a.e in (0,+∞).

(43)

Similarly to (40), we show that
𝑢𝑛 −→ 𝑢0 in 𝐻. (44)

Hence, from (𝐹1), (41), (43), (44), and by the dominated convergence theorem we get

(𝑢𝑛, 𝑣) −→ (𝑢0, 𝑣), 𝑏𝑛∥𝑢′𝑛∥2
2

∫ +∞

0
𝑢′𝑛𝑣

′ 𝑑𝑥 −→ 0

and ∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢𝑛)𝑣 𝑑𝑥 −→

∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢0)𝑣 𝑑𝑥,

as 𝑛 −→ +∞. Consequently, by passing to the limit in (42) as 𝑛 −→ +∞, we obtain

(𝑢0, 𝑣) −
∫ +∞

0
𝑞(𝑥) 𝑓 (𝑢0)𝑣 𝑑𝑥 = 0, ∀𝑣 ∈ 𝐻,

which means that 𝑢0 is a weak solution of the problem (P0), and this completes the proof. □

4.3. Example
Let 𝑓 (𝑢) = 𝑢3 ln(1 + 𝑢2) + 𝑢5

2(1+𝑢2 ) , 𝑝(𝑥) = ln(1 + 𝑥2) + 1 and 𝑞(𝑥) = 𝑒−𝑥 . Is is easy to check that (𝑃), (𝑄)
and (𝐹1)-(𝐹4) are satisfied.

Then, by Theorem 4, the problem
−
(
𝑎 + 𝑏

∫ +∞

0
|𝑢′ |𝑑𝑥

)
𝑢′′ +

(
ln(1 + 𝑥2) + 1

)
𝑢 = 𝑒−𝑥

(
𝑢3 ln(1 + 𝑢2) + 𝑢5

2(1 + 𝑢2)

)
, 𝑥 ∈ (0,+∞);

𝑢(0) = 0.

has at least one nontrivial solution.
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