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Abstract. In this paper we develop a class of generalized extrapolation methods for a
numerical solution of nonlinear Fredholm integral equations of the second kind. The direct
representation of this class allows us to simply discretize the nonlinear integral equations
with smooth kernels. This approach enjoys several outstanding features of numerical meth-
ods such as: economized computational cost, high order accuracy, direct implementation,
discretization on arbitrary nodes and applying the methods with positive weights. The
comparison results demonstrate the superior results of the new class of methods versus the
classical and recent approaches.

AMS subject classifications: 22E46, 53C35, 57S20

Key words: nonlinear integral equation, extrapolation method, high order method, arbi-
trary nodes

1. Introduction

Many physical phenomena are governed by nonlinear integral equations (NIE) of the
form

u(x)− λ

∫

Ω

K(x, y, u(y))dy = f(x), x ∈ Ω, (1)

where we assume that the kernel K and source term f are smooth functions in
the bounded region Ω ⊆ R

k, k = 1, 2, and λ is a parameter. The existence of a
unique solution for this problem is guaranteed under some smoothness conditions
like somewhat we mentioned above [12]. The general form (1) has many applications
in modeling of problems in science and engineering or reformulations of other math-
ematical problems, e.g, see the study of Nee [25] on a nonlinear integral equation
arising from the model of anisotropic multiband BCS Gap Equations of supercon-
ductivity. For general background on numerical methods for NIEs, the books of
Atkinson [4] and Delves and Mohamed [14] are recommended. For a review of less
recent methods for NIEs we refer to the survey by Atkinson [3]. There is a great
deal of publication on the numerical solution of equation (1). Many researchers have
studied numerical aspects of these equations. In the recent publications, different
mathematical tools have been applied to solving and numerical implementations of
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(1). In part of these publications, some authors extensively uses the methods based
on different kinds of wavelets [7, 8, 21, 23]. Several different variants of numerical or
theoretical studies on (1), including the special classes like Hammerstein NIE, have
been developed in the literature. For some examples, see papers [2, 15, 19, 22]. Poly-
nomial approximation methods using different bases functions like the Chebyshev
polynomials have been introduced; see for example [11, 27]. An approximation with
Sinc functions has been developed in [24]. On the other hand, the iterated methods
have been used extensively for integral equations [15, 16]. The product quadrature
rule has been studied for such problems in [9]. Two-dimensional equations have been
taken into account in several papers like [1]. The extrapolation methods have been
discussed extensively in Sidi [26] and Brezinski and Zaglia [10] and for linear integral
equations in [20]. With a glance on the extrapolation methods for linear or nonlinear
integral equations we find two remarkable points. First, all of the schemes in the
literature almost apply extrapolation methods in the sense of Romberg’s algorithm,
in which the steplength half repeatedly. Second, extrapolation is done in a recursive
procedure that contains two major disadvantages. Firstly, for one extrapolation it is
necessary to generate two grid point sets and then solve the corresponding nonlinear
equations. Secondly, the first extrapolation is just evaluated on the courser grid and
does not use the data from the finer grid points. This means that many calculated
intermediate results on the finer grid are lost. In the present work, the mentioned
problems have been addressed. Accordingly, it is not required to solve nonlinear
equations several times for a single problem. The cost of this scheme is the same as
applying a simple numerical quadrature formula for discretization of integrals. But,
it is quite simple to increase the order of accuracy in numerical results with shrinking
the steplength or increasing the quadrature nodes. We will see in examples that there
is no need to use a courser grid to generate high order results and with a moderate
number of nodes we can obtain reasonable results. The given algorithm is based on
a nonrecursive procedure with a simple structure and it uses all generated results
simultaneously. This requires to solve one system of nonlinear equations for a corre-
sponding nonlinear integral equation. Different sequences for generation of extended
nodes have been suggested by Romberg, Bauer, and Bulrish [13] for implementation
of extrapolation methods. We generalize the choice of sequences and discuss their
numerical behavior in numerical quadratures. Recently, extensive amount of work
has been done on the numerical solution of nonlinear integral equations.

This paper has been organized as follows. In Section 2, we review the basic
results of extrapolation methods and their convergence properties. The calculation
of the nodes and weights discussed in Section 3 for different and arbitrary sequences.
In Section 4, we demonstrate the numerical behavior of the weights and density and
distribution of nodes. This theory helps us to compare the behavior of different
nodes from several points of view such as accuracy, distribution of nodes and the
effect of the nodes on the accuracy, etc. In Section 5, the nonlinear integral equation
has been discretized to obtain a nonlinear system of equations. The convergence
of the given methods has been investigated in Section 6. In Section 7, with several
numerical tests we discuss some aspects of the method.
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2. Extrapolation methods

Let T (h) be a complex valued approximate value of T (0) for h ∈ (0, h0]. We suppose
that T (h) has the following asymptotic expansion

I − T (h) = c1h
2 + c2h

4 + . . . (2)

The accuracy of T (h) can be improved using the approximated values of T (h) at
h0 > h1 > · · · > hn. According to the Euler-Maclorian formula, it is possible to
improve the accuracy of the quantity T (h) that has the following asymtotic error
formula

I − T (h) = c1h
2 + c2h

4 + . . . (3)

In our study T (0) is
∫ b

a
f(x) dx. We use (3) for an arbitrary decreasing sequence of

steplengths

h0 > h1 > · · · > hn (4)

and we consider a linear combination of intermediate approximated values T (hk)
and then require that the final approximation

T
(n)
0 =

n
∑

k=0

c
(n)
k T (hk) (5)

satisfies

T
(n)
0 = T (0) +O(h2n+2

0 ), h0 → 0+. (6)

The evaluation of c
(n)
k is closely related to the problem of polynomial interpolation.

We can interpret it as an interpolation of the values T (h) at h = hk, k = n, . . . , n+m

in terms of h2. In other words, let p
(m)
n be the polynomial interpolation of degree

m; then T
(m)
n = p

(m)
n (0) is the desired approximation. According to the Neville’s

algorithm, we can compute T
(m)
n with the following algorithm

T (0)
n = T (hn) (7)

T (m)
n = T

(m−1)
n+1 +

T
(m−1)
n+1 − T

(m−1)
n

(hn/hn+m)2 − 1
, (8)

where hi = (b− a)/ni and {ni} is an arbitrary increasing sequence of natural num-
bers. An alterative way is to use the rational interpolation instead of polynomial
interpolation. The latter is a nonlinear procedure and the presented theory is not

straightforward in this case. We can demonstrate the {T
(m)
n } sequence in a tri-

angular array. As we proceed in the columns or rows of this array we can obtain

more accurate results. The theory of convergence for the sequence {T
(m)
n } exists

under simple unrestricted conditions. We review the results here to provide the ba-
sics for direct representation of extrapolation methods and then use the results in
discretization of nonlinear integral equations.

The following theorem states the convergence issue of the {T
(m)
n } sequence.
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Theorem 1 (see [17]). The necessary and sufficient condition for the function T (h),

continuous from the right in h = 0 to have limn→∞ T
(n)
0 = T (0) is that

α = sup
n≥0

hn+1

hn

< 1. (9)

An important issue in practical algorithms is the rate of convergence of the given
method. For extrapolation methods the properties of which we discuss the following
theorem states their order of convergence.

Theorem 2 (see [17]). Suppose T (h) has asymptotic expansion (1) and let supn≥0
hn+1

hn
≤

α < 1. Then, as n → ∞,

T (m)
n − T (0) = (−1)mem+1(hn . . . hn+m)2 + o((hn . . . hn+m)2). (10)

If, in addition, 0 < β ≤ infn≥0
hn+1

hn
, then there exist constants Em such that for

any m ≥ 0 we have

|T
(m)
0 − T (0)| ≤ Em+1(hn . . . hn+m)2, n ≥ 0. (11)

Relation (10) states that each column converges to T (0) faster than the previ-
ous column and (11) shows that the principle diagonal converges faster than any.
According the above theorems, it is required that the sequence of divisions {ni}
satisfies the given conditions to obtain a convergent method.

3. Calculation of nodes and weights

In this section, we provide an explicit algorithm for evaluation of generalized extrap-

olation methods. The following theorem enables us to represent T
(k)
j explicitly as a

linear combination of the values of integrand function f(x)

T
(k)
j =

n
∑

i=0

ω
(k,j)
i f(x

(j)
i ) = ω(k,j)T .f (j). (12)

In particular, ω
(0,j)
i are the weights of the trapezoidal rule. The proof of the following

theorem is a direct application of the recursive formula (8), therefore we omit it.

Theorem 3. The weights of the numerical approximation T
(k)
j is given with the

following recursive relation

ω
(k,j)
i = ω

(k−1,j+1)
i +

ω
(k−1,j+1)
i − ω

(k−1,j)
i

(hj/hj+k)2 − 1
. (13)

3.1. Positivity and bounds on weights

It is of main interest to introduce the quadratures with positive weights. Positive
weights have useful properties in the computation of approximate values of integrals
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with lower roundoff errors and without losing the accuracy. In extrapolation meth-
ods we can search for the quadratures that have positive weights. In the literature
the quadratures are given by division sequences {ni}. In general, this sequence of
positive integers is arbitrary. However, for convergence of the numerical quadra-
ture it is required to be chosen to satisfy condition (9). Some authors investigated
and suggested typical sequences for the generation of steplengths in extrapolation
method. Three common sequences are Romberg, Bauer and Bulirsch sequences [13],
and they are listed as follows:

Romberg: ni = 2i, i = 0, 1, 2, . . .

Bauer: n2j = 3j , n2j+1 = 2(3j), j = 0, 1, 2, . . .

Bulirsch: n0 = 1, n2j−1 = 2j , n2j = 3(2j−1), j = 1, 2, . . . .

Division sequences are not restricted to these three families. Any sequence that
satisfies condition (9) is acceptable to be used in the extrapolation process. By the
result given in [13], it is proven that the weights of quadratures based on Romberg

divisors are positive. More precisely, let n = 2j+k = 1
h
and ω

(k,j)
i = hω̃

(k,j)
i . Then

the coefficients ω̃
(k,j)
i satisfy the inequalities

0.48 < ω̃
(k,j)
i < 1.46.

However, for Bauer and Bulirsch divisors the situation is not straightforward. For
Bauer divisors the subsequences that end with an even number have positive weights.
According to the definition of this sequence, the quadratures with positive weights
correspond to the divisor sequences of type {ni}

2j+1
i=0 , j = 0, 1, 2, . . . . On the other

hand, for Bulirsch divisors there is no subsequentce with positive weights.
The distribution of nodes and growth and decay of corresponding weights are no-

ticeable points in the solution of some class of problems. Romberg divisors generate
uniform nodes distributed in the given interval. However, in a variety of problems
we need to distribute extra nodes in the boundaries or in special locations. In such
situations we are interested to invoke other types of divisors. In the next section, by
a bar graph we will illustrate numerical properties of weights and the corresponding
node distribution.

3.2. Decay rate of weights on arbitrary grids

There are important facts in the choice of the division sequence. In this section, we
propose the general distribution of nodes introduced by the given division sequences
and their corresponding rate of changes in the weights. We do the comparison
of three sequences in more detail with demonstration of graphs of weights for the
given typical sequences. The practical comparative results will be given in numerical
results.

Figure 1 illustrates the distribution of nodes and normalized weights for Bauer,
Romberg and Bulirsch sequences with approximately for same number of overall
nodes. In this view, the Bulirsch sequence generates more extrapolations with the
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Figure 1: Extrapolations nodes and weights for Bauer’s sequence (top), Romberg’s sequence (mid)
and Bulirsch’s sequence (bottom)

same number of nodes and then Bauer and Romberg sequences with fewer extrapola-
tions, respectively. The growth of nodes in the Romberg sequence is rather uniform
but very severe compared to two others. Also, it turns out from the behavior of
weights and distribution of nodes that the choice of these different nodes will pro-
duce different numerical results for especially nonlinear equations with high oscil-
latory solutions. However, the possibility of arbitrary node distribution of the new
generalized extrapolation scheme given in this paper overcomes this difficulty.

4. Approximation with extrapolation methods

4.1. Discrete form in one dimension

Using representation (12) on an arbitrary set of collocation points we can approxi-
mate solution of equation (1) for requested order of accuracy. Setting x = xi in (1)
and using extrapolation rule (12) we obtain

ui −

N
∑

j=0

ωiK(xi, yj, uj) = fi, i = 0, 1, . . . , N, (14)

where uj is the approximate value of the exact solution in the node xi and fi = f(xi).
As we noted in the previous section, it is important to highlight again that the
weights in this approximation are evaluated once and the main advantage is the ar-
bitrary choice of the node in the discretization of the problem. Only under a slight
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condition on the division sequence we can ensure that the quadrature is conver-
gent. In the next section, we will prove the convergence of the above approximation
for general kernels that satisfy the Lipschitz condition. The nonlinear system of
equations can be written in the following vector form

U −K(U)W = F, (15)

where

U =











u(x0)
u(x1)

...
u(xN )











, F =











f(x0)
f(x1)

...
f(xN )











, W =











ω0

ω1

...
ωN











. (16)

Also, the matrixK(U) is a square matrix whose elements areK(U)ij = K(xi, yj , Uj).
Note that in the case K(x, y, u(y)) = K(x, y)um(y) we can evaluate the exact ja-
cobian for running the steps of the iterative nonlinear solver such as the Newton
method. For a nonlinear system of equation

G(U) = U −K(U)W − F = 0

we obtain

DG(U) = I −mB,

where K(U)ij = KijU
m
j and Bij = KijU

m−1
j .

4.2. Discrete form in two dimensions

In two-dimensional case the discretization process is similar to the one-dimensional
case. Consider the nonlinear integral equation of the form

u(x, y)− λ

∫ 1

0

∫ 1

0

K(x, y, s, t, u(s, t))dsdt = f(x, y), x, y ∈ [0, 1]. (17)

Applying the explicit approximation (12) we obtain

uij − λ

N
∑

m=1

N
∑

n=1

K(xi, xj , xm, xn, umn)ωmωn = fij , i, j = 1, 2, . . . , N. (18)

In the case of the linear integral equation K(x, y, s, t, u(s, t)) = k(x, y, s, t)u(s, t) we
get the following linear system

(I − λK)U = F,
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where, K is a N2 × N2 matrix with entries Kijmn = k(xi, xj , xm, xn)ωmωn and U
and F are N2 × 1 vectors:

K =



































K1111 . . . K111N K1121 . . . K112N . . . K11N1 . . . K11NN

...
...

...
...

...
...

K1N11 . . . K1N1N K1N21 . . . K1N2N . . . K1NN1 . . . K1NNN

...
...

...
...

...
...

KN111 . . . KN11N KN121 . . . KN12N . . . KN1N1 . . . KN1NN

...
...

...
...

...
...

KNN11 . . . KNN1N KNN21 . . . KNN2N . . . KNNN1 . . . KNNNN



































, (19)

U =
[

u11 . . . u1N u21 . . . u2N . . . uN1 . . . uNN

]T
,

and

F =
[

f11 . . . f1N f21 . . . f2N . . . fN1 . . . fNN

]T
.

In the general case, we have a nonlinear system of equations

G(U) = U − λK(U)− F = 0, (20)

where Kijmn = K(xi, xj , xm, xn, umn)ωmωn. In some special cases we may compute
the exact jacobian matrix to make iterations of a nonlinear solver. For example,
suppose that the kernel is in the formK(x, y, s, t, u(s, t)) = k(x, y, s, t)u(s, t)m. Then
the jacobian of (20) reads

DG(U) = I −mKUm−1,

where K is introduced in (19).

5. Convergence of the method

In this section, we investigate the convergence of the method that we have developed
in previous sections. A general convergence proof is given in [14] for the nonlinear
Voltera equations which is discretized with a convergent numerical method. It is
not straightforward to extend the same proof for the case of nonlinear fredholm
equation. However, we give a different proof for the convergence. We remark that
the numerical quadrature

∫ b

a

K(xi, y, u(y)) dy =

N
∑

j=0

wijK(xi, yj, u(yj)) + Ei,y(K(xi, y, u(y)), (21)

is convergent if

lim
hi→0

Ei,y(K(xi, y, u(y)) = 0. (22)
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Consistency condition (22) is satisfied for extrapolation methods under the condi-
tions given in Theorem 1.

Theorem 4. If ωi ≥ 0 and {hi} satisfies (9) and K(x, y, z) is a lipschitz function
with respect to z with constant L < 1, then the extrapolation method for the solution
of nonlinear integral equation (1) is convergent.

Proof. At x = xi, i = 0, 1, . . . , N , we obtain by inserting (21) in (1)

u(xi) = f(xi) +

N
∑

j=0

wjK(xi, yj, u(yj)) + Ei,y(K(xi, y, u(y)). (23)

Similarly, the approximate equations are

ui = f(xi) +

N
∑

j=0

wjK(xi, yj, uj), i = 0, 1, . . . , N. (24)

On subtracting equations (23) and (24) we obtain

ei := u(xi)− ui =
N
∑

j=0

wj

[

K(xi, yj, u(yj))−K(xi, yj, uj)
]

+Ei,y(K(xi, yj, u(yj)), i = 0, . . . , N. (25)

The Lipschitz property of the kernel function K reads

|K(xi, yj , u(yj))−K(xi, yj, uj)| ≤ L|u(yj)− uj|.

Inserting this result in (25), we obtain

|ei| ≤

N
∑

j=0

wjL|ej|+ |Ei,yj
(K(xi, yj , u(yj))|, i = 0, . . . , N. (26)

Let el = maxj |ej |. We set i = l in (26) and using
∑N

j=0 wij = b − a we obtain

|el| ≤ (b − a)L|el|+ |El,yj
(K(xl, yj , u(yj))|, (27)

or

|el| ≤
|El,yj

(K(xl, yj , u(yj))|

1− (b− a)L
, (28)

the quadrature is convergent, so in the limit as hj → 0 we obtain the result. The
proof is complete.
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6. Numerical results

In this section, we verify the implementation results of the novel method. The
comparative results are given to justify the superior behavior of the method.

Example 1. The first example is a nonlinear problem with a smooth kernel which
is also a lipschitz function

u(x) +

∫ 1

−1

u(y)

x2 + u(y)2
dy = e−x +

(

− tan−1

(

e1

x

)

+ tan−1

(

e−1

x

))

x−1.

We consider 11, 6 and 8 elements of the Bulirsch, Romberg and Bauer sequences,
respectively. The corresponding overall number of nodes is 65, 65 and 55, respectively.
The initial guess is u(x) = 1 which is far from the true solution u(x) = e−x.
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Figure 2: The plots a, b and c are the errors and the plots d, e and f are numerical and true
solutions of Example 1 using the three sequences (Bulirsch, Romberg and Bauer, respectively)

Example 2. This test problem demonstrates the results of application of three se-
quences for an oscillatory problem. Let

u(x) +

∫ π

−π

sin(xu(y)) dy = f(x).
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Figure 3: The plots a, b and c are the errors and the plots d, e and f are numerical and true
solutions of Example 2 using the three sequences (Bulirsch, Romberg and Bauer, respectively)

We evaluate the function f(x) in a way that the exact solution is u(x) = sin(xm),
for even integer m. Numerical results with error plots are presented in Figure 3.

The solution of this test problem is an oscillatory function with rapidly variant
gradients. Among the three used sequences the Romberg sequence is closest to the
uniform grid. The comparison of the Bulrisch’s and Bauer’s sequences discloses that
clustering of nodes in the Romberg’s sequence is appropriate for such problems. In
fact, the distribution of the Romberg’s nodes is rather uniform while the distribution
of the other two sequences is not close to uniform. In other words, the nodes are
densely distributed in the interval (−2, 2) and Figure 3 demonstrates that the error
increases outside of this interval. The given algorithms provide the opportunity to
study and apply more general clustering nodes in the applications.

Example 3. It is worth to study the comparison of the current method with the
Galerkin method. To this end, we use the following test problem

u(x) = f(x) +

∫ 1

0

1

x+ y + u(y)
dy, 0 ≤ x ≤ 1

where f(x) is evaluated such that for an arbitrary constant α we have the exact
solution

u(x) =
1

x+ α
.

This problem has been solved in [5, 3] with the Galerkin method. The numerical re-
sults is given in Table 1, Table 2 and Table 3 with N = 9, 9, 7 nodes, respectively (see



386 J. Farzi

Figure 4). The comparison of the algorithms and results of the current method with
the Galerkin method justifies considerable accuracy and simplicity of this method.
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Figure 4: The plots a, b and c are the errors and the plots d, e and f are numerical and true
solutions of Example 3 using the three sequences (Bulirsch, Romberg and Bauer, respectively)

Example 4 (see [18])). In this example, we demonstrate numerical results for a
two-dimensional linear integral equation

u(x, y)−

∫ 1

0

∫ 1

0

k(x, y, t, s)u(t, s) dtds = f(x, y), 0 ≤ x, y ≤ 1,

where
k(x, y, t, s) = exp((

x

5
)5t)− 1,

and we choose f(x, y) such that the exact solution is u(x, y) = xy. The error graph
is shown in Figure 5. We have used 7× 7 mesh grids of the Bauer sequence.

Example 5 (see [6])). Consider the nonlinear integral equation

u(x, y)−

∫ 1

0

∫ 1

0

(t sin s+ 1)u3(t, s) dtds = f(x, y), 0 ≤ x, y ≤ 1,

where

f(x, y) = x cos y +
1

20
(cos4 1− 1)−

1

12
sin 1(cos2 1 + 2),

and the exact solution is u(x, y) = x cos y. The error graph is shown in Figure 6.
We have used 25× 25 mesh grids of the Bulirsch sequence.
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x Exact solution Numerical solution
0.00 1.000000000 1.000000022
0.17 0.857142857 0.857142876
0.25 0.800000000 0.800000016
0.33 0.750000000 0.750000014
0.50 0.666666667 0.666666677
0.67 0.600000000 0.600000007
0.75 0.571428571 0.571428577
0.83 0.545454545 0.545454550
1.00 0.500000000 0.500000003

Table 1: Example 3: Solution with 5 elements of Bulirsch sequence (N = 9)

x Exact solution Numerical solution
0.00 1.000000000 1.000000653
0.13 0.888888889 0.888889265
0.25 0.800000000 0.800000222
0.38 0.727272727 0.727272859
0.50 0.666666667 0.666666743
0.63 0.615384615 0.615384658
0.75 0.571428571 0.571428592
0.88 0.533333333 0.533333339
1.00 0.500000000 0.499999996

Table 2: Example 3: Solution with 3 elements of Romberg sequence (N = 9)

x Exact solution Numerical solution
0.00 1.000000000 1.000002050
0.17 0.857142857 0.857143836
0.33 0.750000000 0.750000482
0.50 0.666666667 0.666666900
0.67 0.600000000 0.600000100
0.83 0.545454545 0.545454572
1.00 0.500000000 0.499999985

Table 3: Example 3: Solution with 4 elements of Bauer sequence (N = 7)

7. Discussion and future work

In this paper, we have presented a direct representation of the generalized extrapola-
tion methods. The simplicity of evaluating the nodes and weights of the quadrature
rules has been demonstrated. The low cost and higher order of accuracy are major
features of the derived class of methods. It is also possible to evaluate the cor-
responding weights for an arbitrary set of nodes and this procedure is done one
time for a given set of nodes or corresponding dividing sequences. The results are
presented for equations in one and two dimensions. The extension of this class is
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Figure 5: Two-dimensional equation of example 4 with 7× 7 mesh grids
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Figure 6: Two-dimensional equation of example 5 with 25 × 25 mesh grids

straightforward for higher dimensions. We have studied the quality of different node
distributions in the solution domain. With a high oscillatory function we have illus-
trated the role of a different distribution of nodes. To generate an automatic code
with adaptive error control we will study the possibility of error estimation in the
solution of nonlinear integral equations. This is the property of the T table that as
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we proceed in the columns of this table we obtain better results. Therefore, we can
provide error estimates from successive approximations.
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