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Abstract. In this paper, we investigate the growth of meromorphic solutions to a complex
higher order linear differential equation whose coefficients are meromorphic functions of
[p, q]-orders. We get the results about the lower [p, q]-order of solutions of the equation.
Moreover, we investigate the [p, q]-convergence exponent and the lower [p, q]-convergence
exponent of distinct zeros of f(z)− φ(z).
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1. Introduction and notations

In this paper, a meromorphic function means being meromorphic in the whole
complex plane. We also assume that readers are familiar with the standard notations
and fundamental results of Nevanlinna’s theory (see e.g. [5, 12, 16]). Let us define
inductively for r ∈ [0,+∞), exp1 r = er and expp+1 r = exp(expp r), p ∈ N. For
all sufficiently large r, we define log1 r = log r and logp+1 r = log(logp r), p ∈
N. We also denote exp0 r = r = log0 r and exp−1 r = log1 r. It is well known
that there exist many functions which have infinite iterated orders. There are also
many papers considering the iterated order of solutions of complex linear differential
equations (see e.g. [3, 7, 8, 11, 15]). In order to discuss accurately the growth of
these functions of fast growth, Juneja-Kapoor-Bajpai investigated some properties
of entire functions of [p, q]-order in [9, 10]. In [14], in order to maintain accordance
with general definitions of the entire function f(z) of iterated p-order, Liu-Tu-Shi
gave a minor modification of the original definition of the [p, q]-order given in [9, 10].
With this new concept of [p, q]-order, the [p, q]-order of solutions of complex linear
differential equations are investigated (see e.g. [13, 14]). B. Beläıdi also considered
the growth of solutions of higher order linear differential equations with analytic
coefficients of [p, q]-order in the unit disc (see e.g. [1, 2]).

Now we introduce the definitions of the [p, q]-order as follows.
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Definition 1 (see [13, 14]). Let p, q be integers such that p ≥ q ≥ 1 and let f(z) be
a meromorphic function. The [p, q]-order of f(z) is defined by

σ[p,q](f) = lim
r→∞

logp T (r, f)

logq r
.

For an entire function f(z), we also define

σ[p,q](f) = lim
r→∞

logp+1 M(r, f)

logq r
.

Remark 1. By Definition 1 we note that σ[1,1](f) = σ(f), σ[2,1](f) = σ2(f), and
σ[p,1](f) = σp(f).

Now, by Definition 1, we can get the definition of the lower [p, q]-order for entire
and meromorphic functions.

Definition 2. Let p, q be integers such that p ≥ q ≥ 1, and let f(z) be a meromor-
phic function. The lower [p, q]-order of f(z) is defined by

µ[p,q](f) = lim
r→∞

logp T (r, f)

logq r
.

For an entire function f(z), we also define

µ[p,q](f) = lim
r→∞

logp+1 M(r, f)

logq r
.

Definition 3 (see [13, 14]). Let p, q be integers such that p ≥ q ≥ 1. The [p, q]-
convergence exponent of the sequence of a-points of a meromorphic function f(z) is
defined by

λ[p,q](f − a) = λ[p,q](f, a) = lim
r→∞

logp N(r, 1
f−a )

logq r
,

and the [p, q]-convergence exponent of the sequence of distinct a-points of a mero-
morphic function f(z) is defined by

λ[p,q](f − a) = λ[p,q](f, a) = lim
r→∞

logp N(r, 1
f−a )

logq r
.

Now, by Definition 3, we can get the definition of the lower [p, q]-convergence
exponent for entire and meromorphic functions.

Definition 4. Let p, q be integers such that p ≥ q ≥ 1. The lower [p, q]-convergence
exponent of the sequence of a-points of a meromorphic function f(z) is defined by

λ[p,q](f − a) = λ[p,q](f, a) = lim
r→∞

logp N(r, 1
f−a )

logq r
,
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and the lower [p, q]-convergence exponent of the sequence of distinct a-points of a
meromorphic function f(z) is defined by

λ[p,q](f − a) = λ[p,q](f, a) = lim
r→∞

logp N(r, 1
f−a )

logq r
.

Furthermore, we can get the definitions of λ[p,q](f−φ), λ[p,q](f−φ) , λ[p,q](f−φ)

and λ[p,q](f − φ), when a is replaced by a meromorphic function φ(z).

Definition 5 (see [13, 14]). Let p, q be integers such that p ≥ q ≥ 1. The [p, q]-type
of a meromorphic function f(z) of [p, q]-order σ(0 < σ < ∞) is defined by

τ[p,q](f) = lim
r→∞

logp−1 T (r, f)

(logq−1 r)
σ

.

For an entire function f(z), we also define

τ[p,q](f) = lim
r→∞

logp M(r, f)

(logq−1 r)
σ
.

Now, by Definition 5, we can get the definition of the lower [p, q]-type for entire
and meromorphic functions.

Definition 6. Let p, q be integers such that p ≥ q ≥ 1. The lower [p, q]-type of a
meromorphic function f(z) of lower [p, q]-order µ(0 < µ < ∞) is defined by

τ [p,q](f) = lim
r→∞

logp−1 T (r, f)

(logq−1 r)
µ

.

For an entire function f(z), we also define

τ [p,q](f) = lim
r→∞

logp M(r, f)

(logq−1 r)
µ
.

Remark 2. Especially, when q = 1, Definitions 5 and 6 are the definitions of the
iterated p-type and the iterated p-lower type, and the condition “p ∈ N\{1}” in [7]
conforms to the condition “p > q = 1” in this paper.

Moreover, we denote the linear measure of a set E ⊂ [0,+∞) by mE =
∫
E
dt

and the logarithmic measure E ⊂ [1,+∞) by mlE =
∫
E
dt/t, respectively (see e.g.

[6]).

2. Main results

We consider the following equation, for n ≥ 2,

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = 0, (1)

where Aj(z), (j = 1, · · · , n − 1), A0(z)( ̸≡ 0) are meromorphic functions. For the
case of entire coefficients, by definitions of [p, q]-order and [p, q]-type, Liu-Tu-Shi [14]
got a result as follows.
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Theorem 1. Let A0(z), . . . , An−1(z) be entire functions satisfying max{σ[p,q](Aj

)|j = 1, . . . , n − 1} ≤ σ[p,q](A0) < ∞ and max{τ[p,q](Aj)|σ[p,q](Aj) = σ[p,q](A0) >
0, j ̸= 0} < τ[p,q](A0). Then every nontrivial solution f(z) of (1) satisfies σ[p+1,q](f)
= σ[p,q](A0).

For the case of meromorphic coefficients, Li-Cao [13] obtained the same result
by complementing some conditions on the poles of the coefficients and solutions of
(1).

Theorem 2. Let A0(z), . . . , An−1(z) be meromorphic functions in the complex plane.
Assume that λ[p,q](

1
A0

) < µ[p,q](A0) < ∞, max{σ[p,q](Aj)|j = 1, . . . , n − 1} =
σ[p,q](A0) < ∞ and max{τ[p,q](Aj)|σ[p,q](Aj) = σ[p,q](A0), j ̸= 0} < τ[p,q](A0). Then
any nonzero meromorphic solution f(z) of (1) whose poles are of uniformly bounded
multiplicities, satisfies σ[p+1,q](f) = σ[p,q](A0).

In the above, Liu-Tu-Shi [14] and Li-Cao [13] used the [p, q]-type of A0(z) to
dominate the [p, q]-types of other coefficients, and got the result about σ[p+1,q](f).
Thus, a natural question arises: If we use the lower [p, q]-type of A0(z) to dominate
other coefficients, what can be said about µ[p+1,q](f)? Another question is: Can we
find some other conditions to dominate other coefficients? In the meantime, can we
improve the condition on the poles of f(z)?

In this paper, we give our main results solving the above two questions. More-
over, we get the results about the [p, q]-convergence exponent and the lower [p, q]-
convergence exponent of distinct zeros of f(z)− φ(z).

Theorem 3. Let p, q be integers such that p ≥ q > 1 or p > q = 1, and let
A0(z), . . . , An−1( z) be meromorphic functions. Assume that λ[p,q](

1
A0

) < µ[p,q](A0)
< ∞, and that max{σ[p,q](Aj) |j = 1, . . . , n−1} ≤ µ[p,q](A0) and max{τ[p,q](Aj)|σ[p,q]

(Aj) = µ[p,q](A0), j ̸= 0} < τ [p,q](A0) = τ. If f(z)( ̸≡ 0) is a meromorphic solution

of (1) satisfying N(r,f)

N(r,f)
< expp+1{b logq r} (b ≤ µ[p,q](A0)), then we have

λ[p+1,q](f−φ) = µ[p+1,q](f) = µ[p,q](A0) ≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f−φ),

where φ(z)( ̸≡ 0) is a meromorphic function with σ[p+1,q](φ) < µ[p,q](A0).

Theorem 4. Let p, q be integers such that p ≥ q > 1 or p > q = 1, and let
A0(z), . . . , An−1(z) be meromorphic functions. Assume that λ[p,q](

1
A0

) < µ[p,q](A0) <

∞, and that max{σ[p,q](Aj)|j = 1, . . . , n−1} ≤ µ[p,q](A0) and lim
r→∞

∑n−1
j=1

m(r,Aj)
m(r,A0)

< 1.

If f(z)( ̸≡ 0) is a meromorphic solution of (1) satisfying N(r,f)

N(r,f)
< expp+1{b logq r}

(b ≤ µ[p,q](A0)), then we have

λ[p+1,q](f−φ) = µ[p+1,q](f) = µ[p,q](A0) ≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f−φ),

where φ(z)( ̸≡ 0) is a meromorphic function satisfying σ[p+1,q](φ) < µ[p,q](A0).

Theorem 5. Let p, q be integers such that p ≥ q ≥ 1, and let A0(z), . . . , An−1(z)
be meromorphic functions. Suppose that there exists one As(z) (0 ≤ s ≤ n − 1)
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with λ[p,q](
1
As

) < µ[p,q](As) < ∞, and that max{σ[p,q](Aj)| j ̸= s} ≤ µ[p,q](As) and
max{τ[p,q](Aj)|σ[p,q](Aj) = µ[p,q](As), j ̸= s} < τ [p,q](As) = τ. Then every transcen-

dental meromorphic solution f(z)(̸≡ 0) of (1) satisfying N(r,f)

N(r,f)
< expp+1{b logq r}

(b ≤ µ[p,q](As)) satisfies µ[p+1,q](f) ≤ µ[p,q](As) ≤ µ[p,q](f) and σ[p+1,q](f) ≤
σ[p,q](As) ≤ σ[p,q](f). Moreover, every non-transcendental meromorphic solution
f(z) of (1) is a polynomial with degree deg(f) ≤ s− 1.

Remark 3. All meromorphic solutions of (1) satisfying N(r,f)

N(r,f)
< expp+1{b logq r}

(b ≤ µp(A0)) in Theorems 3-5 are of regular growth µ[p+1,q](f) = σ[p+1,q](f), when
the coefficient A0(z) is of regular growth µ[p,q](A0) = σ[p,q](A0).

Remark 4. The condition “p ≥ q > 1 or p > q = 1” ensures to get rid of the
case “p = q = 1”, which is essential for the proof of Lemma 7. Since Lemma 7 is
the part and parcel in the proofs of Theorems 3 and 4, the condition “p ≥ q > 1 or
p > q = 1” cannot be omitted in Theorems 3 and 4.

Remark 5. The condition that λ[p,q](
1
A0

) < µ[p,q](A0) in Theorems 3-5 can be
changed by N(r,A0) = o(m(r,A0)) (r → ∞), δ(∞, A0) > 0 or

µ[p,q](A0) = lim
r→∞

logp m(r,A0)

logq r
.

3. Preliminary lemmas

Lemma 1 (see [4]). Let f(z) be a meromorphic solution of (1) assuming that not
all coefficients Aj(z) are constants. Given a real constant γ > 1, and denoting

T (r) =
∑n−1

j=0 T (r,Aj), we have

logm(r, f) < T (r)
{
(log r) log T (r)

}γ
, if p = 0

and
logm(r, f) < r2p+γ−1T (r) {log T (r)}γ , if p > 0,

outside of an exceptional set Ep with
∫
Ep

tp−1dt < +∞.

Remark 6. Especially, if p = 0, then the exceptional set E0 has finite logarithmic
measure

∫
E0

dt
t = mlE0.

Lemma 2 (see [6, 12]). Let g : [0,+∞) → R and h : [0,+∞) → R be monotone
increasing functions. If (i) g(r) ≤ h(r) outside of an exceptional set of finite linear
measure, or (ii) g(r) ≤ h(r), r ̸∈ E1 ∪ (0, 1], where E1 ⊂ [1,∞) is a set of finite
logarithmic measure, then for any constant α > 1, there exists r0 = r0(α) > 0 such
that g(r) ≤ h(αr) for all r > r0.

Lemma 3 (see [13]). Let p, q be integers such that p ≥ q ≥ 1 and let A0(z), A1(z), . . . ,
An−1(z), F (z)( ̸≡ 0) be meromorphic functions. If f(z) is a meromorphic solution of

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = F (z) (2)



34 H.Hu and X.M. Zheng

satisfying

max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n− 1} < σ[p,q](f) = σ < ∞,

then we have λ[p,q](f) = λ[p,q](f) = σ[p,q](f).

Lemma 4. Let p, q be integers such that p ≥ q ≥ 1 and let A0(z), A1(z), . . . , An−1(z),
F (z) ( ̸≡ 0) be meromorphic functions. If f(z) is a meromorphic solution of (2) sat-
isfying

max{σ[p,q](F ), σ[p,q](Aj)|j = 0, . . . , n− 1} < µ[p,q](f),

then we have λ[p,q](f) = λ[p,q](f) = µ[p,q](f).

Proof. By (2), we have

1

f
=

1

F

(
f (n)

f
+An−1(z)

f (n−1)

f
+ · · ·+A0(z)

)
. (3)

If f(z) has a zero at z0 of order γ(> n) and A0(z), A1(z), · · · , An−1(z) are all analytic
at z0, then F (z) has a zero at z0 of order at least γ − n. Hence, we have

N(r,
1

f
) ≤ nN(r,

1

f
) +N(r,

1

F
) +

n−1∑
j=0

N(r,Aj). (4)

By (3), we get that

m(r,
1

f
) ≤ m(r,

1

F
) +

n−1∑
j=0

m(r,Aj) +

n∑
j=1

m(r,
f (j)

f
) +O(1). (5)

Therefore, by (4), (5) and the first fundamental theorem,

T (r, f) = T (r,
1

f
) +O(1)

≤ nN(r,
1

f
) + T (r, F ) +

n−1∑
j=0

T (r,Aj) +O(log(rT (r, f))) (6)

holds for all r ̸∈ E, where E is a set of r of finite linear measure. By max{σ[p,q](F ),
σ[p,q](Aj)|j = 0, . . . , n− 1} < µ[p,q](f), for sufficiently large r, we have

T (r, F ) = o(T (r, f)) and T (r,Aj) = o(T (r, f)), j = 0, 1, . . . , n− 1. (7)

Moreover, for sufficiently large r, we have O(log(rT (r, f))) = o(T (r, f)). By com-
bining this, (6) and (7), we have

(1− o(1))T (r, f) ≤ nN(r,
1

f
), r ̸∈ E, r → ∞. (8)

Hence, by Lemma 2 and (8), we have

λ[p,q](f) ≥ µ[p,q](f).

Since λ[p,q](f) ≤ λ[p,q](f) ≤ µ[p,q](f), the result holds.
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Lemma 5. Let p, q be integers such that p ≥ q ≥ 1 and let f(z) be a meromorphic
function with 0 < µ[p,q](f) < ∞. Then for any given ε > 0, there exists a set
E2 ⊂ (1,∞) of infinite logarithmic measure such that

µ = µ[p,q](f) = lim
r→∞
r∈E2

logp T (r, f)

logq r
,

and for any given ε > 0 and sufficiently large r ∈ E2,

T (r, f) < expp{(µ+ ε) logq r}.

Proof. We use a similar proof as [14, Lemma 8]. By the definition of lower [p, q]-
order, there exists a sequence {rn}∞n=1 tending to ∞ satisfying rn < (1− 1

n+1 )rn+1,
and

lim
rn→∞

logp T (rn, f)

logq rn
= µ[p,q](f).

Then for any given ε > 0, there exists an n1 such that for n ≥ n1, for any r ∈
[(1− 1

n )rn, rn], we have

logp T (r, f)

logq r
≤

logp T (rn, f)

logq rn

logq rn

logq r
.

When q ≥ 1, we have
logq rn
logq r → 1(n → ∞). Let E2 =

∪∞
n=n1

[(1− 1
n )rn, rn], then we

have

lim
r→∞
r∈E2

logp T (r, f)

logq r
≤ lim

rn→∞

logp T (rn, f)

logq rn
= µ[p,q](f)

and mlE2 =
∑∞

n=n1

∫ rn
(1− 1

n )rn
dt
t =

∑∞
n=n1

log(1 + 1
n−1 ) = ∞. Therefore, by the

evident fact that

lim
r→∞
r∈E2

logp T (r, f)

logq r
≥ lim

r→∞

logp T (r, f)

logq r
= µ[p,q](f),

we have

lim
r→∞
r∈E2

logp T (r, f)

logq r
= µ[p,q](f)

and for any given ε > 0 and sufficiently large r ∈ E2,

T (r, f) < expp
{
(µ+ ε) logq r

}
.

Lemma 6. Let p, q be integers such that p ≥ q ≥ 1 and let A0(z), A1(z), . . . , An−1(z)
be meromorphic functions such that max{σ[p,q](Aj)|j ̸= s} ≤ µ[p,q](As) < ∞. If

f(z)( ̸≡ 0) is a meromorphic solution of (1) satisfying N(r,f)

N(r,f)
< expp+1{b logq r}

(b ≤ µ[p,q](As)), then we have µ[p+1,q](f) ≤ µ[p,q](As).
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Proof. By (1), we know that the poles of f(z) can only occur at the poles of A0(z),

A1(z), . . . , An−1(z). By
N(r,f)

N(r,f)
< expp+1{b logq r} (b ≤ µ[p,q](As)), we have

N(r, f) < expp+1{b logq r}N(r, f) ≤ expp+1{b logq r}
n−1∑
j=0

N(r,Aj)

≤ expp+1{b logq r}
n−1∑
j=0

T (r,Aj). (9)

Then by (9), we have

T (r, f) ≤ m(r, f) + expp+1{b logq r}
n−1∑
j=0

T (r,Aj). (10)

By Lemma 5, there exists a set E2 of infinite logarithmic measure such that for any
given ε > 0 and sufficiently large r ∈ E2, we have

T (r,As) ≤ expp{(µ[p,q](As) + ε) logq r}. (11)

Since max {σ[p,q](Aj)| j ̸= s} ≤ µ[p,q](As), for the above ε > 0 and sufficiently large
r, we have

T (r,Aj) ≤ expp{(µ[p,q](As) + ε) logq r}, j ̸= s. (12)

By (11), (12) and Lemma 1, there exists a set E0 of r of finite logarithmic measure
such that for sufficiently large r ∈ E2\E0

m(r, f) ≤ exp


n−1∑
j=0

T (r,Aj)

(log r) log
n−1∑

j=0

T (r,Aj)

γ
≤ expp+1{(µ[p,q](As) + 2ε) logq r}. (13)

By (10) and (13), we have

lim
r→∞

logp+1 T (r, f)

logq r
≤ lim

r→∞
r∈E2\E0

logp+1 T (r, f)

logq r
≤ µ[p,q](As) + 3ε.

Since ε > 0 is arbitrary, we have µ[p+1,q](f) ≤ µ[p,q](As).

Lemma 7. Let p, q be integers such that p ≥ q > 1 or p > q = 1, and let
A0(z), . . . , An−1(z) be meromorphic functions. Assume that λ[p,q](

1
A0

) < µ[p,q](A0)
and that

max{σ[p,q](Aj)|j = 1, . . . , n− 1} ≤ µ[p,q](A0) = µ (0 < µ < ∞),

max{τ[p,q](Aj)| σ[p,q](Aj) = µ[p,q](A0), j ̸= 0} < τ [p,q](A0) = τ (0 < τ < ∞).

If f(z)( ̸≡ 0) is a meromorphic solution of (1), then we have µ[p+1,q](f) ≥ µ[p,q](A0).
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Proof. Suppose that f(z)( ̸≡ 0) is a meromorphic solution of (1). By (1), we get

−A0(z) =
f (n)(z)

f(z)
+An−1(z)

f (n−1)(z)

f(z)
+ · · ·+A1(z)

f ′(z)

f(z)
. (14)

By λ[p,q](
1
A0

) < µ[p,q](A0), we have N(r,A0) = o(T (r,A0))(r → ∞). Then by (14),
we have

T (r,A0) = m(r,A0)+N(r,A0) ≤
n−1∑
j=1

m(r,Aj)+
n∑

j=1

m(r,
f (j)

f
)+o(T (r,A0)). (15)

Hence, we have by (15) that

T (r,A0) ≤ O

n−1∑
j=1

m(r,Aj) + log(rT (r, f))

 , (16)

for sufficiently large r → ∞, r ̸∈ E, where E is a set of r of finite linear measure.
Set b = max{σ[p,q](Aj)|σ[p,q](Aj) < µ[p,q](A0) = µ, j = 1, . . . , n− 1}. If σ[p,q](Aj)

< µ[p,q](A0) = µ, then for any ε(0 < 2ε < µ− b) and all r → ∞, we have

m(r,Aj) ≤ T (r,Aj) ≤ expp{(b+ ε) logq r}
< expp{(µ− ε) logq r} = expp−1{(logq−1 r)

µ−ε}. (17)

Set τ1 = max{τ[p,q](Aj)| σ[p,q](Aj) = µ[p,q](A0), j ̸= 0}, then τ1 < τ. If σ[p,q](Aj) =
µ[p,q](A0), τ[p,q](Aj) ≤ τ1 < τ, then for r → ∞ and any ε (0 < 2ε < τ − τ1), we have

m(r,Aj) ≤ T (r,Aj) ≤ expp−1

{
(τ1 + ε)(logq−1 r)

µ
}
. (18)

By the definition of the lower [p, q]-type, for r → ∞, we have

T (r,A0) > expp−1

{
(τ − ε)(logq−1 r)

µ
}
. (19)

When p ≥ q > 1 or p > q = 1, we have

expp−1

{
(τ1 + ε)(logq−1 r)

µ
}
= o(expp−1

{
(τ − ε)(logq−1 r)

µ
}
), r → ∞.

By substituting (17)-(19) into (16), we have

expp−1

{
(τ − 2ε)(logq−1 r)

µ
}
≤ O(log(rT (r, f))), r ̸∈ E, r → ∞. (20)

Then, by Lemma 2, we have µ[p+1,q](f) ≥ µ[p,q](A0).

Lemma 8. Let p, q be integers such that p ≥ q ≥ 1 and let f(z) be a meromorphic
function with 0 < σ[p,q](f) < ∞. Then for any given ε > 0, there exists a set
E3 ⊂ (1,∞) of infinite logarithmic measure such that

τ = τ[p,q](f) = lim
r→∞
r∈E3

logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

.
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Proof. By the definition of the [p, q]-type, there exists a sequence {rn}∞n=1 tending
to ∞ satisfying (1 + 1

n )rn < rn+1, and

τ[p,q](f) = lim
rn→∞

logp−1 T (rn, f)

(logq−1 rn)
σ[p,q](f)

.

Then for any given ε > 0, there exists an n1 such that for n ≥ n1 and any r ∈
[rn, (1 +

1
n )rn], we have

logp−1 T (rn, f)

(logq−1 rn)
σ[p,q](f)

(
logq−1 rn

logq−1(1 +
1
n )rn

)σ[p,q](f)

≤
logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

.

When q ≥ 1, we have
logq−1 rn

logq−1(1+
1
n )rn

→ 1, rn → ∞. Let E3 =
∪∞

n=n1
[rn, (1 +

1
n )rn],

then we have

lim
r→∞
r∈E3

logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

≥ lim
rn→∞

logp−1 T (rn, f)

(logq−1 rn)
σ[p,q](f)

= τ[p,q](f),

and
∫
E3

dr
r =

∑∞
n=n1

∫ (1+ 1
n )rn

rn
dt
t =

∑∞
n=n1

log(1+ 1
n ) = ∞. Therefore, by the evident

fact that

lim
r→∞
r∈E3

logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

≤ lim
r→∞

logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

= τ[p,q](f),

we have

lim
r→∞
r∈E3

logp−1 T (r, f)

(logq−1 r)
σ[p,q](f)

= τ[p,q](f).

4. Proofs of Theorems 3 - 5

Proof of Theorem 3. By Lemma 1 and (10), we can get

T (r, f) ≤ expp+1{(σ[p,q](A0) + 3ε) logq r},

for any ε > 0 and r ̸∈ E0, r → ∞, where E0 is a set of r of finite logarith-
mic measure. And by Lemma 2, we can get σ[p+1,q](f) ≤ σ[p,q](A0). Set d =
max{σ[p,q](Aj)|σ[p,q](Aj) < σ[p,q](A0)}. If σ[p,q](Aj) < µ[p,q](A0) ≤ σ[p,q](A0) or
σ[p,q](Aj) ≤ µ[p,q](A0) < σ[p,q](A0), then for any given ε(0 < 2ε < σ[p,q](A0) − d)
and sufficiently large r, we have

T (r,Aj) ≤ expp{(d+ ε) logq r} = expp−1{(logq−1 r)
d+ε}. (21)

Set τ1 = max{τ[p,q](Aj)| σ[p,q](Aj) = µ[p,q](A0), j ̸= 0}. If σ[p,q](Aj) = µ[p,q](A0) =
σ[p,q](A0), then we have τ1 < τ ≤ τ[p,q](A0). Therefore,

T (r,Aj) ≤ expp−1

{
(τ1 + ε)(logq−1 r)

σ[p,q](A0)
}

(22)



Growth of solutions of linear differential equations 39

holds for r → ∞ and any given ε (0 < 2ε < τ[p,q](A0)− τ1). By the definition of the
[p, q]-type and Lemma 8, for sufficiently large r, r ∈ E3, where E3 is a set of r of
infinite logarithmic measure, we have

T (r,A0) > expp−1

{
(τ[p,q](A0)− ε)(logq−1 r)

σ[p,q](A0)
}
. (23)

Then by (16) and (21)-(23), for all sufficiently large r, r ∈ E3\E and the above ε,
we have

expp−1

{
(τ[p,q](A0)− 2ε)(logq−1 r)

σ[p,q](A0)
}
≤ O(log T (r, f))), (24)

where E is a set of r of finite linear measure. Then, we have σ[p+1,q](f) ≥ σ[p,q](A0).
Thus, we have σ[p+1,q](f) = σ[p,q](A0).

By Lemmas 6 and 7, we have µ[p+1,q](f) = µ[p,q](A0).

Now we need to prove λ[p+1,q](f − φ) = µ[p+1,q](f) and λ[p+1,q](f − φ) =
σ[p+1,q](f). Setting g = f − φ, since σ[p+1,q](φ) < µ[p,q](A0), we have σ[p+1,q](g) =

σ[p+1,q](f) = σ[p,q](A0), µ[p+1,q](g) = µ[p+1,q](f) = µ[p,q](A0), λ[p+1,q](g) = λ[p+1,q](f

−φ) and λ[p+1,q](g) = λ[p+1,q](f − φ). By substituting f = g + φ, f ′ = g′ +

φ′, · · · , f (n) = g(n) + φ(n) into (1), we get

g(n)+An−1(z)g
(n−1)+· · ·+A0(z)g = −[φ(n)+An−1(z)φ

(n−1)+· · ·+A0(z)φ]. (25)

If F (z) = φ(n) + An−1(z)φ
(n−1) + · · · + A0(z)φ ≡ 0, then by Lemma 7, we have

µ[p+1,q](φ) ≥ µ[p,q](A0), which is a contradiction. Since F (z) ̸≡ 0 and σ[p+1,q](F ) ≤
σ[p+1,q](φ) < µ[p,q](A0) = µ[p+1,q](f) = µ[p+1,q](g) ≤ σ[p+1,q](g) = σ[p+1,q](f), by

Lemma 3 and (25), we have λ[p+1,q](g) = λ[p+1,q](g) = σ[p+1,q](g) = σ[p,q](A0), i.e.

λ[p+1,q](f − φ) = λ[p+1,q](f − φ) = σ[p+1,q](f) = σ[p,q](A0). By Lemma 4 and (25),

we have λ[p+1,q](g) = µ[p+1,q](g), i.e. λ[p+1,q](f − φ) = µ[p+1,q](f) = µ[p,q](A0).

Therefore, λ[p+1,q](f − φ) = µ[p+1,q](f) = µ[p,q](A0) ≤ σ[p,q](A0) = σ[p+1,q](f) =

λ[p+1,q](f − φ) = λ[p+1,q](f − φ).
Then the proof is complete.

Proof of Theorem 4. By the first part of the proof of Theorem 3, we can get
σ[p+1,q](f) ≤ σ[p,q](A0). By

lim
r→∞

n−1∑
j=1

m(r,Aj)

m(r,A0)
< 1, (26)

we have for r → ∞
n−1∑
j=1

m(r,Aj) < δm(r,A0), (27)

where δ ∈ (0, 1). By λ[p,q](
1
A0

) < µ[p,q](A0), we haveN(r,A0) = o(T (r,A0))(r → ∞).
By (15) and (27), for r → ∞, r ̸∈ E, we have

T (r,A0) = m(r,A0) +N(r,A0) ≤ δT (r,A0) +O(log(rT (r, f))) + o(T (r,A0)), (28)
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where E is a set of r of finite linear measure. By Lemma 2 and (28), we have
σ[p+1,q](f) ≥ σ[p,q](A0). Then we have σ[p+1,q](f) = σ[p,q](A0).

By (28) and Lemma 2, we have µ[p+1,q](f) ≥ µ[p,q](A0). By Lemma 6, we have
µ[p+1,q](f) ≤ µ[p,q](A0), then we get µ[p+1,q](f) = µ[p,q](A0).

By using the similar proof of Theorem 3, we can get

λ[p+1,q](f − φ) = µ[p+1,q](f) = µ[p,q](A0)

≤ σ[p,q](A0) = σ[p+1,q](f) = λ[p+1,q](f − φ) = λ[p+1,q](f − φ).

Then the proof is complete.

Proof of Theorem 5. Suppose that f(z) is a rational solution of (1). If f(z) is
either a rational function with a pole of multiplicity n ≥ 1 at z0 or a polynomial with
degree deg(f) ≥ s, then f (s)(z) ̸≡ 0. If max{σ[p,q](Aj)| j ̸= s} < µ[p,q](As) = µ, then

we have µ[p,q](0) = µ[p,q](f
(n)+An−1(z)f

(n−1)+ · · ·+A0(z)f) = µ[p,q](As) = µ > 0,
which is a contradiction. Set τ1 = max{τ[p,q](Aj)|σ[p,q](Aj) = µ[p,q](As), j ̸= s},
then we may choose constants δ1, δ2 such that τ1 < δ1 < δ2 < τ. If σ[p,q](Aj) =
µ[p,q](As), τ[p,q](Aj) ≤ τ1 < τ, then for sufficiently large r, we have

m(r,Aj) ≤ T (r,Aj) ≤ expp−1{δ1(logq−1 r)
µ}. (29)

If σ[p,q](Aj) < µ[p,q](As), then for sufficiently large r and any given ε(0 < 2ε <
µ[p,q](As)− σ[p,q](Aj)), we have

m(r,Aj) ≤ T (r,Aj) ≤ expp{(σ[p,q](Aj) + ε) logq r}. (30)

Under the assumption that λ[p,q](
1
As

) < µ[p,q](As), for sufficiently large r, we have

N(r,As) = o(T (r,As)). (31)

By the definition of the lower [p, q]-type, for sufficiently large r, we have

T (r,As) ≥ expp−1{δ2(logq−1 r)
µ}. (32)

By (1), we have

T (r,As) ≤ N(r,As) +
∑
j ̸=s

m(r,Aj) +O(log r), (33)

for sufficiently large r. Hence, by substituting (29) and (30) into (33), we have the
contradiction. Therefore, if f(z) is a non-transcendental meromorphic solution, then
it must be a polynomial with degree deg(f) ≤ s− 1.

Now we assume that f(z) is a transcendental meromorphic solution of (1). By
(1), we have

−As(z)=
f

f (s)

[
f (n)

f
+ · · ·+As+1(z)

f (s+1)

f
+As−1(z)

f (s−1)

f
+ · · ·+A0(z)

]
. (34)



Growth of solutions of linear differential equations 41

Noting that

m(r,
f

f (s)
) ≤ T (r, f) + T (r,

1

f (s)
) = T (r, f) + T (r, f (s)) +O(1),

by the logarithmic derivative lemma and (34), we obtain that

T (r,As) ≤ N(r,As) +
∑
j ̸=s

m(r,Aj) + (s+ 3)T (r, f), (35)

for sufficiently large r ̸∈ E, where E is a set of r of finite linear measure. By (29)-
(32),(35) and Lemma 2, we can get µ[p,q](f) ≥ µ[p,q](As) and σ[p,q](f) ≥ σ[p,q](As).
By Lemma 1 and (10), we have

T (r, f) ≤ expp+1{(σ[p,q](As) + 3ε) logq r}, (36)

for any ε > 0, and r ̸∈ E0, r → ∞, where E0 is a set of r of finite logarithmic
measure. Then by (36) and Lemma 2, we have σ[p+1,q](f) ≤ σ[p,q](As). By Lemma
6, we obtain µ[p+1,q](f) ≤ µ[p,q](As). Then we get σ[p+1,q](f) ≤ σ[p,q](As) ≤ σ[p,q](f)
and µ[p+1,q](f) ≤ µ[p,q](As) ≤ µ[p,q](f).

Then the proof is complete.
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