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Abstract. In this paper, we shall deal with µ-pseudo almost automorphic solutions to
a semi-linear fractional differential equation by a new concept of µ-pseudo almost auto-
morphic functions presented recently. First we establish some new properties of µ-pseudo
almost automorphic functions, and then apply the obtained results to prove some existence
theorems combined with the Leray-Schauder alternative theorem.
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1. Introduction

The concept of almost automorphy was first introduced in the literature by Bochner
in [8]; for more details about this topic we refer to [1, 2, 12, 13, 20, 21, 24]. Since
then, there have been several interesting, natural and powerful generalizations of
classical almost automorphic functions. The concept of asymptotically almost auto-
morphic functions was introduced by N’Guérékata in [19]. In [17, 28], Liang, Xiao
and Zhang presented the concept of pseudo almost automorphy. In [22], N’Guérékata
and Pankov introduced the concept of Stepanov-like almost automorphy and applied
this concept to investigate the existence and uniqueness of an almost automorphic
solution to the autonomous semilinear equation. In [6], Blot et al. introduced the
notion of weighted pseudo almost automorphic functions with values in a Banach
space. In [29, 30], Chang, N’Guérékata et al. investigated some properties and
new composition theorems of Stepanov-like weighted pseudo almost automorphic
functions. Recently, in [7], Blot, Cieutat and Ezzinbi applied the measure theory
to define an ergodic function and they investigate many interesting properties of
µ-pseudo almost automorphic functions.

In recent years, great attention has been paid to different typed solutions to a
fractional differential equations [3, 4, 23, 25, 26, 27]. The study of almost automor-
phic solutions to fractional differential equation was initiated by Araya and Lizama
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[5]. In their work, the authors investigated the existence and uniqueness of almost
automorphic mild solutions to some fractional differential equations. For more de-
tails about fractional differential equations we refer to [4, 11, 16]. In [10], Cuevas
and Lizama considered the following fractional differential equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ R, 1 < α < 2,

where A is a linear operator of sectorial negative type on a Banach space. Under
suitable conditions of f , the authors proved the existence and uniqueness of an
almost automorphic mild solution to the above problem. Mophou [18] investigated
the existence and uniqueness of weighted pseudo almost automorphic mild solutions
to the following fractional differential equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t), Bu(t)), t ∈ R, (1)

where 1 < α < 2, A : D(A) ⊂ X → X is a linear densely operator of sectorial
type on a complex Banach space (X, ∥ · ∥), B : X → X is a bounded linear operator
and f : R × X × X → X is a weighted pseudo almost automorphic function in t for
each x, y ∈ X satisfying suitable conditions. The fractional derivative Dα

t is to be
understood in Riemann-Liouville sense.

Motivated by the above mentioned works [7, 18], the purpose of this paper is to
establish some existence results of µ-pseudo almost automorphic mild solutions to
the problem (1) if f : R × X × X → X is a µ-pseudo almost automorphic function
in t for each x, y ∈ X satisfying suitable conditions. We first prove some results on
composition theorems of such functions, and then establish the existence results by
the Banach contraction principle and the Leray-Schauder alternative theorem.

The rest of this paper is organized as follows. In Section 2, we present some
basic definitions, lemmas, and preliminary results which will be used throughout
this paper. In Section 3, we first prove some composition theorems of the µ-pseudo
almost automorphic functions, and then we prove some existence results of µ-pseudo
almost automorphic mild solutions to semilinear fractional differential equations (1).
An example is given to illustrate the obtained results.

2. Preliminaries

In this section, we list some basic properties of µ-pseudo almost automorphic func-
tions. Throughout the paper, the notations (X, ∥ · ∥) and (Y, ∥ · ∥Y) are two Banach
spaces and BC(R,X) denotes the Banach space of bounded continuous functions
from R to X, equipped with the supremum norm ∥f∥∞ = supt∈R ∥f(t)∥. Let L(X)
be the Banach space of all bounded linear operators from X into itself endowed with
the norm:

∥T∥L(X) = sup{∥Tx∥ : x ∈ X, ∥x∥ ≤ 1}.

Throughout this paper, we denote by B the Lebesgue σ-field of R and by M the
set of all positive measure µ on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all
a, b ∈ R (a < b).
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Definition 1 (see [20]). A continuous function f : R → X is said to be almost
automorphic if for every sequence of real numbers {s′n}n∈N there exists a subsequence
{sn}n∈N such that

g(t) = lim
n→∞

f(t+ sn)

exists for all t in R, and
lim
n→∞

g(t− sn) = f(t)

for all t in R.

Definition 2 (see [18, 20]). A continuous function f : R × Y × Y → X is said to
be almost automorphic if f(t, x, y) is almost automorphic in t ∈ R uniformly for all
(x, y) ∈ K, where K is any bounded subset of Y × Y. The collection of all such
functions will be denoted by AA(R× Y× Y,X).

Definition 3 (see [18]). A bounded continuous function with a vanishing mean value
can be defined as

AA0(R,X) =

{
ϕ ∈ BC(R,X) : lim

T→∞

1

2T

∫ T

−T

∥ϕ(σ)∥dσ = 0

}
.

Similarly, by AA0(R × Y × Y,X) we define the set of all continuous functions f :
R× Y× Y → X which belong to BC(R× Y× Y,X) and satisfy

lim
T→∞

1

2T

∫ T

−T

∥ϕ(σ, x, y)∥dσ = 0,

uniformly for (x, y) in any bounded subset of Y× Y.

Definition 4 (see [18]). A function f ∈ BC(R × Y × Y,X) is called pseudo al-
most automorphic in t ∈ R uniformly in (x, y) ∈ Y × Y if it can be written as
f = g + ϕ, where g ∈ AA(R × Y × Y,X) and ϕ ∈ AA0(R × Y × Y,X). We de-
note by PAA(R,X)(respectively PAA(R × Y × Y,X)), the set of all pseudo almost
automorphic functions f : R → X, (respectively f : R× Y× Y → X).

Definition 5 (see [7]). Let µ ∈ M. A bounded continuous function f : R → X is
said to be µ-ergodic if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t)∥dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).
Similarly, by ε(R × Y × Y,X, µ) we define the space of all continuous functions

f : R× Y× Y → X which belong to BC(R× Y× Y,X) and satisfy

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t, x, y)∥dµ(t) = 0,

uniformly for (x, y) in any bounded subset of Y× Y.
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Definition 6 (see [7]). Let µ ∈ M. A continuous function f : R → X is said
to be µ-pseudo almost automorphic if f is written in the form: f = g + ϕ, where
g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ). We denote the space of all such functions by
PAA(R,X, µ).

Definition 7. Let µ ∈ M. A continuous function f : R × Y × Y → X is said
to be µ-pseudo almost automorphic if f is written in the form: f = g + ϕ, where
g ∈ AA(R×Y×Y,X) and ϕ ∈ ε(R× Y× Y,X, µ). We denote the space of all such
functions by PAA(R× Y× Y,X, µ).

Obviously, we have AA(R×Y×Y,X) ⊂ PAA(R×Y×Y,X, µ) ⊂ BC(R×Y×Y,X).
For µ ∈ M and τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ(a+ τ : a ∈ A) for A ∈ B.

From µ ∈ M, we list the following hypothesis ([7]).
(H0) For all τ ∈ R, there exist γ > 0 and a bounded interval I such that

µτ (A) ≤ γµ(A),

when A ∈ B satisfies A
∩
I = ∅.

Lemma 1 (see [7]). Let µ ∈ M satisfy (H0). Then ε(R,X, µ) is translation invari-
ant; therefore, PAA(R,X, µ) is also translation invariant.

Lemma 2 (see [7, Proposition 2.13]). Let µ ∈ M. Then (ε(R,X, µ), ∥ · ∥∞) is a
Banach space.

Lemma 3 (see [7, Theorem 4.1]). Let µ ∈ M and f ∈ PAA(R,X, µ) be such that
f = g + ϕ, where g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ). If PAA(R,X, µ) is translation
invariant, then {g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}, (the closure of the range of f).

Lemma 4 (see [7, Theorem 2.14]). Let µ ∈ M and I be a bounded interval (even-
tually I = ∅). Assume that f ∈ BC(R,X). Then the following assertions are
equivalent.

(i) f ∈ ε(R,X, µ).

(ii) limr→+∞
1

µ([−r, r] \ I)
∫
[−r,r]\I ∥f(t)∥dµ(t) = 0.

(iii) For any ε > 0, limr→+∞
µ({t ∈ [−r, r] \ I : ∥f(t)∥ > ε})

µ([−r, r] \ I)
= 0.

Remark 1 (see [7, Remark 2.15]). From µ ∈ M and the fact that µ([−r, r]) =
µ([−r, r] \ I) + µ(I) for r sufficiently large, we deduce that

lim
r→+∞

µ([−r, r] \ I) = +∞.

Lemma 5 (see [7, Theorem 4.7]). Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then the decomposition of a µ-pseudo almost automorphic
function in the form f = g + ϕ, where g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ), is unique.
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Lemma 6 (see [7, Theorem 4.9]). Let µ ∈ M. Assume that PAA(R,X, µ) is
translation invariant. Then (PAA(R,X, µ), ∥ · ∥∞) is a Banach space.

Definition 8 (see [9]). A closed linear operator (A,D(A)) with a dense domain
D(A) in a Banach space X is said to be sectorial of type ω and angle θ if there are
constants ω ∈ R, θ ∈ (0, π

2 ), M > 0 such that its resolvent exists outside the sector

ω +Σθ := {λ+ ω : λ ∈ C, |arg(−λ)| < θ}, (2)

∥(λ−A)−1∥ ≤ M

|λ− ω|
, λ /∈ ω +Σθ. (3)

Definition 9. Let 1 < α < 2. Let A be a closed and linear operator with a domain
D(A) defined on a Banach space X. We say that A is the generator of a solution
operator if there exist ω ∈ R and a strongly continuous function Eα : R+ → L(X)
such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∫ ∞

0

e−λtEα(t)xdt, Reλ > ω, x ∈ X.

From [9], if A is sectional of type ω ∈ R with 0 ≤ θ < π(1 − α/2), then A is a
generator of a solution operator given by

Eα(t) =

∫
G
eλtλα−1(λα −A)−1dλ, t ≥ 0,

with G a suitable path lying outside the sector ω + Σ0. Furthermore, the following
lemma holds.

Lemma 7 (see [9]). Let A : D(A) ⊂ X → X be a sectorial operator in a complex
Banach space X, satisfying hypotheses (2) and (3), for some M > 0, ω < 0 and
0 ≤ θ < π(1 − α/2). Then there exists C(θ, α) > 0 depending solely on θ and α,
such that

∥Eα(t)∥L(X) ≤
C(θ, α)M

1 + |ω|tα
, t ≥ 0. (4)

Now, we recall a useful compactness criterion.
Let h′ : R → R be a continuous function such that h′(t) ≥ 1 for all t ∈ R and

h′(t) → ∞ as |t| → ∞. We consider the space

Ch′(X) =
{
u ∈ C(R,X) : lim

|t|→∞

u(t)

h′(t)
= 0

}
.

Endowed with the norm ∥u∥h′ = supt∈R
∥u(t)∥
h′(t) , it is a Banach space (see [15]).

Lemma 8 (see [15]). A subset R ⊆ Ch′(X) is a relatively compact set if it verifies
the following conditions:

(c-1) The set R(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.

(c-2) The set R is equicontinuous.
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(c-3) For each ϵ > 0 ,there exists L > 0 such that ∥u(t)∥ ≤ ϵh′(t) for all u ∈ R and
all |t| > L.

Lemma 9 (Leray-Schauder Alternative Theorem, see [14]). Let D be a closed convex
subset of a Banach space X such that 0 ∈ D. Let F : D → D be a completely
continuous map. Then the set {x ∈ D : x = λF(x), 0 < λ < 1} is unbounded or the
map F has a fixed point in D.

3. Main results

In this section, we first prove some composition theorems for µ-pseudo almost au-
tomorphic functions under suitable conditions, and then apply these composition
theorems to establish some existence results for problem (1).

Theorem 1. Let µ ∈ M and f = g + h ∈ PAA(R× X× X,X, µ). Assume that

(H1) f(t, x, y) is uniformly continuous on any bounded subset K ⊂ X×X uniformly
in t ∈ R.

(H2) g(t, x, y) is uniformly continuous on any bounded subset K ⊂ X×X uniformly
in t ∈ R.

Then the function defined by F (·) := f(·, ϕ(·), φ(·)) ∈ PAA(R,X, µ) if ϕ, φ ∈
PAA(R,X, µ).

Proof. Let f = g + h with g ∈ AA(R × X × X,X), h ∈ ε(R × X × X,X, µ), and
ϕ = u+ v, φ = x+ y, with u, x ∈ AA(R,X), and v, y ∈ ε(R,X, µ). Now we define

F (t) = g(t, u(t), x(t)) + f(t, ϕ(t), φ(t))− g(t, u(t), x(t))

= g(t, u(t), x(t)) + f(t, ϕ(t), φ(t))− f(t, u(t), x(t)) + h(t, u(t), x(t)).

Let us rewrite

G(t) = g(t, u(t), x(t)), Φ(t) = f(t, ϕ(t), φ(t))−f(t, u(t), x(t)), H(t) = h(t, u(t), x(t)).

Thus, we have F (t) = G(t) + Φ(t) +H(t).
In view of [17, Lemma 2.2], G(t) ∈ AA(R,X). Next we prove that Φ(t) ∈

ε(R,X, µ). Clearly , Φ(t) ∈ BC(R,X). For Φ to be in ε(R,X, µ), it is enough to
show that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥Φ(t)∥dµ(t) = 0.

By Lemma 3, u(R)×x(R) ⊂ ϕ(R)×φ(R) which is a bounded set. From assumption
(H1) with K = ϕ(R)×φ(R), we conclude that for each ε > 0, there exists a constant
δ > 0 such that for all t ∈ R,

∥ϕ− u∥+ ∥φ− x∥ ≤ 2δ ⇒ ∥f(t, ϕ(t), φ(t))− f(t, u(t), x(t))∥ ≤ ε.

Denote the following set by Ar,ε = {t ∈ [−r, r] : ∥f(t)∥ > ε}. Thus we obtain

Ar,ε(Φ) = Ar,ε(f(t, ϕ(t), φ(t))− f(t, u(t), x(t))) ⊂ Ar,δ(ϕ(t)− u(t))

∪Ar,δ(φ(t)− x(t)) = Ar,δ(v) ∪Ar,δ(y).
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Therefore, the following inequality holds

µ{t ∈ [−r, r] : ∥f(t, ϕ(t), φ(t))− f(t, u(t), x(t))∥ > ε}
µ([−r, r])

≤ µ{t ∈ [−r, r] : ∥ϕ(t)− u(t)∥ > δ}
µ([−r, r])

+
µ{t ∈ [−r, r] : ∥φ(t)− x(t)∥ > δ}

µ([−r, r])
.

Since ϕ(t) = u(t) + v(t), φ(t) = x(t) + y(t) and v, y ∈ ε(R,X, µ), Lemma 4 yields
that for the above-mentioned δ we have

lim
r→+∞

µ{t ∈ [−r, r] : ∥ϕ(t)− u(t)∥ > δ}
µ([−r, r])

= lim
r→+∞

µ{t ∈ [−r, r] : ∥φ(t)− x(t)∥ > δ}
µ([−r, r])

= 0,

and then we obtain

lim
r→+∞

µ{t ∈ [−r, r] : ∥f(t, ϕ(t), φ(t))− f(t, u(t), x(t))∥ > ε}
µ([−r, r])

= 0. (5)

From Lemma 4 and relation (5), we draw a conclusion that Φ(t) ∈ ε(R,X, µ).
Finally, it remains only to show that H(t) = h(t, u(t), x(t)) ∈ ε(R,X, µ). We

have that the set u([−r, r])×x([−r, r]) is compact since u and x are continuous on R
as almost automorphic functions. So, the function g belongs to AA(R× Y× Y,X),
and g is uniformly continuous on [−r, r] × u([−r, r]) × x([−r, r]). Then it follows
from (H1) that h(t, a, b) is uniformly continuous with (a, b) ∈ u([−r, r])× x([−r, r])
uniformly in t ∈ [−r, r]. Thus for any ε > 0, there exists a constant δ > 0 such that
for (a1, b1), (a2, b2) ∈ u([−r, r])× x([−r, r]) with ∥a1 − a2∥+ ∥b1 − b2∥ < δ we have

∥h(t, a1, b1)− h(t, a2, b2)∥ <
ε

2
, ∀t ∈ [−r, r]. (6)

On the other hand, since the set u([−r, r]) × x([−r, r]) is compact, there exist fi-
nite balls Ok with center (βk, γk) ∈ u([−r, r]) × x([−r, r]), k = 1, · · · ,m, and
radius less than δ such that u([−r, r]) × x([−r, r]) ⊂ ∪m

k=1Ok. Then the sets
Uk := {t ∈ [−r, r] : (u(t), x(t)) ∈ Ok} , k = 1, · · · ,m are open in [−r, r] and [−r, r] =
∪m
k=1Uk.
Define Vk by

V1 = U1, Vk = Uk − ∪k−1
i=1 Ui, 2 ≤ k ≤ m.

Then it is obvious that Vi ∩ Vj = ∅, if i ̸= j, 1 ≤ i, j ≤ m. So we get

Λ : = {t ∈ [−r, r] : ∥H(t)∥ ≥ ε} = {t ∈ [−r, r] : ∥h(t, u(t), x(t))∥ ≥ ε}
⊂ ∪m

k=1{t ∈ Vk : ∥h(t, u(t), x(t))− h(t, βk, γk)∥+ ∥h(t, βk, γk)∥ ≥ ε}

⊂ ∪m
k=1

({
t ∈ Vk : ∥h(t, u(t), x(t))− h(t, βk, γk)∥ ≥ ε

2

}
∪
{
t ∈ Vk : ∥h(t, βk, γk)∥ ≥ ε

2

})
.
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It follows from relation (6) that{
t ∈ Vk : ∥h(t, u(t), x(t))− h(t, βk, γk)∥ ≥ ε

2

}
= ∅, k = 1, . . . ,m.

Thus, if we set Ar, ε2
(hk) := Ar, ε2

(h(t, βk, γk)), then Ar,ε(H) ⊂ ∪m
k=1Ar, ε2

(hk) and

1

µ([−r, r])

∫
[−r,r]

∥H(t)∥dµ(t) ≤
m∑

k=1

1

µ([−r, r])

∫
[−r,r]

∥hk(t)∥dµ(t).

And since h ∈ ε(R× X× X,X, µ), we have

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥hk(t)∥dµ(t) = 0, k = 1, · · · ,m.

It follows that limr→+∞
1

µ([−r,r])

∫
[−r,r]

∥H(t)∥dµ(t) = 0. According to Lemma 4, we

deduce that H(t) = h(t, u(t), x(t)) ∈ ε(R,X, µ). The proof is completed.

From the above theorem, we have the following results.

Corollary 1. Let µ ∈ M. Suppose that f = g + h ∈ PAA(R × X × X,X, µ) with
g ∈ AA(R × X × X,X), h ∈ ε(R × X × X,X, µ), and both f and g are Lipschitzian
with (x, y) ∈ X × X uniformly in t ∈ R. Then the function defined by F (·) :=
f(·, ϕ(·), φ(·)) ∈ PAA(R,X, µ) if ϕ, φ ∈ PAA(R,X, µ).

Lemma 10. Let µ ∈ M and f = g+h ∈ PAA(R×X×X,X, µ). Assume that f and g
satisfy condition (H1), (H2). Then the function defined by F (·) := f(·, u(·), Bu(·)) ∈
PAA(R,X, µ) if u ∈ PAA(R,X, µ).

Proof. First we note that if u ∈ PAA(R,X, µ), then u = x+ y with x ∈ AA(R,X)
and y ∈ ε(R,X, µ). Since B is a bounded linear operator on X, it is easy to show
that Bu = Bx + By are also bounded and By(·) ∈ ε(R,X, µ). Therefore, Bx(·) ∈
AA(R,X)([20, Corollary 2.16]), we deduce that Bu(·) ∈ PAA(R,X, µ). Hence, in
view of Theorem 1, we have F (·) ∈ PAA(R,X, µ).

Definition 10 (see [3]). Assume that A generates an integrable solution operator
Eα(t). A continuous function u : R → X satisfying the integral equation

u(t) =

∫ t

−∞
Eα(t− s)f(s, u(s), Bu(s))ds, t ∈ R

is called a mild solution on R to problem (1).

Let us list the following assumptions:

(H3) A is a sectorial operator of type ω < 0.

(H4) There exist positive constants Lf , L
′
f such that

∥f(t, x, u)− f(t, y, v)∥ ≤ Lf∥x− y∥+ L′
f∥u− v∥, ∀x, y, u, v ∈ X.
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(H5) There exists a continuous nondecreasing function W : [0,∞) → (0,∞) such
that

∥f(t, x, y)∥ ≤ W (∥x∥+ ∥y∥) for all t ∈ R and x, y ∈ X.

Lemma 11. Let µ ∈ M. Let also f = g + h ∈ PAA(R,X, µ) with g ∈ AA(R,X)
and h ∈ ε(R,X, µ). Then

F (t) :=

∫ t

−∞
Eα(t− s)f(s)ds ∈ PAA(R,X, µ).

Proof. Let F (t) = G(t) +H(t) with

G(t) :=

∫ t

−∞
Eα(t− s)g(s)ds,

H(t) :=

∫ t

−∞
Eα(t− s)h(s)ds.

Applying Lemma 3.1 in [5], we obtain that G ∈ AA(R,X), and by equation (4), the

operator Eα(t) is bounded above by C(θ,α)M
1+|ω|tα which belong to L1(R+) .

Now let us show that H(t) ∈ ε(R,X, µ). For r > 0, we notice that

1

µ([−r, r])

∫
[−r,r]

∥H(t)∥dµ(t) = 1

µ([−r, r])

∫
[−r,r]

∥∥∥∥∫ t

−∞
Eα(t− s)h(s)ds

∥∥∥∥ dµ(t)
=

1

µ([−r, r])

∫
[−r,r]

∥∥∥∥∫ ∞

0

Eα(s)h(t− s)ds

∥∥∥∥ dµ(t)
≤ 1

µ([−r, r])

∫
[−r,r]

∫ ∞

0

∥Eα(s)∥∥h(t− s)∥dsdµ(t)

≤C(θ, α)M

∫ ∞

0

1

1 + |ω|sα

(
1

µ([−r, r])

∫
[−r,r]

∥h(t− s)∥dµ(t)

)
ds

=C(θ, α)M

∫ ∞

0

Ωr(s)

1 + |ω|sα
ds,

where Ωr(s) =
1

µ([−r,r])

∫
[−r,r]

∥h(t− s)∥dµ(t).
By the fact that the space ε(R,X, µ) is translation invariant, it follows that

t → h(t− s) belongs to ε(R,X, µ) for each s ∈ R and hence Ωr(s) → 0 as r → +∞.

Next, since Ωr is bounded (∥Ωr∥ ≤ ∥h∥∞) and 1
1+|ω|sα is integrable in [0,∞],

using the Lebesgue dominated convergence theorem it follows that

lim
r→+∞

∫ ∞

0

Ωr(s)

1 + |ω|sα
ds = 0.

The proof is now completed.
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Theorem 2. Let µ ∈ M. Let also f = g + h ∈ PAA(R × X × X,X, µ) with
g ∈ AA(R × X × X,X) and h ∈ ε(R × X × X,X, µ). Assume that (H3)-(H4) hold,
then (1) has a unique mild solution in PAA(R,X, µ) provided

(Lf + L′
f∥B∥L(X))C(θ, α)M

|ω|(− 1
α )π

α sin(π/α)
< 1, (∗)

where the constants C(θ, α) and M are those defined in Lemma 7.

Proof. Consider the operator Q : PAA(R,X, µ) → PAA(R,X, µ) such that

(Qu)(t) :=

∫ t

−∞
Eα(t− σ)f(σ, u(σ), Bu(σ))dσ, t ∈ R.

In view of Corollary 1, Lemmas 10-11, the operator (Qu) is well defined.
Now for u, v ∈ PAA(R,X, µ). From relation (4) and condition (H4), we have

∥(Qu)(t)− (Qv)(t)∥

=

∥∥∥∥∫ t

−∞
Eα(t− σ)(f(σ, u(σ), Bu(σ))− f(σ, v(σ), Bv(σ)))dσ

∥∥∥∥
≤
∫ t

−∞
∥Eα(t− σ)∥L(X)∥f(σ, u(σ), Bu(σ))− f(σ, v(σ), Bv(σ))∥dσ

≤
∫ t

−∞

C(θ, α)M

1 + |ω|(t− ω)α
(Lf∥u(σ)− v(σ)∥+ L′

f∥Bu(σ)−Bv(σ)∥)dσ

≤
(
Lf + L′

f∥B∥L(X)
)
sup
t∈R

∥u(t)− v(t)∥
∫ ∞

0

C(θ, α)M

1 + |ω|σα
dσ

≤
(
Lf + L′

f∥B∥L(X)
)
C(θ, α)M

|ω|− 1
απ

α sin(π/α)
∥u− v∥∞, ∀t ∈ R.

Thus

∥Qu−Qv∥∞ ≤ (Lf + L′
f∥B∥L(X))C(θ, α)M

|ω|− 1
απ

α sin(π/α)
∥u− v∥∞.

From the equation (∗) and the Banach contraction principle, we can complete the
proof.

The following existence result is based upon the nonlinear Leray-Schauder alter-
native theorem.

Theorem 3. Assume that µ ∈ M and A is a sectorial of type ω < 0. Let f ∈
PAA(R× X× X,X, µ) satisfying (H1), (H2) and (H5) and the following additional
conditions:

(i) For each C ≥ 0

lim
|t|→∞

1

h′(t)

∫ t

−∞

W ((1 + ∥B∥L(X))Ch′(s))

1 + |ω|(t− s)α
ds = 0,
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where h′ is the function applied to define the space Ch′(X).
We set

β(C) := C(θ, α)M

∥∥∥∥∥
∫ t

−∞

W
(
(1 + ∥B∥L(X))Ch′(s)

)
1 + |ω|(t− s)α

ds

∥∥∥∥∥
h′

,

where C(θ, α) and M are constants given in inequality (4).

(ii) For each ε > 0, there is δ > 0 such that for every u, v ∈ Ch′(X), ∥u− v∥h′ ≤ δ
implies that

C(θ, α)M

∫ t

−∞

∥f(s, u(s), Bu(s))− f(s, v(s), Bv(s))∥
1 + |ω|(t− s)α

ds ≤ ε, for all t ∈ R.

(iii) lim infξ→∞
ξ

β(ξ) > 1.

(iv) For all a, b ∈ R, a < b and Λ > 0, the set {f(s, x,Bx) : a ≤ s ≤ b, x ∈
Ch′(X), ∥x∥h′ ≤ Λ} is relatively compact in X.

Then equation (1) admits at least one µ-pseudo almost automorphic mild solution.

Proof. We define the operator Γ : Ch′(X) → Ch′(X) by

(Γx)(t) :=

∫ t

−∞
Eα(t− s)f(s, x(s), Bx(s))ds, t ∈ R.

We will show that Γ has a fixed point in PAA(R,X, µ). For the sake of convenience,
we divide the proof into several steps.
Step 1: For x ∈ Ch′(X), we have that

∥Γx(t)∥ ≤ C(θ, α)M

∫ t

−∞

W (∥x(s)∥+ ∥B∥L(X)∥x(s)∥)
1 + |ω|(t− s)α

ds

≤ C(θ, α)M

∫ t

−∞

W ((1 + ∥B∥L(X))∥x∥h′h′(s))

1 + |ω|(t− s)α
ds.

It follows from condition (i) that Γ is well defined.
Step 2: The operator Γ is continuous.

In fact, for any ε > 0, we take δ > 0 involved in condition (ii). If x, y ∈ Ch′(X)
and ∥x− y∥h′ ≤ δ, then

∥(Γx)(t)− (Γy)(t)∥ ≤ C(θ, α)M

∫ t

−∞

∥f(s, x(s), Bx(s))− f(s, y(s), By(s))∥
1 + |ω|(t− s)α

ds

≤ ε,

which shows the assertion.
Step 3: The operator Γ is completely continuous.

We define BΛ(X) for the closed ball with center at 0 and radius Λ in the space
X. Let V ′(t) = Γ(BΛ(Ch′(X))) and v′(t) = Γ(x) for x ∈ BΛ(Ch′(X)). Firstly, we
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will prove that V ′(t) is a relatively compact subset of X for each t ∈ R. It follows

from condition (i) that the function s →
W ((1 + ∥B∥L(X))Λh

′(t− s))

1 + |ω|sα
is integrable

on [0,∞). Hence, for ε > 0, we can choose a ≥ 0 such that

C(θ, α)M

∫ ∞

a

W ((1 + ∥B∥L(X))Λh
′(t− s))

1 + |ω|sα
ds ≤ ε.

Since

v′(t) =

∫ a

0

Eα(s)f(t−s, x(t−s), Bx(t−s))ds+

∫ ∞

a

Eα(s)f(t−s, x(t−s), Bx(t−s))ds

and ∥∥∥∥∫ ∞

a

Eα(s)f(t− s, x(t− s), Bx(t− s))ds

∥∥∥∥
≤ C(θ, α)M

∫ ∞

a

W ((1 + ∥B∥L(X))Λh
′(t− s))

1 + |ω|sα
ds ≤ ε,

we get v′(t) ∈ aco(N) + Bε(X), where co(N) denotes the convex hull of N and
N = {Eα(s)f(ξ, x,Bx) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ∥x∥h ≤ Λ}. Just as the
proofs in [4, Theorem 3.5(ii)] and [15, Theorem 4.9(iii)], using the continuity of
Eα(s) and property (iv) of f , we can infer that N is a relatively compact set and
V ′(t) ⊂ aco(N) +Bε(X), which establishes our assertion.

Secondly, we show that the set V ′(t) is equicontinuous. In fact, we can decompose

v′(t+ s)− v′(t) =

∫ s

0

Eα(σ)f(t+ s− σ, x(t+ s− σ), Bx(t+ s− σ))dσ

+

∫ a

0

[Eα(σ + s)− Eα(σ)]f(t− σ, x(t− σ), Bx(t− σ))dσ

+

∫ ∞

a

[Eα(σ + s)− Eα(σ)]f(t− σ, x(t− σ), Bx(t− σ))dσ.

For each ε > 0, we can choose a > 0 and δ1 > 0 such that∥∥∥∥∫ s

0

Eα(σ)f(t+ s− σ, x(t+ s− σ), Bx(t+ s− σ))dσ

+

∫ ∞

a

[Eα(σ + s)− Eα(σ)]f(t− σ, x(t− σ), Bx(t− σ))dσ

∥∥∥∥
≤ C(θ, α)M

[∫ s

0

W ((1 + ∥B∥L(X))Λh
′(t+ s− σ))

1 + |ω|σα
dσ

+2

∫ ∞

a

W ((1 + ∥B∥L(X))Λh
′(t− σ))

1 + |ω|σα
dσ

]
≤ ε/2

for s ≤ δ1. Moreover, since {f(t−σ, x(t−σ), Bx(t−σ)) : 0 ≤ σ ≤ a, x ∈ BΛ(Ch′(X))}
is a relatively compact set and Eα is strongly continuous, we can choose δ2 > 0 such
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that ∥[Eα(σ+ s)−Eα(σ)]f(t− σ, x(t− σ), Bx(t− σ))∥ ≤ ε
2a for s < δ2. Combining

these estimates, we get ∥v′(t + s) − v′(t)∥ ≤ ε for s small enough and independent
of x ∈ BΛ(Ch′(X)).

Finally, applying condition (i), we can see that

∥v′(t)∥
h′(t)

≤ C(θ, α)M

h′(t)

∫ t

−∞

W ((1 + ∥B∥L(X))Λh
′(s))

1 + |ω|(t− s)α
ds → 0, |t| → ∞

and this convergence is independent of x ∈ BΛ(Ch′(X)). Hence, by Lemma 8, V ′ is
a relatively compact set in Ch′(X).
Step 4: The set {xλ : xλ = λΓ(xλ), λ ∈ (0, 1)} is bounded.

Let us assume that xλ(·) is a solution of equation xλ = λΓ(xλ) for some 0 < λ <
1.
We can estimate∥∥xλ(t)

∥∥ = λ

∥∥∥∥∫ t

−∞
Eα(t− s)f(s, xλ(s), Bxλ(s))ds

∥∥∥∥
≤ C(θ, α)M

∫ t

−∞

W ((1 + ∥B∥L(X))∥xλ∥h′h′(s))

1 + |ω|(t− s)α
ds

≤ β(∥xλ∥h′)h′(t).

Hence, we get

∥xλ∥h′

β(∥xλ∥h′)
≤ 1,

and combining with condition (iii), we conclude that the set {xλ : xλ = λΓ(xλ), λ ∈
(0, 1)} is bounded.
Step 5: It follows from hypotheses (H1)-(H2) and Lemma 10 that the function t →
f(t, x(t), Bx(t)) belongs to PAA(R,X, µ) whenever x ∈ PAA(R,X, µ). Hence, using
Lemma 11, we obtain Γ(PAA(R,X, µ)) ⊂ PAA(R,X, µ) noting that PAA(R,X, µ)
is a closed subspace of Ch′(X). Consequently, we can consider Γ : PAA(R,X, µ) →
PAA(R,X, µ). Using Steps 1-3, we deduce that this map is completely continuous.
Applying Lemma 9, we infer that Γ has a fixed point x ∈ PAA(R,X, µ), which
completes the proof.

Remark 2. Similar conditions (ii)-(iv) in Theorem 3 are applied in [15] to inves-
tigate the compact almost automorphic solutions of a semilinear integral equation,
and to consider pseudo almost periodic solutions of a fractional order differential
equation in [4].

From [3, 15] and Theorem 3, we deduce the following corollary.

Corollary 2. Assume that µ ∈ M and A is a sectorial of type ω < 0. Let (H2) hold
and f ∈ PAA(R,X, µ) satisfying (H1) and inequality (4) and the following Holder
type condition:

∥f(t, x1, x2)− f(t, y1, y2)∥ ≤ γ
[
∥x1 − y1∥β + ∥x2 − y2∥β

]
, 0 < β < 1,

for all t ∈ R and xi, yi ∈ X for i = 1, 2, where γ > 0 is a constant. Moreover,
assume the following conditions:
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(a) f(t, 0, 0) = q.

(b) supt∈R C(θ, α)M
∫ t

−∞
(1+∥B∥L(X))h

′(s)β

1+|ω|(t−s)α ds = γ2 < ∞.

(c) For all a, b ∈ R, a < b and p > 0, the set {f(s, x,Bx) : a ≤ s ≤ b, x ∈ Ch′(X),
∥x∥h′ ≤ p} is relatively compact in X.

Then equation (1) admits a µ-pseudo almost automorphic mild solution.

Proof. Let γ0 = ∥q∥, γ1 = γ. We take W (ξ1 + ξ2) = γ0 + γ1

[
ξβ1 + ξβ2

]
. Then

condition (H5) is satisfied. It follows from (b); we can see that function f satisfies
(i) in Theorem 3. Note that for each ε > 0 there is 0 < δβ < ε

γ1γ2
such that for

every x, y ∈ Ch′(X), ∥x− y∥h′ ≤ δ implies that

C(θ, α)M

∫ t

−∞

∥f(s, x(s), Bx(s))− f(s, y(s), By(s))∥
1 + |ω|(t− s)α

ds ≤ ε

for all t ∈ R. Assumption (iii) in Theorem 3 can be easily verified by the definition
of W . So from Theorem 3 we can prove that problem (1) has a µ-pseudo almost
automorphic mild solution.

Corollary 3. Let µ ∈ M. Let also f = g + h ∈ PAA(R × X × X,X, µ) with
g ∈ AA(R×X×X,X, µ) and h ∈ ε(R×X×X,X, µ). Assume that (H3)-H(4) hold.
Then

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t), u(t− τ)), τ, t ∈ R,

has a unique mild solution in PAA(R× X× X,X, µ) provided

(Lf + L′
f )C(θ, α)M

|ω|−1/απ

α sin(π/α)
< 1.

Proof. Since ∀t ∈ R, u(t) ∈ X, it suffices to consider shift operators defined as
∀t ∈ R, Bu(t) := u(t− τ). Thus ∥B∥L(X) = 1.

Example 1. To illustrate Theorem 2, we consider the following fractional differen-
tial equation:

Dα
t u(t, x) =

∂2

∂x2
u(t)− au(t, x) +Dα−1

t f(u(t, x), Bu(t, x)), (7)

t ∈ R, x ∈ [0, π], with boundary conditions u(t, 0) = (t, π) = 0, t ∈ R, where
1 < α < 2, B = ζId,

f(u(t, x), Bu(t, x)) =

(
sin

1

2 + cos t+ cos
√
2t

+ sin−(−|t|)
)
(sin(u(t, x)) + ζu(t, x))

for each t ∈ R, a, ζ > 0 (for sin−(−|t|), we can see [7]).
Set (X, ∥ · ∥X) = (L2([0, π]), ∥ · ∥2) and define

D(A) = {u ∈ L2([0, π]) : u′′ ∈ L2([0, π]), u(0) = u(π) = 0},
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Au = ∆u = u′′, ∀u ∈ D(A).

It is well-known that A is the infinitesimal generator of an analytic semigroup on
L2([0, π]). Thus A is a sectorial of type ω = −a < 0. Set the measure whose Radon-
Nikodym derivative ϱ is defined by ϱ(t) = sin+(−|t|) + exp(−|t|) (see [7]) for t ∈ R.
Then ε(R,X, µ) is translation invariant. We have

∥f(t, u(t, ·), ζu(t, ·))− f(t, v(t, ·), ζv(t, ·))∥2
≤ ∥u(t, ·)− v(t, ·)∥2 + ζ∥u(t, ·)− v(t, ·)∥2
≤ (1 + ζ)∥u(t, ·)− v(t, ·)∥2

for all u(t, ·), v(t, ·) ∈ L2([0, π]), t ∈ R. Furthermore, one can easily check that
t 7→ sin 1

2+cos t+cos
√
2t

+ sin−(−|t|) belongs to PAA(R,X, µ) with sin−(−|t|) as a

µ-ergodic component and sin 1
2+cos t+cos

√
2t

as its almost automorphic component.

Consequently, f is a µ-pseudo almost automorphic function with Radon-Nikodym
derivative ϱ(t) = sin+(−|t|) + exp(−|t|) for t ∈ R. Hence by choosing ζ and a such
that

(1 + ζ)a1/α <
α sin(π/α)

C(θ, α)M
.

Assumptions of Theorem 2 are satisfied and (4.1) has a unique solution in PAA(R,X, µ).
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morphic solutions for non-autonomous neutral functional differential equations with
infinite delay (in Chinese), Sci. Sin. Math. 43(2013), 273–292, doi: 10.1360/012013-9.


