Classification of complete left-invariant affine structures on the oscillator group*

Mohammed Guediri^{1,†}

¹ Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received March 13, 2014; accepted July 31, 2014

Abstract. The goal of this paper is to provide a method, based on the theory of extensions of left-symmetric algebras, for classifying left-invariant affine structures on a given solvable Lie group of low dimension. To illustrate our method better, we shall apply it to classify all complete left-invariant affine structures on the oscillator group.

AMS subject classifications: 53C50, 53A15

Key words: left-invariant affine structures, left-symmetric algebras, extensions and cohomologies of Lie algebras and left-symmetric algebras

1. Introduction

It is a well known result (see [1, 19]) that a simply connected Lie group G which admits a complete left-invariant affine structure, or equivalently G acts simply transitively by affine transformations on \mathbb{R}^n , must be solvable. It is also well known that not every solvable (even nilpotent) Lie group can admit an affine structure [3].

The goal of this paper is to provide a method for classifying all complete left-invariant affine structures on a given solvable Lie group of low dimension. Since the classification has been completely achieved up to dimension four in the nilpotent case (see [10, 14, 17]), we will illustrate our method by applying it to the remarkable solvable non-nilpotent 4-dimensional Lie group O_4 known as the oscillator group. Since complete left-invariant affine structures on a Lie group G are in one-to-one correspondence with complete (in the sense of [22]) left-symmetric structures on its Lie algebra G [14], we will carry out the classification in terms of complete left-symmetric structures on the oscillator algebra O_4 .

The paper is organized as follows. In Section 2, we will recall the notion of extensions of Lie algebras and its relationship to the notion of \mathcal{G} -kernels. In Section 3, we will give some necessary definitions and basic results on left-symmetric algebras and their extensions. In Section 4, given a complete left-symmetric algebra A_4 whose associated Lie algebra is \mathcal{O}_4 , we will use the complexification of A_4 and some results in [5] and [15] to show first that A_4 is not simple. Precisely, we will show that A_4 has a proper two-sided ideal whose associated Lie algebra is isomorphic to the

^{*}The project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

[†]Corresponding author. *Email address:* mguediri@ksu.edu.sa (M. Guediri)

center $Z(\mathcal{O}_4) \cong \mathbb{R}$ or the commutator ideal $[\mathcal{O}_4, \mathcal{O}_4] \cong \mathcal{H}_3$ of \mathcal{O}_4 . In the latter case, we will show that the so-called center of A_4 is nontrivial, and therefore we can get A_4 as a central extension (in some sense that we will define later) of a complete 3dimensional left-symmetric algebra A_3 by the trivial left-symmetric algebra \mathbb{R} (i.e., the vector space \mathbb{R} with the trivial left-symmetric product). In Section 5, we will show that in both cases we have a short exact sequence (which turns out to be central) of left-symmetric algebras of the form $0 \to \mathbb{R} \xrightarrow{i} A_4 \xrightarrow{\pi} A_3 \to 0$, where here A_3 is a complete left-symmetric algebra whose Lie algebra is isomorphic to the Lie algebra $\mathcal{E}(2)$ of the group of Euclidean motions of the plane. We will then show that, up to left-symmetric isomorphism, there are only two non-isomorphic complete left-symmetric structures on $\mathcal{E}(2)$, and we will use these to carry out all complete left-symmetric structures on \mathcal{O}_4 . We will see that one of these two leftsymmetric structures on $\mathcal{E}(2)$ yields exactly one complete left-symmetric structure on \mathcal{O}_4 . However, the second one yields a two-parameter family of complete leftsymmetric algebras $A_4(s,t)$ whose associated Lie algebra is \mathcal{O}_4 , and the conjugacy class of $A_4(s,t)$ is given as follows: $A_4(s',t')$ is isomorphic to $A_4(s,t)$ if and only if $(s',t')=(\alpha s,\pm t)$ for some $\alpha\in\mathbb{R}^*$. By using the Lie group exponential maps, we will deduce the classification of all complete left-invariant affine structures on the oscillator group O_4 in terms of simply transitive actions of subgroups of the affine group $Aff(\mathbb{R}^4) = GL(\mathbb{R}^4) \ltimes \mathbb{R}^4$ (see Theorem 3).

Throughout this paper, all vector spaces, Lie algebras, and left-symmetric algebras are supposed to be over the field \mathbb{R} , unless otherwise specified. We shall also suppose that all Lie groups are connected and simply connected.

2. Extensions of Lie algebras

The notion of extensions of a Lie algebra \mathcal{G} by an abelian Lie algebra \mathcal{A} is well known (see, for instance, books [8] and [13]). In light of [21], we will briefly describe here the notion of extension $\widetilde{\mathcal{G}}$ of a Lie algebra \mathcal{G} by a Lie algebra \mathcal{A} which is not necessarily abelian.

Suppose that a vector space extension $\widetilde{\mathcal{G}}$ of a Lie algebra \mathcal{G} by another Lie algebra \mathcal{A} is known, and we want to define a Lie structure on $\widetilde{\mathcal{G}}$ in terms of the Lie structures of \mathcal{G} and \mathcal{A} . Let $\sigma: \mathcal{G} \to \widetilde{\mathcal{G}}$ be a section, that is, a linear map such that $\pi \circ \sigma = id$. Then the linear map $\Psi: (a, x) \mapsto i(a) + \sigma(x)$ from $\mathcal{A} \oplus \mathcal{G}$ onto $\widetilde{\mathcal{G}}$ is an isomorphism of vector spaces. For (a, x) and (b, y) in $\mathcal{A} \oplus \mathcal{G}$, a commutator on $\widetilde{\mathcal{G}}$ must satisfy

$$[i(a) + \sigma(x), i(b) + \sigma(y)] = i([a, b]) + [\sigma(x), i(b)] + [i(a), \sigma(y)] + [\sigma(x), \sigma(y)]$$

$$(1)$$

Now we define a linear map $\phi: \mathcal{G} \to End(\mathcal{A})$ by

$$\phi(x) a = [\sigma(x), i(a)] \tag{2}$$

On the other hand, since $\pi\left(\left[\sigma\left(x\right),\sigma\left(y\right)\right]\right)=\pi\left(\sigma\left(\left[x,y\right]\right)\right)$, it follows that there exists an alternating bilinear map $\omega:\mathcal{G}\times\mathcal{G}\to\mathcal{A}$ such that $\left[\sigma\left(x\right),\sigma\left(y\right)\right]=\sigma\left[x,y\right]+\omega\left(x,y\right)$.

To sum up, by means of the isomorphism above, $\widetilde{\mathcal{G}} \cong \mathcal{A} \oplus \mathcal{G}$ and its elements may be denoted by (a, x) with $a \in \mathcal{A}$ and x is simply characterized by its coordinates in \mathcal{G} . The commutator defined by (1) is now given by

$$[(a, x), (b, y)] = ([a, b] + \phi(x)b - \phi(y)a + \omega(x, y), [x, y]), \qquad (3)$$

for all $(a, x) \in \widetilde{\mathcal{G}} \cong \mathcal{A} \oplus \mathcal{G}$.

It is easy to see that this is actually a Lie bracket (i.e, it verifies the Jacobi identity) if and only if the following three conditions are satisfied

- 1. $\phi(x)[b,c] = [\phi(x)b,c] + [b,\phi(x)c]$,
- 2. $[\phi(x), \phi(y)] = \phi([x, y]) + ad_{\omega(x,y)},$
- 3. $\omega\left([x,y],z\right) \omega\left(x,[y,z]\right) + \omega\left(y,[x,z]\right) = \phi\left(x\right)\omega\left(y,z\right) + \phi\left(y\right)\omega\left(z,x\right) + \phi\left(z\right)\omega\left(x,y\right)$.

Remark 1. We see that condition (1) above is equivalent to say that $\phi(x)$ is a derivation of \mathcal{A} . In other words, \mathcal{G} is actually acting by derivations, that is, $\phi: \mathcal{G} \to Der(\mathcal{A})$. Condition (2) indicates clearly that if \mathcal{A} is supposed to be abelian, then \mathcal{A} becomes a \mathcal{G} -module in a natural way, because in this case the linear map $\phi: \mathcal{G} \to Der(\mathcal{A})$ given by $\phi(x) a = [\sigma(x), i(a)]$ is well defined. Condition (3) is equivalent to the fact that, if \mathcal{A} is abelian, ω is a 2-cocycle (i.e., $\delta_{\phi}\omega = 0$, where δ_{ϕ} refers to the coboundary operator corresponding to the action ϕ).

If now $\sigma':\mathcal{G}\to\widetilde{\mathcal{G}}$ is another section, then $\sigma'-\sigma=\tau$ for some linear map $\tau:\mathcal{G}\to\mathcal{A}$, and it follows that the corresponding morphism and the 2-cocycle are $\phi'=\phi+ad\circ\tau$ and $\omega'=\omega+\delta_\phi\tau+\frac{1}{2}[\tau,\tau]$, respectively, where ad stands here and below (if there is no ambiguity) for the adjoint representation in \mathcal{A} , and where $[\tau,\tau]$ has the following meaning: Given two linear maps $\alpha,\beta:\mathcal{G}\to\mathcal{A}$, we define $[\alpha,\beta](x,y)=[\alpha(x),\beta(y)]-[\alpha(y),\beta(x)]$. In particular, we have $\frac{1}{2}[\tau,\tau](x,y)=[\tau(x),\tau(y)]$. Note here that the Lie algebra \mathcal{A} is not necessarily abelian. Therefore, $\omega'-\omega$ is a 2-coboundary if and only if $[\tau(x),\tau(y)]=0$ for all $x,y\in\mathcal{G}$. Equivalently, $\omega'-\omega$ is a 2-coboundary if and only if τ has its range in the center $Z(\mathcal{A})$ of \mathcal{A} . In that case, we get $\omega'-\omega=\delta_\phi\tau\in B^2_\phi(\mathcal{G},Z(\mathcal{A}))$, the group of 2-coboundaries for \mathcal{G} with values in $Z(\mathcal{A})$.

To overcome all these difficulties, we proceed as follows. Let $C^2(\mathcal{G}, \mathcal{A})$ be the abelian group of all 2-cochains, i.e., alternating bilinear mappings $\mathcal{G} \times \mathcal{G} \to \mathcal{A}$. For a given $\phi: \mathcal{G} \to Der(\mathcal{A})$, let $T_{\phi} \in C^2(\mathcal{G}, \mathcal{A})$ be defined by

$$T_{\phi}(x,y) = [\phi(x), \phi(y)] - \phi([x,y]), \text{ for all } x, y \in \mathcal{G}.$$

If there exists some $\omega \in C^2(\mathcal{G}, \mathcal{A})$ such that $T_{\phi} = ad \circ \omega$ and $\delta_{\phi}\omega = 0$, then the pair (ϕ, ω) is called a factor system for $(\mathcal{G}, \mathcal{A})$. Let $Z^2(\mathcal{G}, \mathcal{A})$ be the set of all factor systems for $(\mathcal{G}, \mathcal{A})$. It is well known that the equivalence classes of extensions of a Lie algebra \mathcal{G} by a Lie algebra \mathcal{A} are in one-to-one correspondence with the elements of the quotient space $Z^2(\mathcal{G}, \mathcal{A})/C^1(\mathcal{G}, \mathcal{A})$, where $C^1(\mathcal{G}, \mathcal{A})$ is the space of linear maps from \mathcal{G} into \mathcal{A} (see, for instance, [21], Theorem II.7). Note that if we assume that \mathcal{A} is abelian, then we meet the well known result (see, for instance, [7]) stating

that for a given action $\phi: \mathcal{G} \to End(\mathcal{A})$, the equivalence classes of extensions of \mathcal{G} by \mathcal{A} are in one-to-one correspondence with the elements of the second cohomology group

$$H_{\phi}^{2}(\mathcal{G},\mathcal{A}) = Z_{\phi}^{2}(\mathcal{G},\mathcal{A}) / B_{\phi}^{2}(\mathcal{G},\mathcal{A}).$$

In the present paper, we will be concerned with the special case where \mathcal{A} is non-abelian and \mathcal{G} is \mathbb{R} , and henceforth the cocycle ω is identically zero.

Remark 2. It is worth noticing that the construction above is closely related to the notion of \mathcal{G} -kernels considered for Lie algebras firstly in [20].

3. Left-symmetric algebras

The notion of a left-symmetric algebra arises naturally in various areas of mathematics and physics. It originally appeared in the works of Vinberg [23] and Koszul [16] concerning convex homogeneous cones and bounded homogeneous domains, respectively. It also appears, for instance, in connection with Yang-Baxter equation and integrable hydrodynamic systems (cf. [4, 12, 18]). A left-symmetric algebra (A, .) is a finite-dimensional algebra (A, .) in which the products, for all (A, .) is integrable hydrodynamic systems (cf. [4, 12, 18]).

$$(x \cdot y) \cdot z - x \cdot (y \cdot z) = (y \cdot x) \cdot z - y \cdot (x \cdot z) \tag{4}$$

It is clear that an associative algebra is a left-symmetric algebra. Actually, if A is a left-symmetric algebra and $(x,y,z)=(x\cdot y)\cdot z-x\cdot (y\cdot z)$ is the associator of x,y,z, then we can see that (4) is equivalent to (x,y,z)=(y,x,z). This means that the notion of a left-symmetric algebra is a natural generalization of the notion of an associative algebra. If A is a left-symmetric algebra, then the commutator

$$[x,y] = x \cdot y - y \cdot x \tag{5}$$

defines the structure of a Lie algebra on A, called the associated Lie algebra. Conversely, if \mathcal{G} is a Lie algebra with a left-symmetric product \cdot satisfying (5), then we say that the left-symmetric structure is compatible with the Lie structure on \mathcal{G} .

On the other hand, let G be a Lie group with a left-invariant flat affine connection ∇ , and define a product \cdot on the Lie algebra \mathcal{G} of G by

$$x \cdot y = \nabla_x y$$
, for all $x, y \in \mathcal{G}$. (6)

Then, conditions on the connection ∇ for being flat and torsion-free are now equivalent to conditions (4) and (5), respectively. Conversely, suppose that \mathcal{G} is endowed with a left-symmetric product \cdot which is compatible with the Lie bracket of \mathcal{G} . In this case, in order to obtain a left-invariant flat affine structure on G, we can define an operator ∇ on \mathcal{G} according to identity (6) and then extend it by left-translations to the whole Lie group G. To sum up, the left-invariant flat affine structures on G are in one-to-one correspondence with the left-symmetric structures on \mathcal{G} compatible with the Lie structure.

Let now A be a left-symmetric algebra, and let L_x and R_x be the left and right multiplications by the element x, that is, $L_x y = x \cdot y$ and $R_x y = y \cdot x$. We say that

A is complete if R_x is a nilpotent operator, for all $x \in A$. It turns out that, for a given simply connected Lie group G with Lie algebra \mathcal{G} , the complete left-invariant flat affine structures on G are in one-to-one correspondence with the complete left-symmetric structures on \mathcal{G} compatible with the Lie structure (see, for example, [14]). It is also known that an n-dimensional simply connected Lie group admits a complete left-invariant flat affine structure if and only if it acts simply transitively on \mathbb{R}^n by affine transformations (see [14]). A simply connected Lie group acting simply transitively on \mathbb{R}^n by affine transformations must be solvable according to [1], but it is worth noticing that there exist solvable (even nilpotent) Lie groups which do not admit affine structures (see [3]).

We close this section by fixing some notations which we will use in what follows. For a left-symmetric algebra A, we can easily check that the subset

$$T(A) = \{x \in A : L_x = 0\} \tag{7}$$

is a two-sided ideal in A. Geometrically, if G is a Lie group which acts simply transitively on \mathbb{R}^n by affine transformations, then $T(\mathcal{G})$ corresponds to the set of translational elements in G, where \mathcal{G} is endowed with the complete left-symmetric product corresponding to the action of G on \mathbb{R}^n . It has been conjectured in [1] that every nilpotent Lie group G which acts simply transitively on \mathbb{R}^n by affine transformations contains a translation which lies in the center of G, but this conjecture turned out to be false (see [9]).

3.1. Extensions of left-symmetric algebras

In this section, we will briefly discuss the problem of an extension of a left-symmetric algebras. To our knowledge, this notion has been considered for the first time in [14]. Suppose we are given a vector space A as an extension of a left-symmetric algebra K by another left-symmetric algebra E. We want to define a left-symmetric structure on A in terms of the left-symmetric structures given on K and E. In other words, we want to define a left-symmetric product on A for which E becomes a two-sided ideal in A such that $A/E \cong K$; or equivalently, $0 \to E \to A \to K \to 0$ becomes a short exact sequence of left-symmetric algebras.

Theorem 1 (See [14]). There exists a left-symmetric structure on A extending a left-symmetric algebra K by a left-symmetric algebra E if and only if there exist two linear maps λ , $\rho: K \to End(E)$ and a bilinear map $g: K \times K \to E$ such that, for all $x, y, z \in K$ and $a, b \in E$, the following conditions are satisfied.

- (i) $\lambda_x(a \cdot b) = \lambda_x(a) \cdot b + a \cdot \lambda_x(b) \rho_x(a) \cdot b$,
- (ii) $\rho_x([a,b]) = a \cdot \rho_x(b) b \cdot \rho_x(a)$,
- (iii) $[\lambda_x, \lambda_y] = \lambda_{[x,y]} + L_{g(x,y)-g(y,x)}$, where $L_{g(x,y)-g(y,x)}$ denotes the left multiplication in E by g(x,y) g(y,x),
- (iv) $[\lambda_x, \rho_y] = \rho_{x \cdot y} \rho_y \circ \rho_x + R_{g(x,y)}$, where $R_{g(x,y)}$ denotes the right multiplication in E by g(x,y),

(v)
$$g(x, y \cdot z) - g(y, x \cdot z) + \lambda_x(g(y, z)) - \lambda_y(g(x, z)) - g([x, y], z) - \rho_z(g(x, y) - g(y, x)) = 0.$$

If the conditions of Theorem 1 are fulfilled, then the extended left-symmetric product on $A \cong K \times E$ is given by

$$(x,a)\cdot(y,b) = (x\cdot y, a\cdot b + \lambda_x(b) + \rho_y(a) + g(x,y)). \tag{8}$$

It is remarkable that if the left-symmetric product of E is trivial, then the conditions of Theorem 1 simplify to the following three conditions:

- (i) $[\lambda_x, \lambda_y] = \lambda_{[x,y]}$, i.e., λ is a representation of Lie algebras,
- (ii) $[\lambda_x, \rho_y] = \rho_{x \cdot y} \rho_y \circ \rho_x$,

(iii)
$$g(x, y \cdot z) - g(y, x \cdot z) + \lambda_x(g(y, z)) - \lambda_y(g(x, z)) - g([x, y], z) - \rho_z(g(x, y) - g(y, x)) = 0.$$

In this case, E becomes a K-bimodule and the extended product given in (8) simplifies, too. Recall that if K is a left-symmetric algebra and V is a vector space, then we say that V is a K-bimodule if there exist two linear maps λ , $\rho: K \to End(V)$ which satisfy conditions (i) and (ii) stated above.

Let K be a left-symmetric algebra, and let V be a K-bimodule. Let $L^p(K,V)$ be the space of all p-linear maps from K to V, and define two coboundary operators $\delta_1: L^1(K,V) \to L^2(K,V)$ and $\delta_2: L^2(K,V) \to L^3(K,V)$ as follows: For a linear map $h \in L^1(K,V)$ we set

$$\delta_1 h\left(x, y\right) = \rho_y \left(h\left(x\right)\right) + \lambda_x \left(h\left(y\right)\right) - h\left(x \cdot y\right),\tag{9}$$

and for a bilinear map $g \in L^2(K, V)$ we set

$$\delta_{2}g(x,y,z) = g(x,y\cdot z) - g(y,x\cdot z) + \lambda_{x}(g(y,z)) - \lambda_{y}(g(x,z)) - g([x,y],z) - \rho_{z}(g(x,y) - g(y,x)).$$
(10)

It is straightforward to check that $\delta_2 \circ \delta_1 = 0$. Therefore, if we set $Z^2_{\lambda,\rho}(K,V) = \ker \delta_2$ and $B^2_{\lambda,\rho}(K,V) = \operatorname{Im} \delta_1$, we can define a notion of second cohomology for the actions λ and ρ by simply setting $H^2_{\lambda,\rho}(K,V) = Z^2_{\lambda,\rho}(K,V)/B^2_{\lambda,\rho}(K,V)$. As in the case of extensions of Lie algebras, we can prove that for given linear maps $\lambda, \rho: K \to \operatorname{End}(V)$, the equivalence classes of extensions $0 \to V \to A \to K \to 0$ of K by V are in one-to-one correspondence with the elements of the second cohomology group $H^2_{\lambda,\rho}(K,V)$. We close this subsection with the following lemma on completeness of left-symmetric algebras (see [6, Proposition 3.4]).

Lemma 1. Let $0 \to E \to A \to K \to 0$ be a short exact sequence of left-symmetric algebras. Then, A is complete if and only if E and K are so.

3.2. Central extensions of left-symmetric algebras

The notion of central extensions known for Lie algebras may analogously be defined for left-symmetric algebras. Let A be a left-symmetric extension of a left-symmetric algebra K by another left-symmetric algebra E, and let \mathcal{G} be the Lie algebra associated to E. Define the center of E to be E (E), that is,

$$C(A) = \{x \in A : x \cdot y = y \cdot x = 0, \text{ for all } y \in A\}, \tag{11}$$

where $Z(\mathcal{G})$ is the center of the Lie algebra \mathcal{G} and T(A) is the two-sided ideal of A defined by (7).

Definition 1. The extension $0 \to E \xrightarrow{i} A \xrightarrow{\pi} K \to 0$ of left-symmetric algebras is said to be central (resp. exact) if $i(E) \subseteq C(A)$ (resp. i(E) = C(A)).

Remark 3. It is not difficult to show that if the extension $0 \to E \xrightarrow{i} A \xrightarrow{\pi} K \to 0$ is central, then both the left-symmetric product and the K-bimodule on E are trivial (i.e., $a \cdot b = 0$ for all $a, b \in E$, and $\lambda = \rho = 0$). It is also easy to show that if [g] is the cohomology class associated to this extension, and if

$$I_{[q]} = \{x \in K : x \cdot y = y \cdot x = 0 \text{ and } g(x,y) = g(y,x) = 0, \text{ for all } y \in K\},\$$

then the extension is exact if and only if $I_{[g]} = 0$ (see [14]). We note here that $I_{[g]}$ is well defined because any other element in [g] takes the form $g + \delta_1 h$, with $\delta_1 h(x,y) = -h(x \cdot y)$.

Let now K be a left-symmetric algebra, and E a trivial K-bimodule. Denote by (A,[g]) the central extension $0 \to E \to A \to K \to 0$ corresponding to the cohomology class $[g] \in H^2(K,E)$. Let (A,[g]) and (A',[g']) be two central extensions of K by E, and let $\mu \in Aut(E) = GL(E)$ and $\eta \in Aut(K)$, where Aut(E) and Aut(K) are the groups of left-symmetric automorphisms of E and E, respectively. It is clear that if E by E then the linear mapping E and E defined by E by E by E considering the following E considering the following E by E considering the following E considering E considering the following E considering E considering the following E considering the following E considering E considering the following E considerin

$$(\mu, \eta) \cdot [g] = \mu_* \eta^* [g],$$
 (12)

or equivalently, $(\mu, \eta) \cdot g(x, y) = \mu(g(\eta(x), \eta(y)))$ for all $x, y \in K$. Denoting the set of all exact central extensions of K by E by

$$H_{ex}^{2}\left(K,E\right)=\left\{ \left[g\right]\in H^{2}\left(K,E\right):I_{\left[g\right]}=0\right\} ,$$

and the orbit of [g] by $G_{[g]}$, it turns out that the following result is valid (see [14]).

Proposition 1. Let [g] and [g'] be two classes in $H^2_{ex}(K, E)$. Then, the central extensions (A, [g]) and (A', [g']) are isomorphic if and only if $G_{[g]} = G_{[g']}$. In other words, the classification of the exact central extensions of K by E is, up to left-symmetric isomorphism, the orbit space of $H^2_{ex}(K, E)$ under the natural action of $G = Aut(E) \times Aut(K)$.

3.3. Complexification of a real left-symmetric algebra

Let A be a real left-symmetric algebra of dimension n, and let $A^{\mathbb{C}}$ denote the real vector space $A \oplus A$. Let $J: A \oplus A \to A \oplus A$ be the linear map on $A \oplus A$ defined by J(x,y) = (-y,x). For $\alpha + i\beta \in \mathbb{C}$ and $x,x',y,y' \in A$, we define

$$(\alpha + i\beta)(x, y) = (\alpha x - \beta y, \alpha y + \beta x), \qquad (13)$$

$$(x,y) \cdot (x',y') = (xx' - yy', xy' + yx'). \tag{14}$$

We endow the set $A^{\mathbb{C}}$ with the componentwise addition, multiplication by complex numbers defined by (13), and the product defined by (14). It is then straightforward to verify that $A^{\mathbb{C}}$, when endowed with the product defined by (14), becomes a complex left-symmetric algebra called the complexification of A. The left-symmetric algebra A can be identified with the set of elements in $A^{\mathbb{C}}$ of the form (x,0), where $x \in A$. If e_1, \ldots, e_n is a basis of A, then the elements $(e_1,0), \ldots, (e_n,0)$ form a basis of the complex vector space $A^{\mathbb{C}}$. It follows that $\dim_{\mathbb{C}} (A^{\mathbb{C}}) = \dim_{\mathbb{R}} (A)$.

Since $A^{\mathbb{C}}$ is a left-symmetric algebra, we know that the commutator $[(x,y),(x',y')] = (x,y) \cdot (x',y') - (x',y') \cdot (x,y)$ defines a Lie algebra $\mathcal{G}^{\mathbb{C}}$ on $A^{\mathbb{C}}$. Computing this commutator, we get the following lemma.

Lemma 2. The complex Lie algebra $\mathcal{G}^{\mathbb{C}}$ associated to the complex left-symmetric algebra $A^{\mathbb{C}}$ is isomorphic to the complexification of the Lie algebra \mathcal{G} associated to the left-symmetric algebra A.

Therefore, if e_1, \ldots, e_n is a basis of A, then the elements $(e_1, 0), \ldots, (e_n, 0)$ form a basis of $\mathcal{G}^{\mathbb{C}}$, and the structural constants of $\mathcal{G}^{\mathbb{C}}$ are real since they coincide with the structural constants of \mathcal{G} in the basis e_1, \ldots, e_n .

4. Left-symmetric structures on the oscillator algebra

Recall that the Heisenberg group H_3 is the 3-dimensional Lie group diffeomorphic to $\mathbb{R} \times \mathbb{C}$ with the group law

$$(v_1, z_1) \cdot (v_2, z_2) = (v_1 + v_2 + \frac{1}{2}\operatorname{Im}(\overline{z_1}z_2), z_1 + z_2),$$

for all $v_1, v_2 \in \mathbb{R}$ and $z_1, z_2 \in \mathbb{C}$. Let $\lambda > 0$, and let $G = \mathbb{R} \ltimes H_3$ be equipped with the group law

$$(t_1, v_1, z_1) \cdot (t_2, v_2, z_2) = (t_1 + t_2, v_1 + v_2 + \frac{1}{2}\operatorname{Im}(\overline{z_1}z_2e^{i\lambda t_1}), z_1 + z_2e^{i\lambda t_1}),$$

for all $t_1, t_2 \in \mathbb{R}$ and $(v_1, z_1), (v_2, z_2) \in H_3$. This is a 4-dimensional Lie group with Lie algebra \mathcal{G} having a basis $\{e_1, e_2, e_3, e_4\}$ such that

$$[e_1, e_2] = e_3, \ [e_4, e_1] = \lambda e_2, \ [e_4, e_2] = -\lambda e_1,$$

and all the other brackets are zero. It follows that the derived series is given by

$$\mathcal{D}^1 \mathcal{G} = [\mathcal{G}, \mathcal{G}] = span\{e_1, e_2, e_3\}, \ \mathcal{D}^2 \mathcal{G} = span\{e_3\}, \ \mathcal{D}^3 \mathcal{G} = \{0\},$$

and therefore \mathcal{G} is a (non-nilpotent) 3-step solvable Lie algebra. When $\lambda = 1$, G is known as the *oscillator group*. We will denote it by O_4 , and we shall denote its Lie algebra by \mathcal{O}_4 and call it the *oscillator algebra*.

From now on, A_4 will be a complete real left-symmetric algebra whose associated Lie algebra is \mathcal{O}_4 . We begin by proving the following proposition which will be crucial to the classification of complete left-symmetric structures on \mathcal{O}_4 .

Proposition 2. A_4 is not simple (i.e., A_4 contains a proper two-sided ideal).

Proof. Assume to the contrary that A_4 is simple, and let $A_4^{\mathbb{C}}$ be its complexification. By [15], Lemma 2.10, it follows that $A_4^{\mathbb{C}}$ is either simple or a direct sum of two simple ideals having the same dimension. If $A_4^{\mathbb{C}}$ is simple, then we can apply Proposition 5.1 in [5] to deduce that, being simple and complete, $A_4^{\mathbb{C}}$ is necessarily isomorphic to the complex left-symmetric algebra B_4 having a basis $\{e_1, e_2, e_3, e_4\}$ such that

$$e_1 \cdot e_2 = e_2 \cdot e_1 = e_4, \ e_2 \cdot e_3 = 2e_1,$$

 $e_3 \cdot e_2 = e_4 \cdot e_1 = e_1, \ e_4 \cdot e_2 = -e_2, \ e_4 \cdot e_3 = 2e_3,$

and all other products are zero. It follows that the Lie algebra \mathcal{G}_4 associated to B_4 admits a basis $\{e_1, e_2, e_3, e_4\}$ such that

$$[e_2, e_3] = [e_4, e_1] = e_1, \ [e_2, e_4] = e_2, \ [e_3, e_4] = -2e_3.$$

This leads to a contradiction since, according to Lemma 2, \mathcal{G}_4 should be isomorphic to the complexification of the Lie algebra \mathcal{O}_4 , but this is obviously not the case. This contradiction shows that $A_4^{\mathbb{C}}$ cannot be simple.

If $A_4^{\mathbb{C}}$ is a direct sum of two simple ideals having the same dimension, say $A_4^{\mathbb{C}} = A_1 \oplus A_2$, it follows that dim $A_1 = \dim A_2 = \frac{1}{2} \dim A_4^{\mathbb{C}} = 2$. In this case, by Corollary 4.1 in [5], A_1 and A_2 are both isomorphic to the unique two-dimensional complex simple left-symmetric algebra having a basis

$$B_2 = \langle e_1, e_2 : e_1 \cdot e_1 = 2e_1, e_1 \cdot e_2 = e_2, e_2 \cdot e_2 = e_1 \rangle$$
.

This is a contradiction, since A_1 and A_2 are complete but B_2 is not. This contradiction shows that $A_4^{\mathbb{C}}$ cannot be direct sum of two simple ideals. We deduce that A_4 is not simple, and this completes the proof of the proposition.

Before we return to the algebra A_4 , we need to give the following lemmas.

Lemma 3. Let A be a left-symmetric algebra with Lie algebra \mathcal{G} , and R a two-sided ideal in A. Then, the Lie algebra \mathcal{R} associated to R is an ideal in \mathcal{G} .

Proof. Let $x \in \mathcal{R}$ and $y \in \mathcal{G}$. Since R is a two-sided ideal, then $x \cdot y$ and $y \cdot x$ belong to R. It follows that $[x, y] = x \cdot y - y \cdot x \in R$, and therefore \mathcal{R} is an ideal in \mathcal{G} . \square

Lemma 4. The oscillator algebra \mathcal{O}_4 contains only two proper ideals which are $Z(\mathcal{O}_4) \cong \mathbb{R}$ and $[\mathcal{O}_4, \mathcal{O}_4] \cong \mathcal{H}_3$.

Proof. It is clear that $\mathcal{Z}(\mathcal{O}_4) \cong \mathbb{R}$ and $[\mathcal{O}_4, \mathcal{O}_4] \cong \mathcal{H}_3$ are proper ideals in \mathcal{O}_4 . If \mathcal{I} is a proper ideal in \mathcal{O}_4 , then \mathcal{I} should be unimodular. If dim $(\mathcal{I}) = 1$, then \mathcal{I} is isomorphic to $\mathcal{Z}(\mathcal{O}_4) \cong \mathbb{R}$. If dim $(\mathcal{I}) = 2$, then being unimodular, \mathcal{I} is isomorphic to \mathbb{R}^2 . In particular, \mathcal{I} contains $\mathcal{Z}(\mathcal{O}_4)$ and thus $\mathcal{O}_4/\mathcal{I}$ is abelian, a contradiction since \mathcal{O}_4 is not nilpotent. Hence, \mathcal{O}_4 contains no two-dimensional ideals. If dim $(\mathcal{I}) = 3$, then being unimodular and solvable, \mathcal{I} is isomorphic to either \mathcal{H}_3 , the Lie algebra $\mathcal{E}(2)$ of the group of the rigid motions of the plane, or the Lie algebra $\mathcal{E}(1,1)$ of the group of the rigid motions of the Minkowski plane. However, it is straightforward to show that \mathcal{O}_4 cannot be obtained as an extension of $\mathcal{E}(2)$ or $\mathcal{E}(1,1)$. We have therefore proved the lemma.

By the above proposition, A_4 is not simple and hence it has a proper two-sided ideal I, so we get a short exact sequence of complete left-symmetric algebras

$$0 \to I \xrightarrow{i} A_4 \xrightarrow{\pi} J \to 0. \tag{15}$$

In fact, according to Lemma 1, the completeness of I and J comes from that of A_4 . If \mathcal{I} is the Lie subalgebra associated to I then, by Lemma 3, \mathcal{I} is an ideal in \mathcal{O}_4 . From Lemma 4, it follows that there are two cases to consider according to whether \mathcal{I} is isomorphic to \mathcal{H}_3 or \mathbb{R} . Next, we will focus on the case where \mathcal{I} is isomorphic to $\mathcal{H}_3 \cong [\mathcal{O}_4, \mathcal{O}_4]$. In this case, the short exact sequence (15) becomes

$$0 \to I_3 \stackrel{i}{\to} A_4 \stackrel{\pi}{\to} I_0 \to 0, \tag{16}$$

where I_3 is a complete 3-dimensional left-symmetric algebra whose Lie algebra is \mathcal{H}_3 , and $I_0 = \{e_0 : e_0 \cdot e_0 = 0\}$ the trivial one-dimensional real left-symmetric algebra. It is easy to prove the following proposition (cf. [10, Theorem 3.5]).

Proposition 3. Up to left-symmetric isomorphism, the complete left-symmetric structures on the Heisenberg algebra \mathcal{H}_3 are classified as follows: There is a basis $\{e_1, e_2, e_3\}$ of \mathcal{H}_3 relative to which the left-symmetric product is given by one of the following classes:

(i)
$$e_1 \cdot e_1 = pe_3$$
, $e_2 \cdot e_2 = qe_3$, $e_1 \cdot e_2 = \frac{1}{2}e_3$, $e_2 \cdot e_1 = -\frac{1}{2}e_3$, where $p, q \in \mathbb{R}$.

(ii)
$$e_1 \cdot e_2 = me_3$$
, $e_2 \cdot e_1 = (m-1)e_3$, $e_2 \cdot e_2 = e_1$, where $m \in \mathbb{R}$.

Remark 4. It is noticeable that the left-symmetric products on \mathcal{H}_3 belonging to class (i) in Proposition 3 are obtained by central extensions (in the sense of fixed in Subsection 3.1) of \mathbb{R}^2 endowed with some complete left-symmetric structure by I_0 . However, the left-symmetric products on A_3 belonging to class (ii) are obtained by central extensions of the non-abelian two-dimensional Lie algebra \mathcal{G}_2 endowed with its unique complete left-symmetric structure by I_0 .

Now we return to the short exact sequence (16). First, let $\sigma: I_0 \to A_4$ be a section, and set $\sigma(e_0) = x_0 \in A_4$. Define two linear maps λ , $\rho \in End(I_3)$ by putting $\lambda(y) = x_0 \cdot y$ and $\rho(y) = y \cdot x_0$, and put $e = x_0 \cdot x_0$ (clearly $e \in I_3$). Let $g: I_0 \times I_0 \to I_3$ be the bilinear map defined by $g(e_0, e_0) = e$. It is obvious, using the notation of Subsection 3.1, to verify that $\delta_2 g = 0$, i.e. $g \in Z^2_{\lambda, \rho}(I_0, I_3)$. The extended

left-symmetric product on $I_3 \oplus I_0$ given by (8) turns out to take the simplified form $(x, ae_0) \cdot (y, be_0) = (x \cdot y + a\lambda(y) + b\rho(x) + abe, 0)$, for all $x, y \in I_3$ and $a, b \in \mathbb{R}$. The conditions in Theorem 1 can be simplified to the following conditions:

$$\lambda(x \cdot y) = \lambda(x) \cdot y + x \cdot \lambda(y) - \rho(x) \cdot y \tag{17}$$

$$\rho([x,y]) = x \cdot \rho(y) - y \cdot \rho(x) \tag{18}$$

$$[\lambda, \rho] + \rho^2 = R_e \tag{19}$$

Let $\phi: \mathbb{R} \to End(\mathcal{H}_3)$ be the linear map defined by formula (2). As we mentioned in Remark 1, \mathbb{R} acts on \mathcal{H}_3 by derivations, that is, $\phi: \mathbb{R} \to Der(\mathcal{H}_3)$. In particular, we deduce in view of (3) that $\lambda = D + \rho$ for some derivation D of \mathcal{H}_3 . The derivations of \mathcal{H}_3 are given by the following lemma, whose proof is straightforward and is therefore omitted.

Lemma 5. In a basis $\{e_1, e_2, e_3\}$ of \mathcal{H}_3 satisfying $[e_1, e_2] = e_3$, a derivation D of \mathcal{H}_3 takes the form

$$D = \begin{pmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ a_3 & b_3 & a_1 + b_2 \end{pmatrix}.$$

On the other hand, observe that $(x,ae_0) \in T(A_4)$ if and only if $(x,ae_0) \cdot (y,be_0) = (0,0)$ for all $(y,be_0) \in I_3 \oplus I_0$, or equivalently, $x \cdot y + a\lambda(y) + b\rho(x) + abe = 0$ for all $(y,be_0) \in I_3 \oplus I_0$. Since y and b are arbitrary, we conclude that this is also equivalent to say that $(L_x)_{|A_3} = -a\lambda$ and $\rho(x) = -ae$. In particular, an element $x \in I_3$ belongs to $T(A_4)$ if and only if $(L_x)_{|I_2} = 0$ and $\rho(x) = 0$, or equivalently,

$$I_3 \cap T(A_4) = T(I_3) \cap \ker \rho. \tag{20}$$

The following lemma will be crucial for the next section.

Lemma 6. The center $C(A_4) = T(A_4) \cap Z(\mathcal{O}_4)$ is non-trivial.

Proof. In view of Proposition 3, we have to consider two cases.

Case 1. Assume that there is a basis $\{e_1, e_2, e_3\}$ of \mathcal{H}_3 relative to which the left-symmetric product of I_3 is given by : $e_1 \cdot e_1 = pe_3$, $e_2 \cdot e_2 = qe_3$, $e_1 \cdot e_2 = \frac{1}{2}e_3$, $e_2 \cdot e_1 = -\frac{1}{2}e_3$, where $p, q \in \mathbb{R}$. Substituting $x = e_1$ and $y = e_2$ into (18), we find that the operator ρ takes the form

$$\rho = \begin{pmatrix} \alpha_1 & \beta_1 & 0 \\ \alpha_2 & \beta_2 & 0 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix},$$

with $\gamma_3 = p\beta_1 - q\alpha_2 + \frac{1}{2}(\alpha_1 + \beta_2)$. Since $\lambda = D + \rho$ for some $D \in \mathcal{H}_3$, we use Lemma 5 to deduce that

$$\lambda = \begin{pmatrix} \alpha_1 + a_1 \ \beta_1 + b_1 & 0 \\ \alpha_2 + a_2 \ \beta_2 + b_2 & 0 \\ \alpha_3 + a_3 \ \beta_3 + b_3 \ \gamma_3 + a_1 + b_2 \end{pmatrix}.$$

Since $(L_{e_3})_{|_{I_3}} = 0$ and $e \in I_3$, then (19), when applied to e_3 , gives

$$\gamma_3^2 e_3 = e_3 \cdot e = 0,$$

from which we get $\gamma_3 = 0$, i.e., $\rho\left(e_3\right) = 0$. It follows from (20) that $e_3 \in T\left(A_4\right)$. Since $Z\left(\mathcal{O}_4\right) = \mathbb{R}e_3$, we deduce that $C\left(A_4\right) = T\left(A_4\right) \cap Z\left(\mathcal{O}_4\right) \neq 0$, as required.

Case 2. Assume now that there is a basis $\{e_1, e_2, e_3\}$ of \mathcal{H}_3 relative to which the left-symmetric product of I_3 is given by : $e_1 \cdot e_2 = me_3$, $e_2 \cdot e_1 = (m-1)e_3$, $e_2 \cdot e_2 = e_1$, where m is a real number.

Substituting successively $x = e_1$, $y = e_2$ and $x = e_2$, $y = e_3$ into equation (18), we find that the operator ρ takes the form

$$\rho = \begin{pmatrix} \alpha_1 \ \beta_1 & -\alpha_2 \\ \alpha_2 \ \beta_2 & 0 \\ \alpha_3 \ \beta_3 \ m\beta_2 - (m-1) \ \alpha_1 \end{pmatrix},$$
(21)

with $(m-1) \alpha_2 = 0$.

We claim that $\alpha_2 = 0$. To prove this, let us assume to the contrary that $\alpha_2 \neq 0$. It follows that m = 1, and therefore

$$\rho(e_3) = -\alpha_2 e_1 + \beta_2 e_3$$

$$\rho^2(e_3) = -\alpha_2 (\alpha_1 + \beta_2) e_1 - \alpha_2^2 e_2 + (\beta_2^2 - \alpha_2 \alpha_3) e_3$$

Since $\alpha_2 \neq 0$, we deduce that e_3 , $\rho(e_3)$, $\rho^2(e_3)$ form a basis of I_3 . Since ρ is nilpotent (by completeness of the left-symmetric structure), it follows that $\rho^3(e_3) = 0$. In other words, ρ has the form

$$\rho = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

with respect to the basis $e_1' = -\rho\left(e_3\right)$, $e_2' = \rho^2\left(e_3\right)$, $e_3' = -e_3$.

Using the fact that $\alpha_1 + 2\beta_2 = 0$ which follows from the identity $\rho^3(e_3) = 0$, we see that $e'_1 \cdot e'_2 = \alpha_2^3 e'_3$, $e'_2 \cdot e'_2 = \alpha_2^3 e'_1$, and all other products are zero.

For simplicity, assume without loss of generality that $\alpha_2 = 1$. Since $\lambda = D + \rho$ for some $D \in \mathcal{H}_3$, Lemma 5 tells us that, with respect to the basis e'_1, e'_2, e'_3 , the operator λ takes the form

$$\lambda = \begin{pmatrix} a_1 & b_1 & 1 \\ a_2 - 1 & b_2 & 0 \\ a_3 & b_3 & a_1 + b_2 \end{pmatrix}.$$

Applying formula (19) to e'_3 and recalling that $e'_3 \cdot e = 0$ since $\mathbf{e} \in I_3$, we deduce that $a_2 = 1$ and $b_2 = a_3 = 0$. Then, substituting $x = y = e'_2$ into equation (17), we get $a_1 = b_1 = 0$. Thus, the form of λ reduces to

$$\lambda = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & b_3 & 0 \end{pmatrix}.$$

Now, by setting $\mathbf{e} = ae_1 + be_2 + ce_3$ and applying (19) to e_1 , we get that $b_3 = -b$. By using (8), we deduce that the nonzero left-symmetric products are

$$\begin{split} e_1' \cdot e_2' &= e_3', & e_2' \cdot e_2' = e_1', \\ e_1' \cdot e_4' &= -e_2', & e_4' \cdot e_2' = -be_3' \\ e_3' \cdot e_4' &= e_4' \cdot e_3' = e_1', & e_4' \cdot e_4' = \mathbf{e}. \end{split}$$

This implies, in particular, that dim $[\mathcal{O}_4, \mathcal{O}_4] = \dim [A_4, A_4] = 2$, a contradiction. It follows that $\alpha_2 = 0$, as desired.

We now return to (21). Since $\alpha_2 = 0$, we have

$$\rho = \begin{pmatrix} \alpha_1 \ \beta_1 & 0 \\ 0 \ \beta_2 & 0 \\ \alpha_3 \ \beta_3 \ m\beta_2 - (m-1) \ \alpha_1 \end{pmatrix},$$

and since $\lambda = D + \rho$ for some $D \in \mathcal{H}_3$ then, in view of Lemma 5, the operator λ takes the form

$$\lambda = \begin{pmatrix} \alpha_1 + a_1 \ \beta_1 + b_1 & 0 \\ a_2 \ \beta_2 + b_2 & 0 \\ \alpha_3 + a_3 \ \beta_3 + b_3 \ a_1 + b_2 + m\beta_2 - (m-1) \alpha_1 \end{pmatrix}.$$

Once again, by applying (19) to e_3 and recalling that $e_3 \cdot e = 0$ since $\mathbf{e} \in I_3$, we deduce that $(m\beta_2 - (m-1)\alpha_1)^2 = 0$, thereby showing that $\rho(e_3) = 0$. Now, in view of (20) we get $e_3 \in T(A_4)$, and since $Z(\mathcal{O}_4) = \mathbb{R}e_3$ we deduce that $C(A_4) = T(A_4) \cap Z(\mathcal{O}_4) \neq 0$, as desired. This completes the proof of the lemma.

5. Classification

We know from Section 4 that A_4 has a proper two-sided ideal I which is isomorphic to either the trivial one-dimensional real left-symmetric algebra $I_0 = \{e_0 : e_0 \cdot e_0 = 0\}$ or a 3-dimensional left-symmetric algebra I_3 (as described in Proposition 3) whose associated Lie algebra is the Heisenberg algebra \mathcal{H}_3 . In the case where $I \cong I_3$, we know by Lemma 6 that $C(A_4) \neq \{0\}$. Since in our situation dim $Z(\mathcal{O}_4) = 1$, it follows that $C(A_4) \cong I_0$, so that we have a central short exact sequence of left-symmetric algebras of the form

$$0 \to I_0 \to A_4 \to I_3 \to 0. \tag{22}$$

In general, one has that the center of a left-symmetric algebra is a part of the center of the associated Lie algebra, and therefore the following lemma is proved.

Lemma 7. The Lie algebra associated to I_3 is isomorphic to the Lie algebra $\mathcal{E}(2)$ of the group of Euclidean motions of the plane.

Recall that $\mathcal{E}(2)$ is solvable non-nilpotent and has a basis $\{e_1, e_2, e_3\}$ which satisfies $[e_1, e_2] = e_3$ and $[e_1, e_3] = -e_2$.

In the case where $I \cong I_0$, we know by Lemma 3 that the associated Lie algebra is $\mathcal{I} \cong \mathbb{R}$. Since, by Lemma 4, \mathcal{O}_4 has only two proper ideals which are $Z(\mathcal{O}_4) \cong \mathbb{R}$ and

 $[\mathcal{O}_4,\mathcal{O}_4]\cong\mathcal{H}_3$, it follows that $\mathcal{I}\cong\mathbb{R}$ coincides with the center $Z\left(\mathcal{O}_4\right)$. We deduce from this that, if \mathcal{J} denotes the Lie algebra of the left-symmetric algebra J in the short exact sequence (15), then \mathcal{J} is isomorphic to $\mathcal{E}\left(2\right)$. Therefore, we have a short sequence of left-symmetric algebras which looks like (22), except that it would not necessarily be central. But, as we will see a little later, this is necessarily a central extension (i.e., $I\cong C\left(A_4\right)\cong I_0$).

To summarize, each complete left-symmetric structure on \mathcal{O}_4 may be obtained by an extension of a complete 3-dimensional left-symmetric algebra A_3 whose associated Lie algebra is $\mathcal{E}(2)$ by I_0 . Next, we shall determine all the complete left-symmetric structures on $\mathcal{E}(2)$. These are described by the following lemma that we state without proof (see [10], Theorem 4.1).

Lemma 8. Up to left-symmetric isomorphism, any complete left-symmetric structure on $\mathcal{E}(2)$ is isomorphic to the following one which is given in a basis $\{e_1, e_2, e_3\}$ of $\mathcal{E}(2)$ by the relations $e_1 \cdot e_2 = e_3$, $e_1 \cdot e_3 = -e_2$, $e_2 \cdot e_2 = e_3 \cdot e_3 = \varepsilon e_1$.

There are exactly two non-isomorphic conjugacy classes according to whether $\varepsilon = 0$ or $\varepsilon \neq 0$.

From now on, A_3 will denote the vector space $\mathcal{E}(2)$ endowed with one of the complete left-symmetric structures described in Lemma 8. The extended Lie bracket on $\mathcal{E}(2) \oplus \mathbb{R}$ is given by

$$[(x, a), (y, b)] = ([x, y], \omega(x, y)),$$
 (23)

with $\omega \in Z^{2}\left(\mathcal{E}\left(2\right),\mathbb{R}\right)$. The extended left-symmetric product on $A_{3}\oplus I_{0}$ is given by

$$(x, ae_0) \cdot (y, be_0) = (x \cdot y, b\lambda_x (e_0) + a\rho_y (e_0) + g(x, y)),$$
 (24)

with λ , $\rho: A_3 \to End(I_0)$ and $g \in Z^2_{\lambda,\rho}(A_3,I_0)$.

As we have noticed in Section 3, I_0 is an A_3 -bimodule, or equivalently, the conditions in Theorem 1 simplify to the following conditions:

- (i) $\lambda_{[x,y]} = 0$,
- (ii) $\rho_{x\cdot y} = \rho_y \circ \rho_x$,
- (iii) $g(x, y \cdot z) g(y, x \cdot z) + \lambda_x(g(y, z)) \lambda_y(g(x, z)) g([x, y], z) \rho_z(g(x, y) g(y, x)) = 0.$

By using (23) and (24), we deduce from $[(x, a), (y, b)] = (x, ae_0) \cdot (y, be_0) - (y, be_0) \cdot (x, ae_0)$ that

$$\omega(x,y) = g(x,y) - g(y,x) \text{ and } \lambda = \rho.$$
 (25)

By applying identity (ii) above to $e_i \cdot e_i$, $1 \leq i \leq 3$, we deduce that $\rho = 0$, and a fortiori $\lambda = 0$. In other words, the extension A_4 is always central (i.e., $I \cong C(A_4)$ even in the case where $\mathcal{I} \cong \mathbb{R}$). In fact, we have

Claim 1. The extension $0 \to I_0 \to A_4 \to A_3 \to 0$ is exact.

Proof. We recall from Subsection 3.1 that the extension given by the short sequence (22) is exact, i.e., $i(I_0) = C(A_4)$, if and only if $I_{[q]} = 0$, where

$$I_{[g]} = \{x \in A_3 : x \cdot y = y \cdot x = 0 \text{ and } g(x,y) = g(y,x) = 0, \text{ for all } y \in A_3\}.$$

To show that $I_{[g]} = 0$, let x be an arbitrary element in $I_{[g]}$, and put $x = ae_1 + be_2 + ce_3 \in I_{[g]}$. Now, by computing all the products $x \cdot e_i = e_i \cdot x = 0$, $1 \le i \le 3$, we easily deduce that x = 0.

Our aim is to classify complete left-symmetric structures on \mathcal{O}_4 , up to left-symmetric isomorphisms. By Proposition 1, the classification of exact central extensions of A_3 by I_0 is nothing but the orbit space of $H^2_{ex}\left(A_3,I_0\right)$ under the natural action of $G=Aut\left(I_0\right)\times Aut\left(A_3\right)$. Accordingly, we must compute $H^2_{ex}\left(A_3,I_0\right)$. Since I_0 is a trivial A_3 -bimodule, we see first from (9) and (10) that the coboundary operator δ simplifies as follows:

$$\delta_1 h(x, y) = -h(x \cdot y), \quad \delta_2 g(x, y, z) = g(x, y \cdot z) - g(y, x \cdot z) - g([x, y], z),$$

where $h \in L^{1}(A_{3}, I_{0})$ and $g \in L^{2}(A_{3}, I_{0})$.

In view of Lemma 8, there are two cases to be considered.

Case 1. $A_3 = \langle e_1, e_2, e_3 : e_1 \cdot e_2 = e_3, e_1 \cdot e_3 = -e_2 \rangle$.

In this case, using the first formula above for δ_1 , we get

$$\delta_1 h = \begin{pmatrix} 0 & h_{12} & h_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

where $h_{12}=-h\left(e_{3}\right)$ and $h_{13}=h\left(e_{2}\right)$. Similarly, using the second formula above for δ_{2} , we verify easily that if g is a cocycle (i.e. $\delta_{2}g=0$) and $g_{ij}=g\left(e_{i},e_{j}\right)$, then

$$g = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ 0 & g_{22} & g_{23} \\ 0 & -g_{23} & g_{22} \end{pmatrix},$$

that is, $g_{21}=g_{31}=0$, $g_{32}=-g_{23}$, and $g_{33}=g_{22}$. We deduce that, in the basis above, the class $[g] \in H^2(A_3,\mathbb{R})$ of a cocycle g takes the simplified form

$$g = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & \gamma \\ 0 & -\gamma & \beta \end{pmatrix}.$$

We can now determine the extended left-symmetric structure on A_4 . By setting $\tilde{e}_i = (e_i, 0), \ 1 \le i \le 3$, and $\tilde{e}_4 = (0, 1)$, and using formula (24) which (since $\lambda = \rho = 0$) reduces to

$$(x, ae_0) \cdot (y, be_0) = (x \cdot y, g(x, y)),$$
 (26)

we obtain

$$\widetilde{e}_{1} \cdot \widetilde{e}_{1} = \alpha \widetilde{e}_{4}, \ \widetilde{e}_{2} \cdot \widetilde{e}_{2} = \widetilde{e}_{3} \cdot \widetilde{e}_{3} = \beta \widetilde{e}_{4}
\widetilde{e}_{1} \cdot \widetilde{e}_{2} = \widetilde{e}_{3}, \ \widetilde{e}_{1} \cdot \widetilde{e}_{3} = -\widetilde{e}_{2},
\widetilde{e}_{2} \cdot \widetilde{e}_{3} = \gamma \widetilde{e}_{4}, \ \widetilde{e}_{3} \cdot \widetilde{e}_{2} = -\gamma \widetilde{e}_{4},$$
(27)

and all the other products are zero. We observe here that we should have $\gamma \neq 0$, given that the underlying Lie algebra is \mathcal{O}_4 . We denote by A_4 (α, β, γ) the Lie algebra \mathcal{O}_4 endowed with the above complete left-symmetric product.

Let now $A_4(\alpha, \beta, \gamma)$ and $A_4(\alpha', \beta', \gamma')$ be two arbitrary left-symmetric structures on \mathcal{O}_4 given as above, and let [g] and [g'] be the corresponding classes in $H^2_{ex}(A_3, I_0)$. By Proposition 1, we know that $A_4(\alpha, \beta, \gamma)$ is isomorphic to $A_4(\alpha', \beta', \gamma')$ if and only if the exists $(\mu, \eta) \in Aut(I_0) \times Aut(A_3)$ such that for all $x, y \in A_3$, we have

$$g'(x,y) = \mu\left(g\left(\eta\left(x\right),\eta\left(y\right)\right)\right). \tag{28}$$

We shall first determine $Aut(I_0) \times Aut(A_3)$. We have $Aut(I_0) \cong \mathbb{R}^*$, and it is easy too to determine $Aut(A_3)$. Indeed, recall that the unique left-symmetric structure of A_3 is given by $e_1 \cdot e_2 = e_3$, $e_1 \cdot e_3 = -e_2$, and let $\eta \in Aut(A_3)$ be given in the basis $\{e_1, e_2, e_3\}$ by

$$\eta = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}.$$

From the identity $\eta(e_3) = \eta(e_1 \cdot e_2) = \eta(e_1) \cdot \eta(e_2)$, we get $c_1 = 0$, $c_2 = -a_1b_3$, and $c_3 = a_1b_2$. From the identity $-\eta(e_2) = \eta(e_1 \cdot e_3) = \eta(e_1) \cdot \eta(e_3)$ we get $b_1 = 0$, $b_2 = a_1c_3$, and $b_3 = -a_1c_2$. Since det $\eta \neq 0$, we deduce that $a_1 = \pm 1$. It follows, by setting $\varepsilon = \pm 1$, that $b_3 = -\varepsilon c_2$ and $c_3 = \varepsilon b_2$. From the identity $\eta(e_1) \cdot \eta(e_1) = \eta(e_1 \cdot e_1) = 0$, we obtain $a_2 = a_3 = 0$. Therefore, η takes the form

$$\eta = \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & b_2 & c_2 \\ 0 & -\varepsilon c_2 & \varepsilon b_2 \end{pmatrix}, \quad b_2^2 + c_2^2 \neq 0.$$

We now apply formula (28). For this we recall first that in the basis above the classes [g] and [g'] corresponding to $A_4(\alpha, \beta, \gamma)$ and $A_4(\alpha', \beta', \gamma')$, respectively, have the forms

$$g = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & \gamma \\ 0 & -\gamma & \beta \end{pmatrix} \quad \text{and} \quad g' = \begin{pmatrix} \alpha' & 0 & 0 \\ 0 & \beta' & \gamma' \\ 0 & -\gamma' & \beta' \end{pmatrix},$$

respectively. From $g'(e_1, e_1) = \mu g(\eta(e_1), \eta(e_1))$, we get

$$\alpha' = \mu \alpha, \tag{29}$$

and from $g'(e_2, e_2) = \mu g(\eta(e_2), \eta(e_2))$, we get

$$\beta' = \mu \left(b_2^2 + c_2^2 \right) \beta. \tag{30}$$

Similarly, from $g'(e_2, e_3) = \mu g(\eta(e_2), \eta(e_3))$ we get

$$\gamma' = \mu \varepsilon \left(b_2^2 + c_2^2 \right) \gamma. \tag{31}$$

Recall here that $\mu \neq 0$, $\gamma \neq 0$, and $b_2^2 + c_2^2 \neq 0$.

Claim 2. Each $A_4(\alpha, \beta, \gamma)$ is isomorphic to some $A_4(\alpha', \beta', 1)$. Precisely, $A_4(\alpha, \beta, \gamma)$ is isomorphic to $A_4(\varepsilon \frac{\alpha}{\gamma}, \varepsilon \frac{\beta}{\gamma}, 1)$.

Proof. By (29), (30), and (31), $A_4(\alpha, \beta, \gamma)$ is isomorphic to $A_4(\alpha', \beta', 1)$ if and only if there exists $\mu \in \mathbb{R}^*$ and $b, c \in \mathbb{R}$, with $b^2 + c^2 \neq 0$, such that

$$\alpha' = \mu \alpha, \beta'$$

$$= \mu \left(b^2 + c^2 \right) \beta, 1$$

$$= \mu \varepsilon \left(b^2 + c^2 \right) \gamma.$$

Now, by taking $b^2+c^2=1$ (for instance, $b=\cos\theta_0$ and $c=\sin\theta_0$ for some θ_0), the third equation yields $\mu=\frac{\varepsilon}{\gamma}$. Substituting the value of μ in the two first equations, we deduce that $\alpha'=\varepsilon\frac{\alpha}{\gamma}$ and $\beta'=\varepsilon\frac{\beta}{\gamma}$. Consequently, each $A_4\left(\alpha,\beta,\gamma\right)$ is isomorphic to $A_4\left(\varepsilon\frac{\alpha}{\gamma},\varepsilon\frac{\beta}{\gamma},1\right)$.

Case 2. $A_3 = \langle e_1, e_2, e_3 : e_1 \cdot e_2 = e_3, \ e_1 \cdot e_3 = -e_2, \ e_2 \cdot e_2 = e_3 \cdot e_3 = e_1 \rangle$. Similarly to the first case, we get

$$\delta_1 h = \begin{pmatrix} 0 & h_{12} & h_{13} \\ 0 & h_{22} & 0 \\ 0 & 0 & h_{22} \end{pmatrix} \quad \text{and} \quad g = \begin{pmatrix} 0 & g_{12} & g_{13} \\ 0 & g_{22} & g_{23} \\ 0 - g_{23} & g_{22} \end{pmatrix},$$

where $h_{12} = -h(e_3)$, $h_{13} = h(e_2)$, $h_{22} = -h(e_1)$, and $g_{ij} = g(e_i, e_j)$. It follows that in this case the class $[g] \in H^2(A_3, \mathbb{R})$ of a cocycle g takes the reduced form

$$g = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \gamma \\ 0 & -\gamma & 0 \end{pmatrix}, \quad \gamma \neq 0.$$

By setting $\tilde{e}_i = (e_i, 0)$, $1 \le i \le 3$, and $\tilde{e}_4 = (0, 1)$, and using formula (26) we find that the nonzero relations are

$$\widetilde{e}_1 \cdot \widetilde{e}_2 = \widetilde{e}_3, \ \widetilde{e}_1 \cdot \widetilde{e}_3 = -\widetilde{e}_2, \ \widetilde{e}_2 \cdot \widetilde{e}_2 = \widetilde{e}_3 \cdot \widetilde{e}_3 = \widetilde{e}_1
\widetilde{e}_2 \cdot \widetilde{e}_3 = \gamma \widetilde{e}_4, \ \widetilde{e}_3 \cdot \widetilde{e}_2 = -\gamma \widetilde{e}_4, \ \gamma \neq 0.$$
(32)

We can now state the main result of this paper.

Theorem 2. Let A_4 be a complete non-simple real left-symmetric algebra whose associated Lie algebra is $\mathcal{O}(4)$. Then A_4 is isomorphic to one of the following left-symmetric algebras:

(i) $A_4(s,t)$: There exist real numbers s,t, and a basis $\{e_1,e_2,e_3,e_4\}$ of $\mathcal{O}(4)$ relative to which the nonzero left-symmetric relations are

$$e_1 \cdot e_1 = se_4, \quad e_2 \cdot e_2 = e_3 \cdot e_3 = te_4$$

 $e_1 \cdot e_2 = e_3, \quad e_1 \cdot e_3 = -e_2,$
 $e_2 \cdot e_3 = \frac{1}{2}e_4, \quad e_3 \cdot e_2 = -\frac{1}{2}e_4.$

The conjugacy class of $A_4(s,t)$ is given as follows: $A_4(s',t')$ is isomorphic to $A_4(s,t)$ if and only if $(s',t')=(\alpha s,\pm t)$ for some $\alpha\in\mathbb{R}^*$.

(ii) B_4 : There is a basis $\{e_1, e_2, e_3, e_4\}$ of $\mathcal{O}(4)$ relative to which the nonzero left-symmetric relations are

$$e_1 \cdot e_2 = e_3, \quad e_1 \cdot e_3 = -e_2, \quad e_2 \cdot e_2 = e_3 \cdot e_3 = e_1$$

 $e_2 \cdot e_3 = \frac{1}{2}e_4, \quad e_3 \cdot e_2 = -\frac{1}{2}e_4.$

Proof. According to the discussion above, there are two cases to be considered.

Case 1.
$$A_3 = \langle e_1, e_2, e_3 : e_1 \cdot e_2 = e_3, e_1 \cdot e_3 = -e_2 \rangle$$
.

In this case, Claim 2 asserts that A_4 is isomorphic to some $A_4(\alpha, \beta, 1)$; and according to equations (27), we know that there is a basis $\{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$ of \mathcal{O}_4 relative to which the nonzero relations for $A_4(\alpha, \beta, 1)$ are:

$$\begin{split} \widetilde{e}_1 \cdot \widetilde{e}_1 &= \alpha \widetilde{e}_4, \ \widetilde{e}_2 \cdot \widetilde{e}_2 = \widetilde{e}_3 \cdot \widetilde{e}_3 = \beta \widetilde{e}_4 \\ \widetilde{e}_1 \cdot \widetilde{e}_2 &= \widetilde{e}_3, \ \widetilde{e}_1 \cdot \widetilde{e}_3 = -\widetilde{e}_2, \\ \widetilde{e}_2 \cdot \widetilde{e}_3 &= \widetilde{e}_4, \ \widetilde{e}_3 \cdot \widetilde{e}_2 = -\widetilde{e}_4. \end{split}$$

Now, it is clear that by setting $s=\frac{\alpha}{2},\,t=\frac{\beta}{2},\,e_i=\widetilde{e}_i$ for $1\leq i\leq 3$, and $e_4=2\widetilde{e}_4$, we get the desired two-parameter family $A_4\left(s,t\right)$. On the other hand, we see from (29), (30), and (31) that $A_4\left(s',t'\right)$ is isomorphic to $A_4\left(s,t\right)$ if and only if there exists $\alpha\in\mathbb{R}^*$ and $b,c\in\mathbb{R}$, with $b^2+c^2\neq 0$, such that

$$s' = \alpha s,$$

$$t' = \alpha (b^2 + c^2) t,$$

$$1 = \alpha \varepsilon (b^2 + c^2).$$

From the third equation, we get $b^2+c^2=\frac{\varepsilon}{\alpha}$; and by substituting the latter into the second equation, we get $t'=\varepsilon t$. In other words, we have shown that $A_4\left(s',t'\right)$ and $A_4\left(s,t\right)$ are isomorphic if and only if there exists $\alpha\in\mathbb{R}^*$ such that $s'=\alpha s$ and $t'=\pm t$.

Case 2.
$$A_3 = \langle e_1, e_2, e_3 : e_1 \cdot e_2 = e_3, e_1 \cdot e_3 = -e_2, e_2 \cdot e_2 = e_3 \cdot e_3 = e_1 \rangle$$
.

In this case, by (32), there is a basis $\{\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4\}$ of \mathcal{O}_4 relative to which the nonzero relations in A_4 are:

$$\widetilde{e}_1 \cdot \widetilde{e}_2 = \widetilde{e}_3, \ \widetilde{e}_1 \cdot \widetilde{e}_3 = -\widetilde{e}_2, \ \widetilde{e}_2 \cdot \widetilde{e}_2 = \widetilde{e}_3 \cdot \widetilde{e}_3 = \widetilde{e}_1$$

 $\widetilde{e}_2 \cdot \widetilde{e}_3 = \gamma \widetilde{e}_4, \ \widetilde{e}_3 \cdot \widetilde{e}_2 = -\gamma \widetilde{e}_4, \gamma \neq 0.$

By setting $e_i = \tilde{e}_i$ for $1 \le i \le 3$, and $e_4 = 2\gamma \tilde{e}_4$, we see that A_4 is isomorphic to B_4 . This finishes the proof of the main theorem.

Remark 5. Recall that a left-symmetric algebra A is called Novikov if it satisfies the condition $(x \cdot y) \cdot z = (x \cdot z) \cdot y$, for all $x, y, z \in A$.

Novikov left-symmetric algebras were introduced in [2] (see also [24] for some important results concerning this). We note here that $A_4(s,0)$ is Novikov and that B_4 is not.

We can explicitly compute the exponential map $\exp: \mathcal{O}_4 \to O_4$ of the oscillator group in the parametrization given in Section 4. Details of the argument are left to the reader (see [11]). It is given by

$$\exp\left(v,z,t\right) = \begin{cases} \left(v + \frac{|z|^2}{4t} \left(1 - \frac{\sin 2t}{2t}\right), z \frac{\sin t}{t}, t\right), t \neq 0\\ \left(v, z, 0\right), & t = 0 \end{cases}$$

On the other hand, we note that the mapping $X \mapsto (L_X, X)$ is a Lie algebra representation of \mathcal{O}_4 in $\mathfrak{aff}\left(\mathbb{R}^4\right) = End\left(\mathbb{R}^4\right) \oplus \mathbb{R}^4$. By using the exponential map of the affine group $Aff\left(\mathbb{R}^4\right) = GL\left(\mathbb{R}^4\right) \ltimes \mathbb{R}^4$, Theorem 2 can now be stated, in terms of simply transitive actions of subgroups of $Aff\left(\mathbb{R}^4\right)$, as follows. To state it, define the continuous functions

$$\begin{split} f\left(x\right) &= \begin{cases} \frac{\sin x}{x}, \ x \neq 0 \\ 1, & x = 0 \end{cases}, \quad g\left(x\right) = \begin{cases} \frac{1 - \cos x}{x}, \ x \neq 0 \\ 0, & x = 0 \end{cases}, \\ h\left(x\right) &= \begin{cases} \frac{x - \sin x}{x^2}, \ x \neq 0 \\ 0, & x = 0 \end{cases}, \quad k\left(x\right) = \begin{cases} \frac{1 - \cos x}{x^2}, \ x \neq 0 \\ 0, & x = 0 \end{cases}, \end{split}$$

and set

$$\Phi_{t}(x) = \left(\frac{y}{2} + tz\right)g(x) - \left(\frac{z}{2} - ty\right)f(x),$$

$$\Psi_{t}(x) = \left(\frac{y}{2} + tz\right)f(x) + \left(\frac{z}{2} - ty\right)g(x).$$

Theorem 3. Suppose that the oscillator group O_4 acts simply transitively by affine transformations on \mathbb{R}^4 . Then, as a subgroup of $Aff(\mathbb{R}^4) = GL(\mathbb{R}^4) \ltimes \mathbb{R}^4$, O_4 is conjugate to one of the following subgroups:

(i)
$$G_{4} = \left\{ \begin{bmatrix} 1 & yf(x) + zg(x) & zf(x) - yg(x) & 0 \\ 0 & \cos x & -\sin x & 0 \\ 0 & \sin x & \cos x & 0 \\ 0 & \Phi_{0}(x) & \Psi_{0}(x) & 1 \end{bmatrix} \times \begin{bmatrix} x + (y^{2} + z^{2}) & k(x) \\ yf(x) - zg(x) \\ zf(x) + yg(x) \\ w + \frac{(y^{2} + z^{2})}{2} & h(x) \end{bmatrix} \right\},$$

(ii)

$$G_{4}\left(s,t\right)=\left\{\begin{bmatrix}1&0&0&0\\0&\cos x&-\sin x&0\\0&\sin x&\cos x&0\\sx&\Phi_{t}\left(x\right)&\Psi_{t}\left(x\right)&1\end{bmatrix}\times\begin{bmatrix}x\\yf\left(x\right)-zg\left(x\right)\\zf\left(x\right)+yg\left(x\right)\\w+\frac{s}{2}x^{2}+\left(y^{2}+z^{2}\right)\left(\frac{h\left(x\right)}{2}+tk\left(x\right)\right)\end{bmatrix}\right\},$$

where $s, t \in \mathbb{R}$. The only pairs of conjugate subgroups in $Aff(\mathbb{R}^4)$ are $G_4(s,t)$ and $G_4(\alpha s, \pm t)$ where $\alpha \in \mathbb{R}^*$.

References

- L. AUSLANDER, Simply transitive groups of affine motions, Amer. J. Math. 99(1977), 809–826.
- [2] A. A. Balinskii, S. P. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Soviet Math. Dokl. 32(1985), 228–231.
- [3] Y. BENOIST, Une nilvariété non affine, J. Differential Geometry 41(1995), 21–52.
- [4] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys. 135(1990), 201–216.
- [5] D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math. 95(1998), 397–411.
- [6] K. CHANG, H. KIM, H. LEE, Radicals of a left-symmetric algebra on a nilpotent Lie group, Bull. Korean Math. Soc. 41(2004), 359–369.
- [7] C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. **63**(1948), 85–124.
- [8] J. A. DE AZCARRAGA, J. M. IZQUIERDO, Lie groups, Lie algebras, cohomology and applications in physics, Cambridge University Press, Cambridge, 1995.
- [9] D. FRIED, Distality, completeness, and affine structures, J. Differential Geometry 24(1986), 265–273.
- [10] D. Fried, W. Goldman, Three dimensional affine crystallographic groups, Advances in Math. 47(1983), 1–49.
- [11] N. DORR, A note on the oscillator group, Seminar Sophus Lie 2(1991), 31–38.
- [12] I. Z. GOLUBSCHIK, V. V. SOKOLOV, Generalized operator Yang-Baxter equations, integrable ODE's and nonassociative algebras, J. Nonlinear Math. Phys. 7(2000), 184–197.
- [13] N. JACOBSON, Lie algebras, Dover Publications Inc., New York, 1979.
- [14] H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J. Differential Geometry 24(1986), 373–394.
- [15] X. KONG, C. BAI, D. MENG, On real simple left-symmetric algebras, Comm. in Algebra 40(2012), 1641–1668.
- [16] J. L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89(1961), 515–533.
- [17] N. Kuiper, Sur les surfaces localement affines, Colloq. Géom. Différentielle (1953), 79–87.
- [18] B. A. KUPERSHMIDT, Left-symmetric algebras in hydrodynamics, Lett. Math. Phys. **76**(2006), 1–18.
- [19] J. MILNOR, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25(1977), 178–187.
- [20] M. Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5(1953), 171–183.
- [21] K. H. NEEB, Non-abelian extensions of topological Lie algebras, Comm. in Algebra **34**(2006), 991–1041.
- [22] D. Segal, The structure of complete left-symmetric algebras, Math. Ann. 293(1992), 569–578.
- [23] E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12(1963), 340–403.
- [24] E. ZELMANOV, On a class of local translation invariant Lie algebras, Soviet Math. Dokl. 35(1987), 216–218.