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Abstract. The non-steady heat equation is considered in thin structures. The asymptotic
expansion of the solution is constructed.The error estimates for high order asymptotic
approximations are proved. The method of asymptotic partial domain decomposition is
justified for the non-steady heat equation.
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1. Introduction

The method of asymptotic partial decomposition for thin structures was proposed
in [11], and then developed in [12]. Thin rod structures are connected finite unions
of thin finite cylinders (in the 2D case respectively thin rectangles), where the ratio
of the diameter and the height of cylinders is the small parameter ε. Each such
structure may be schematically represented by its graph: letting the thickness of
cylinders to zero we find out that cylinders degenerate to segments. Although the
method is developed for the steady problems, there are only few examples of its
application to non-steady equations (see [13]). In the present paper, the heat equa-
tion set on the thin structure with the Neumann boundary condition at the lateral
boundary is considered. An asymptotic expansion of the solution to the problem is
constructed. It has a regular part, expansion in powers of ε with coefficients depend-
ing on the time variable and the longitudinal space variable only, and the boundary
layer correctors depending on the dilated space variables x/ε and the time and de-
caying exponentially with respect to space variables, so that their values at some
small distance from the bases of the cylinders become of order of εJ for any J . This
property of asymptotic expansion allows us to ”cut ” the cylinders at the distance
of order ε|ln(ε)| from the bases of cylinders, to reduce dimension in the truncated
middle parts of cylinders and to set at the truncated sections some special asymp-
totically justified interface conditions between the 1D and multi-dimensional parts
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(see [11]). Note that in the non-steady case these conditions are the same as in the
steady case [11].

Notice that earlier the dimension reduction of parabolic problems set in thin
structures was considered in [3] (Chapter 8) and [8]. Another method which can be
applied to the construction of an asymptotic expansion of the solution is the method
of matching (see [4, 5, 6, 9]); however, here we use the method developed in [3] and
[12].

2. Graphs

Let O1, O2, . . . , ON be N different points in R
n, n = 2, 3, and e1, e2, . . . , eM M

closed segments each connecting two of these points (i.e., each ej = OijOkj
, where

ij , kj ∈ {1, . . . , N}, ij 6= kj). All points Oi are supposed to be the ends of some
segments ej . The segments ej are called edges of the graph. A point Oi is called a
node if it is the common end of at least two edges and Oi is called a vertex if it is
the end of only one edge. Any two edges ej and ei can intersect only at the common
node. The set of vertices is supposed to be non-empty.

By B =
M
⋃

j=1

ej denote the union of edges and assume that B is a connected set.

The graph G is defined as the collection of nodes, vertices and edges.

The union of all edges having the same end point in Ol is called the bundle B(l).

Let e be some edge, e = OiOj . Consider two Cartesian coordinate systems in

R
n. The first one has the origin in Oi and the axis Oix

(e)
1 has the direction of the ray

[OiOj); the second one has the origin in Oj and the opposite direction, i.e., Oix̃
(e)
1

is directed over the ray [OjOi).

Further, in various situations we will choose one or another coordinate system
denoting the local variable in both cases as xe and pointing out which end is taken
as the origin of the coordinate system.

3. Rod structures

With every edge ej we associate a bounded domain σj ⊂ R
n−1 having Lipschitz

boundary ∂σj , j = 1, . . . ,M . For every edge ej = e and associated σj = σ(e) by

B
(e)
ε we denote the cylinder

B(e)
ε = {x(e) ∈ R

n : x
(e)
1 ∈ (0, |e|),

x(e)
′

ε
∈ σ(e)},

where x(e)
′

= (x
(e)
2 , . . . , x

(e)
n ), |e| is the length of the edge e and ε > 0 is a small

parameter. Notice that the edges ej and Cartesian coordinates of nodes and vertices
Oj , as well as domains σj , do not depend on ε.

LetO1, . . . , ON1 be nodes andON1+1, . . . , ON vertices. Let ω1, . . . , ωN be bounded
independent of ε domains in R

n with Lipschitz boundaries ∂ωj ; introduce the nodal

domains ωj
ε = {x ∈ R

n :
x−Oj

ε
∈ ωj}.
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Every vertex Oj is the end of one and only one edge ek. By a rod structure we
call the following domain

Bε =
( M

⋃

j=1

B
(ej)
ε

)

⋃

( N
⋃

j=1

ωj
ε

)

.

Assume that it is a connected set and that the boundary ∂Bε of Bε is C2−smooth.
Without loss of generality, assume that

(

B(ej)
ε \

(

N
⋃

i=1

ωi
ε

))

∩
(

B(ek)
ε \

(

N
⋃

i=1

ωi
ε

))

= ∅

for j 6= k. Denote γiε = ∂Bε ∩ ∂ω
i
ε, i = N1 +1, ..., N (these values of i correspond to

the vertices), and γε =
N
⋃

i=N1+1

γiε.

Let us introduce some Sobolev spaces:

H1,0
γ,0(Bε × (0, T )) ={v ∈ L2(Bε × (0, T ))|‖u‖L2(Bε×(0,T ))

+ ‖∇u‖L2(Bε×(0,T )) < +∞, v|γε
= 0},

H1,0
γ,0(Bε × (0, T )) ={v ∈ L2(Bε × (0, T ))|‖u‖L2(Bε×(0,T ))

+ ‖∇u‖L2(Bε×(0,T )) < +∞, v|γε
= 0}.

4. Formulation of the heat equation in a rod structure

Consider the initial boundary value problem for the non-steady heat equations in
the tube structure Bε

∂uε
∂t

−∆uε = f(x, t), x ∈ Bε, t ∈ (0, T ),

∂uε
∂n

= 0, x ∈ ∂Bε\γε, t ∈ (0, T ),

uε = 0, x ∈ γε, t ∈ (0, T ),

uε(x, 0) = 0, x ∈ Bε.

(1)

The right-hand side f is a function defined on Bε × [0, T ] such that f(x, t) =

fj(x1, t), if x ∈ B
(ej)
ε , j = 1, ...,M , where fj are independent of ε CJ+4−smooth

functions and they are constant with respect to x in some neighborhood of the nodes
and vertices. The values of f in the domains ωi

ε are equal to its value in the node
or vertex Oi. We assume that fj(., t) = 0 for t ≤ τ, τ > 0.

The variational formulation of problem (1) is: find uε ∈ H1
γ,0(Bε × (0, T )) such

that for almost all t ∈ (0, T ),

∫

Bε

(∂uε
∂t

v +∇uε · ∇v
)

dx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε), (2)

uε|t=0 = 0. (3)
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This variational formulation implies:

∫

Bε×(0,T )

(∂uε
∂t

v +∇uε · ∇v
)

dxdt =

∫

Bε×(!0,T)

fvdxdt, v ∈ H1,0
γ,0(Bε × (0, T )), (4)

uε|t=0 = 0. (5)

Identity (4) will be used in Section 7.

Theorem 1. There exist a unique solution to problem (2), (3).

Proof. The proof of the theorem is based on the Galerkin method and follows the
same ideas as in [7, Chapter 4, Section 3]. Let φ1, ..., φm, ... be an orthogonal with

respect to the inner product
∫

Bε

(

∇u · ∇v
)

dx base of H1
γ,0(Bε). Consider the span

HN of N first functions of the base and consider the projection of problem (2), (3)

on this subspace. Its solution uN is saught in the form of a sum
∑N

l=1 cl(t)φl with
cl ∈ H1(0, T ), so that for the unknown functions cl satisfy the system of ordinary
differential equations with homogeneous initial conditions. Multiplying its equations
by cl and adding them up, we get an estimate for uN in the V 2 norm (‖u‖V 2 =
supt∈[0,T ] ‖u(., t)‖L2(Bε) + ‖∇u‖L2(Bε×(0,T ))). Multiplying then the equations by
dcl
dt and adding them up, we get an estimate for uN in the H1(Bε × (0, T )) norm.
Then we apply the standard argument of the weak compactness of a ball in the
Hilbert space and find that a weak limit of some subsequence is a solution of (2), (3).
The Poincaré-Friedrichs inequality holds with a constant independent of ε (see [12,
Chapter 4, Appendices]).

The uniqueness follows from identity (4) written for v = uε.

The estimates for uN still hold for the weak limit uε, so that

Theorem 2. The estimate holds

‖uε‖H1(Bε×(0,T )) ≤ CPF ‖f‖L2(Bε×(0,T )), (6)

where the constant CPF is independent of ε.

Remark 1. This estimate (6) holds in the case if the right-hand side is any function
of L2(Bε × (0, T )) free of the above regularity restrictions.Indeed, these restrictions
were not used in the proof of Theorems 1 and 2.

5. Construction of an asymptotic expansion

Let us seek the J−th approximation of an asymptotic expansion of the solution to
problem (1) in the form of a sum of functions vj defined on the graph G, multiplied
by the cut-off functions vanishing in the neighborhood of the nodes and vertices, and
the boundary layer correctors V BL

i depending on x−Oi

ε and exponentially tending

to zero as |x−Oi

ε | → ∞. Namely, consider it in the form:
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u(J)ε =
M
∑

j=1

ζ(
x
(ej)
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)vj(x

(ej)
1 , t)χj(x

(ej )
1 )

+

N
∑

i=1

V BL
i (

x−Oi

ε
, t)(1− ζ(

x −Oi

emin
)), (7)

where r is the maximal diameter of domains ωj , ζ is a smooth cut-off function
independent of ε with ζ(τ) = 0 for τ ≤ 1/3, ζ(τ) = 1 for τ ≥ 2/3, 0 ≤ ζ(τ) ≤ 1;

emin is the minimal length of the edges; χj(x
(ej)
1 ) = 1 iff x

(ej)
1 ∈ (0, |ej|), and it

is equal to zero otherwise; functions vj satisfy the heat equation on the graph G
with some Kirchhoff-type junction conditions in the nodes Oi, i = 1, ..., N1 and
the Dirichlet condition in the vertices Oi, i = N1, ..., N ; V BL

i , i = 1, ..., N , are the
boundary layer correctors. Let us specify now vj and V BL

i :

vj(x
(ej)
1 , t) =

J
∑

l=0

εlvjl(x
(ej )
1 , t), (8)

V BL
i (ξ, t) =

J
∑

l=0

εlV BL
il (ξ, t). (9)

Substituting the first term of the expansion into the equation, we get the residual
which has to be compensated by the boundary layer correctors. The result of the
substitution has the form:

M
∑

j=1

( ∂

∂t
−

( ∂

∂x
(ej)
1

)2)

{ζ(
x
(ej)
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)vj(x

(ej)
1 , t)χj(x

(ej )
1 )}

=

M
∑

j=1

((∂vj((x
(ej)
1 , t)

∂t
−
∂2vj(x

(ej)
1 , t)

∂x
(ej) 2
1

)

ζ(
x
(ej)
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)

−
2

ε

∂vj(x
(ej)
1 , t)

∂x
(ej)
1

∂

∂ξ
(ej)
1

(

ζ(
ξ
(ej)
1

3r
)ζ(

|ej | − ξ
(ej)
1

3r
)
)

−
1

ε2
vj(x

(ej )
1 , t)

∂2

∂ξ
(ej)2
1

(

ζ(
ξ
(ej)
1

3r
)ζ(

|ej | − ξ
(ej)
1

3r
)
))

|
ξ(ej)=x(ej)/ε

χj(x
(ej )
1 ). (10)

Let us note that vj are defined such that
∂vj
∂t − ∂2vj

∂x
(ej)2

1

= fj , so that the first term

of the sum is equal to

M
∑

j=1

fj(x
(ej)
1 , t))ζ(

x
(ej )
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)χj(x

(ej)
1 ).

Note that fj(x
(ej )
1 , t)) is a time dependent constant in every connected part of

supp{ζ(
x
(ej)

1

3rε )ζ(
|ej |−x

(ej)

1

3rε ) − 1}. These components are some neighborhoods of the
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extremities of the edge ej . In particular, in the emin/2-neighborhood of nodes and
vertices Oi, we have:

fj(x
(ej)
1 , t){ζ(

x
(ej )
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)− 1} = fj(0, t){ζ(

x
(ej)
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)− 1}

and

M
∑

j=1

fj(x
(ej )
1 , t)ζ(

x
(ej)
1

3rε
)ζ(

|ej | − x
(ej)
1

3rε
)χj(x

(ej)
1 )

= f(x, t) +

N
∑

i=1

f(Oi, t){
∑

j:Oi∈ej

ζ(
x
(ej )
1

3rε
)χj(x

(ej)
1 )− 1}χ(

|x−Oi|

emin
),

where χ(t) = 1 for |t| < 1
2 , χ(t) = 0 for |t| ≥ 1

2 .

Let us expand now the functions vjl and
∂vjl

∂x
(ej)

1

according to Taylor’s formula

vjl(x
(ej)
1 , t)) =vjl(0, t)) +

J−l
∑

m=1

εm
1

m!

∂mvjl

∂x
(ej)m
1

(0, t)ξ
(ej)m
1

+ εJ−l+1 1

(J − l + 1)!

∂J−l+1vjl

∂x
(ej)(J−l+1)
1

(θ, t)ξ
(ej )(J−l+1)
1

and

∂vjl

∂x
(ej)
1

(x
(ej )
1 , t) =

∂vjl

∂x
(ej)
1

(0, t) +
J−l
∑

m=1

εm
1

m!

∂m+1vjl

∂x
(ej)(m+1)
1

(0, t)ξ
(ej)m
1

+ εJ−l+1 1

(J − l + 2)!

∂J−l+2vjl

∂x
(ej)(J−l+2)
1

(θ, t)ξ
(ej)(J−l+1)
1 ,

ξ(ej) = x(ej)/ε.
Then the result of the substitution of the first sum of (7) in the emin/2-neighborhood

of nodes and vertices Oi is finally equal to

f(x, t) +
J
∑

l=0

εl−2Fil(ξ, t) +RJε(x, t), (11)

where ξ = (x−Oi)/ε,

Fil(ξ, t) =− {f(Oi, t){
M
∑

j=1

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )− 1}δl2

+ 2
∑

m+p=l−1

M
∑

j=1

( 1

m!

∂m+1vjp

∂x
(ej)(m+1)
1

(0, t)ξ
(ej)m
1

∂

∂ξ
(ej)
1

ζ(
ξ
(ej)
1

3r
)
)

ψ(ξ
(ej)
1 )

+
∑

m+p=l

M
∑

j=1

( 1

mp

∂mvjl

∂x
(ej)m
1

(0, t)ξ
(ej)m
1

∂2

∂ξ
(ej)2
1

ζ(
ξ
(ej)
1

3r
)
)

ψ(ξ
(ej)
1 )}, (12)
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where ψ(ξ
(ej)
1 ) = 1 if ξ

(ej)
1 ≥ 0, and ψ(ξ

(ej)
1 ) = 0 if ξ

(ej)
1 < 0; by convention, all

terms depending on the local variables vanish out of the cylinder Πj = {ξ
(ej)
1 ∈

(0,+∞), ξ(ej)′ ∈ σ(ej)}; RJε(x, t) is uniformly bounded by CεJ−1, where C is a

constant independent of ε, determined by the L∞-norms of derivatives
∂J−l+1vjp

∂x
(ej)(J−l+1)

1

and
∂J−l+2vjp

∂x
(ej )(J−l+2)

1

.

In order to compensate these right-hand sides, functions V BL
il satisfy the equa-

tions

−∆V BL
il = −Fil(ξ, t)−

∂V BL
i,l−2

∂t
(ξ, t), (13)

set in Ωi = ωi ∪
(

∪j:Oi∈ej Πj

)

(here the union is taken over all j such that ej

contains Oi as an end point), with the Neumann boundary condition on ∂Ωj :

−
∂

∂n
V BL
il = 0. (14)

If Oi is a vertex, then on the part ∂Ωi ∩ ∂ωi of the boundary we set condition

V BL
il = 0, (15)

while condition (14) holds only on the part ∂Ωi\∂ωi of the boundary.
Consider first the case when Oi is a node.
The existence and uniqueness of the solution to (13), (14) with exponentially

decaying at infinity gradient was studied in [10]. The solution exists iff

∫

Ωi

{Fil(ξ, t) +
∂V BL

i,l−2

∂t
(ξ, t)}dξ = 0. (16)

This condition yields:

∑

j:Oi∈ej

∂vjl−1

∂x
(ej)
1

(0, t)|σ(ej)| = gl−1(t), (17)

where

gl(t) =−
∑

j:Oi∈ej

∑

m+p=l,m 6=0

1

m!

∂m+1vjp

∂x
(ej)(m+1)
1

(0, t)

∫

Ωi

ξ
(ej)m
1

∂

∂ξ
(ej)
1

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )dξ

−
∑

j:Oi∈ej

∑

m+p=l+1,m≥2

1

m!

∂mvjp

∂x
(ej)m
1

(0, t)

∫

Ωi

ξ
(ej)m
1

∂2

∂ξ
(ej)2
1

ζ(
ξ
(ej )
1

3r
)ψ(ξ

(ej)
1 )dξ

+

∫

Ωi

∂V BL
i,l−2

∂t
(ξ, t)dξ

− f(Oi, t)

∫

Ωi

{
∑

j:Oi∈ej

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )− 1}χ(

|ξ|

emin
)dξδl1. (18)
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This solution tends to some constants depending on time as a parameter. Denote
the constant corresponding to the outlet Πj as cijl(t). It is known that the solution
of problem (13), (14) is unique up to an additive constant (function of t). So, we
determine one of these constants, say cij1l(t) = 0. Then all other constants are

uniquely defined. Edge ej1of the bundle B(i) is called below the selected edge of the
bundle.

On the other hand, it is clear that their values depend on the values of vjq(0, t)
on the right-hand side of (13) because in (12) vil(0, t) are the coefficients in the last
sum corresponding to m = 0. Notice that

Ujl(ξ, t) = −vjl(0, t)ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )

is a solution of the problem

−∆Ujl = vjl(0, t)
∂2

∂ξ
(ej)2
1

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 ), ξ ∈ Ωi,

−
∂

∂n
Ujl = 0, ∂Ωi,

and this solution evidently tends to vjl(0, t) on every outlet Πj . These constants
also depend on the values of the derivatives of vjp at (0, t) with p < l, and so these
values are known from the previous steps of induction.

Analogous problems should be solved in the infinite domains Ωi, i = N1+1, ..., N
(for vertices). These domains have only one outlet to infinity, but the boundary
conditions are mixed: (14), (15). In this case, there always exists a unique solution
with an exponentially decaying gradient, but the solution tends at infinity to some
constant cijl(t), which can be calculated as in [10].

Let us now choose the values of vjl at the nodes and vertices such that all
constants cjl(t) vanish. To this end we organize the calculus of vjl and V BL

jl by
induction in the following way.

For l = 0, first we solve the problem on the graph B

∂vj0((x
(ej )
1 , t)

∂t
−
∂2vj0(x

(ej )
1 , t)

∂x
(ej) 2
1

= fj(x
(ej)
1 , t), x

(ej)
1 ∈ (0, |ej |), t > 0,

∑

j:Oi∈ej

∂vj0

∂x
(ej)
1

(0, t)|σ(ej)| = 0,

vjl(0, t) = vj1l(0, t), j : Oi ∈ ej ,

j1 is the selected edge of Bi, i = 1, ..., N1,

vj0(0, t) = 0, i = N1 + 1, ..., N,

vj0((x
(ej)
1 , 0) = 0, (19)

and define
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V BL
i0 (ξ, t) = {1−

∑

j:Oi∈ej

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej )
1 )}vj10(0, t), i = 1, ..., N1,

V BL
i0 (ξ, t) = 0, i = N1 + 1, ..., N, (20)

where ej1 is the selected edge of the bundle. V BL
i0 defined in this way satisfies (13),

(14) (eventually (15)) and tends to zero as |ξ| → +∞.
Assume that we have constructed vjs for all s ≤ l− 1, and V BL

is (ξ, t), s ≤ l − 1.
Consider problems (13), (14) (eventually (15)) where the expressions Fjl are defined
by formulas (12) without the term corresponding to m = 0 in the last sum. If we
denote these new functions on the right-hand sides by Φjl, then

Fil = Φil −
∑

j: Oi∈ej

vjq(0, t)
∂2

∂ξ
(ej)2
1

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 ) (21)

Let us solve problems (13), (14) (eventually (15)) with Φil instead of Fil on the
right-hand side. Denote by Ṽ BL

il its solutions. Denote by c̃ijl(t) the limits of solutions

Ṽ BL
il at the outlets corresponding to Πj . Then consider the following problem in the

graph:

∂vjl((x
(ej)
1 , t)

∂t
−
∂2vjl(x

(ej )
1 , t)

∂x
(ej) 2
1

= 0, x
(ej)
1 ∈ (0, |ej|), t > 0,

∑

j:Oi∈ej

∂vjl

∂x
(ej)
1

(0, t)|σ(ej)| = gl(t),

vjl(0, t) = vj1l(0, t) + c̃ijl(t), j : Oi ∈ ej ,

j1 is the selected edge of Bi, i = 1, ..., N1,

vjl(0, t) = c̃ijl(t), i = N1 + 1, ..., N,

vjl((x
(ej )
1 , 0) = 0, (22)

and define

V BL
il (ξ, t) =Ṽ BL

il (ξ, t) + {1−
∑

j:Oi∈ej

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )}vj1l(0, t) (23)

−
∑

j:Oi∈ej , j 6=j1

ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej )
1 )c̃ijl(t), i = 1, ..., N1, (24)

and

V BL
il (ξ, t) = Ṽ BL

il (ξ, t)− ζ(
ξ
(ej)
1

3r
)ψ(ξ

(ej)
1 )c̃ijl(t), i = N1, ..., N. (25)

Note that condition (16) is satisfied because vj,l−1 satisfy (17), see (22)2.



462 G.Panasenko

Now V BL
il (ξ, t) → 0 as |ξ| → +∞.

Let us calculate the result of substitution of (7) in the operator ∂
∂t −∆. Taking

into account (10), we get

( ∂

∂t
−∆

)

u(J)ε = f(x, t) +RJε(x, t) +R
(1)
Jε (x, t), (26)

where as it was noted above

‖RJε‖L∞(Bε×(0,T )) ≤ CεJ−1,

and

R
(1)
Jε =εJ−1

N
∑

i=1

(∂V BL
i,J−1

∂t
(
x−Oi

ε
, t)(1− ζ(

x −Oi

emin
))

+ εJ
N
∑

i=1

(∂V BL
i,J

∂t
(
x−Oi

ε
, t)(1 − ζ(

x−Oi

emin
))
)

+R
(2)
Jε ,

R
(2)
Jε =

N
∑

i=1

( ∂

∂t
−∆

)(

V BL
i (

x−Oi

ε
, t)(1 − ζ(

x−Oi

emin
))
)

χ̃(
x −Oi

emin
),

where χ̃(y) = 1 if |y| ∈ [1/3, 2/3], and χ̃(y) = 0 if |y| < 1/3 or |y| > 2/3.

The support of R
(2)
Jε is situated in the middle third of every cylinder Bjε, where

functions V BL
i as well as their derivatives ∂

∂t , ∇,∇2 are exponentially small inthe
L∞−norm (see [10],[?] ).

So, for R
(2)
Jε (and hence for R

(1)
Jε as well) we get

‖R
(2)
Jε ‖L∞(Bε×(0,T )) ≤ CεJ−1,

and
‖R

(1)
Jε ‖L∞(Bε×(0,T )) ≤ CεJ−1.

Here C is a constant independent of ε.

Note that the boundary and initial conditions are satisfied by u
(J)
ε exactly.

Applying now the a priori estimate (6), we get

‖u(J)ε − uε‖H1(Bε×(0,T )) ≤ CεJ−1

and so,
‖u(J+1)

ε − uε‖H1(Bε×(0,T )) ≤ CεJ .

Comparing u
(J)
ε and u

(J+1)
ε we notice that

‖u(J+1)
ε − u(J)ε ‖H1(Bε×(0,T )) ≤ CεJ (27)

with C independent of ε. So, from the triangle inequality we get

‖u(J)ε − uε‖H2,1(Bε×(0,T )) ≤ CεJ . (28)
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Remark 2. The asymptotic expansion (7) can be slightly modified without loss of

accuracy. Namely, the argument |x−Oi|
emin

in the cutoff function ζ may be replaced

by CJ
|lnε||x−Oi|

emin
, where the constant CJ is chosen in such a way that the absolute

values of the boundary layer functions, as well as of their derivatives, are smaller
than εJ+2 in the zone where the cutoff function is different from one and zero.
Indeed, the boundary layer functions V BL

il and their derivatives decay exponentially:
there exist positive constants c1, c2 such that for |ξ| > r,

|V BL
il (ξ, t)|, |

∂V BL
il (ξ, t)

∂ξj
| ≤ c1exp(−c2|ξ|).

It follows from [10] and the ADN-ellipticity [1, 2] of the elliptic equations. The same
estimates hold for their time derivatives of order J − l + 3.

Therefore, if |x−Oi| ≥ CJε| ln ε|emin/3, then

|V BL
il (

x−Oi

ε
, t)| ≤ c1exp{−c2CJ | ln ε|emin/3} = c1ε

c2CJemin/3.

Choose CJ such that

c2CJemin/3 ≥ J + 2. (29)

Then for V BL
il and its derivatives we get the estimate c1ε

J+2. So, the difference
between

ζ(
|x −Oi|

emin
)V BL

il (
x −Oi

ε
, t)

and

ζ(
|lnε||x−Oi|

emin
)V BL

il (
x−Oi

ε
, t)

can be estimated by

|V BL
il (x−Oi

ε , t)| ≤ c1ε
J+2 in the domain

supp{ζ(
|x−Oi|

emin
)− ζ(

|lnε||x−Oi|

emin
)},

where |lnε||x−Oi|
CJemin

≥ 1/3.

In the same way we get a similar estimate for the derivatives of this difference. It

means that the change of the argument |x−Oi|
emin

by |lnε||x−Oi|
CJemin

in ζ gives an additional

residual of order εJ (the factor ε−2 appears after two derivations in x variable), and
so it does not lead to any loss of accuracy.

Denote by u
(J)
aε expansion (7) modified in such way. So,

‖u(J)aε − uε‖H1(Bε×(0,T )) ≤ CεJ . (30)
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6. Asymptotic partial decomposition of the domain for the

heat equation

In this section, we apply the method of partial asymptotic decomposition of the
domain assuming that fj are CJ+4−smooth functions.

Let us describe the algorithm of the method of asymptotic partial domain de-
composition (MAPDD) for the heat equation set in a tube structure Bε. Let δ be a
small positive number much greater than ε (it will be chosen of order ε|lnε|). For any
edge e = OiOj of the graph of the structure introduce two hyperplanes orthogonal
to this edge and crossing it at the distance δ from its ends. Denote the cross-sections

of the cylinder B
(e)
ε containing e by these two hyperplanes, bySi,j (at the distance δ

from Oi) and Sj,i (at the distance δ from Oj), respectively, and denote part of the

cylinder B
(e)
ε between these two cross-sections by Bdec,ε

ij . Denote byBε,δ
i the con-

nected truncated by cross-sections Si,j , part of Bε containing the vertex or the node

Oi. Denote by edec,δij part of the edge OiOj concluded between cross-sections Si,j

and Sj,i.

Define subspace H1
γ0(Bε × (0, T ), δ) (H1

γ0(Bε, δ)) of the space H1
γ0(Bε × (0, T ))

(i.e., H1
γ0(Bε), such that its elements have vanishing transversal derivatives ∇′

x(e) on

every truncated cylinder Bdec,ε
ij . Define

H1,0
γ0 (Bε × (0, T ), δ) = {v ∈ H1,0

γ0 (Bε × (0, T ));∇′
x(e)v = 0∀Bdec,ε

ij }.

The MAPDD replaces problem (1) by its projection on H1
γ0(Bε× (0, T ), δ) : find

uε,δ,dec ∈ H1
γ0(Bε × (0, T ), δ) such that for almost all t ∈ (0, T ),

∫

Bε

(∂uε,δ,dec
∂t

v +∇uε,δ,dec · ∇v
)

dx =

∫

Bε

fvdx, v ∈ H1
γ,0(Bε, δ), (31)

and satisfying

uε,δ,dec|t=0 = 0, (32)

which implies:

∫

Bε×(0,T )

(∂uε,δ,dec
∂t

v +∇uε,δ,dec · ∇v
)

dxdt

=

∫

Bε×(0,T )

fvdxdt, v ∈ H1,0
γ0 (Bε × (0, T ), δ), (33)

uε,δ,dec|t=0 = 0. (34)

This identity will be used in Section 7.

Theorem 3. There exists a unique solution of this partially decomposed problem.

The proof of this theorem repeats the proof of Theorem 1, where the Galerkin
base is constructed in the space H1

γ,0(Bε, δ) instead of H1
γ,0(Bε).
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Theorem 4. The estimate holds

‖uε,δ,dec‖H1(Bε×(0,T )) ≤ CPF ‖f‖L2(Bε×(0,T )), (35)

where the constant CPF is independent of ε and δ.
Indeed, such an estimate holds for the Galerkin’s approximations, and thus for

their limit.

Remark 3. This estimate (35) holds in the case if the right-hand side is any function
of L2(Bε × (0, T )) free of the above regularity restrictions (and so it can depend on
all components of x).

Theorem 5. Let δ satisfy the following inequality

δ ≥ CJ+1ε|ln(ε)|, (36)

where CJ+1 is chosen according to (29). Then function uJ+1
aε belongs to the space

H1
γ0(Bε × (0, T ), δ) and the estimate holds for the difference uJ+1

aε − uε,δ,dec:

‖u(J+1)
aε − uε,δ,dec‖H1(Bε×(0,T )) ≤ CεJ , (37)

where constant C is independent of ε.

Proof. uJ+1
aε belongs to the space H1

γ0(Bε × (0, T ), δ) by construction, see Remark

2. Moreover, uJ+1
aε satisfies equation (1)1 with the residual evaluated by CεJ in

the L∞−norm, and it satisfies the boundary and initial conditions exactly. So, the
difference uJ+1

aε − uε,δ,dec belongs to the space H1
γ0(Bε × (0, T ), δ) and satisfies the

integral identity (33) with the right-hand side f replaced by a function of order
O(εJ) in the L∞−norm. Applying the Galerkin method argument as before (see
Remark 1) in Theorems 3 and Theorem 4 we get estmate (37) for the difference
uJ+1
aε − uε,δ,dec.

Now comparing (30), (28) and (37) and applying the triangle inequality, we get

Theorem 6. Let δ satisfy the following inequality

δ ≥ CJ+1ε|ln(ε)|, (38)

where CJ+1 is chosen according to (29). Then the estimate holds for the difference
uε − uε,δ,dec:

‖uε − uε,δ,dec‖H1(Bε×(0,T )) ≤ CεJ , (39)

where constant C is independent of ε.

This estimate justifies the method of asymptotic partial decomposition of the
domain for the heat equation.

Notice that the integration by parts in the variational formulation (31) gives the
differential version of the partially decomposed problem. Namely, by denoting û the
restriction of u on the part edec,δij of the edge e we have



466 G.Panasenko

∂uε,δ,dec
∂t

−∆uε,δ,dec = f(x, t), x ∈ Bε,δ
i , i = 1, ..., N, t ∈ (0, T ),

∂ûε,δ,dec
∂t

−
∂2ûε,δ,dec

∂x
(e)2
1

= f̂(x
(e)
1 , t), x ∈ edec,δij , ∀e; t ∈ (0, T ),

∂uε,δ,dec
∂n

= 0, x ∈ (∂Bε,δ
i ∩ ∂Bε)\γε, i = 1, ..., N, t ∈ (0, T ),

uε,δ,dec = 0, x ∈ γε, t ∈ (0, T ),

uε,δ,dec(x, 0) = 0, x ∈ Bε (40)

with the junction condition at sections Sij corresponding to the value x
(e)
1 = δ for

the local variable, which are the same as in [11]:

uε,δ,dec(x, t)|x(e)
1 =δ

= ûε,δ,dec(δ, t),

1

|Sij |

∫

Sij

∂uε,δ,dec

∂x
(e)
1

dx(e)′|
x
(e)
1 =δ

=
∂ûε,δ,dec

∂x
(e)
1

(δ, t). (41)

It means that we keep the n-dimensional in space setting (40)1 for the heat

equation within small pieces Bε,δ
i , i = 1, ..., N, (their diameters are of order ε|ln(ε)|),

reduce the dimension to one and consider the heat equation (40)2 on the pieces edec,δij

of edges e and add the junction conditions (41) between the n-dimensional and one
dimensional parts. This reduction allows us to reduce the mesh 1

ε|ln(ε)| times and

keep exponential precision of the computations.
Note that conditions (41) are ”dissipative” in the following sense. Assume that

the right-hand side f vanishes for all t ∈ [t1, t2], t1 < t2. Then with v = uε,δ,dec
(33) yields:

∫

Bε

u2ε,δ,dec(x, t2)dx ≤

∫

Bε

u2ε,δ,dec(x, t1)dx.

7. General scheme of the MAPDD in the non-steady case

Consider the general scheme of the method of asymptotic partial decomposition of
the domain. Let Hε be a Hilbert space and H̃ε its subspace. Let bε be a mapping
from H̃ε ×Hε to R, such that

∀w1, w2 ∈ H̃ε, |bε(w1, w1 − w2)− bε(w2, w1 − w2)| ≥ c1ε
r‖w1 − w2‖

1+α, (42)

‖.‖ is the norm in Hε, α > 0, c1 > 0 independent of ε.
Consider the problem

- find uε ∈ H̃ε such that

bε(uε, w) = (f, w), ∀w ∈ Hε, (43)

where (f, .) is a linear bounded functional on Hε. Assume that there exists a
unique solution to this problem.



Asymptotic partial domain decomposition for non-steady problems 467

Let Hε,dec be a subspace of H̃ε.
Let uaε be an asymptotic solution such that

(i) uaε ∈ Hε,dec and

(ii) there exists ψε ∈ H∗
ε such that ‖ψε‖ ≤ c2, where c2 is independent of ε and

such that

bε(u
a
ε , w) = (f, w) + εJ(ψε, w) ∀w ∈ Hε, (44)

where J > r.

Subtracting (43) from (44) we get

bε(u
a
ε , w)− bε(uε, w) = εJ(ψε, w) ∀w ∈ Hε, (45)

i.e., for w = uaε − uε we have

c1ε
r‖uaε − uε‖

1+α ≤ εJ‖ψε‖‖u
a
ε − uε‖,

‖uaε − uε‖
α ≤

c2
c1
εJ−r,

‖uaε − uε‖ ≤
(c2
c1

)1/α

ε(J−r)/α. (46)

Let udε be a solution of aa partially decomposed problem, i.e., of the identity (43)
restricted to the subspace H̃ε,dec: find u

d
ε ∈ H̃ε,dec such that

bε(u
d
ε , w) = (f, w), ∀w ∈ Hε,dec, (47)

where Hε,dec is a subspace of Hε, and H̃ε,dec is a subspace of Hε,dec ∩ H̃ε.

As above, we assume that the subspace H̃ε,dec has a simpler structure than H̃ε.
Let us subtract this identity from (44) written for any w ∈ Hε,dec.

Then we get

bε(u
a
ε , w)− bε(u

d
ε , w) = εJ(ψε, w) ∀w ∈ Hε,dec, (48)

i.e., for w = uaε − udε we obtain as before

‖uaε − udε‖ ≤
(c2
c1

)1/α

ε(J−r)/α, (49)

Comparing estimates (44) and (47) we get:

‖uε − udε‖ ≤
(c2
c1

)1/α

ε(J−r)/α. (50)

In particular, in the previous section

Hε = H1,0
γ,0(Bε × (0, T )), H̃ε = {v ∈ H1

γ,0(Bε × (0, T )), v|t=0 = 0},



468 G.Panasenko

Hε,dec = H1,0
γ,0(Bε × (0, T ), δ), H̃ε,dec = {v ∈ H1

γ0(Bε × (0, T ), δ), v|t=0 = 0},

bε(u, v) =

∫

Bε×(0,T )

(∂uε
∂t

v +∇uε · ∇v
)

dxdt, (f, v) =

∫

Bε×(0,T )

fvdxdt,

r = 0, α = 1. So, Theorem 6 can be proved as a corollary of estimate (50).
So, the main result of the paper is the formulation and justification of the

MAPDD in the case of the non-steady heat equation set in a thin structure. It al-
lows to reduce dimension in the main part of the domain keeping the n−dimensional
”zooms” near the nodes and vertices and gluing these models of different dimension
by the special junction conditions (see problem (40), (41)). Justification of this
method is based on the construction of an asymptotic solution to problem (1) (Sec-
tion 5) and a projection of (1) on the subspace of functions independent of the
transversal space variables out of some ε|lnε|−neighborhoods of the nodes and ver-
tices. This method allows to reduce considerably the computational cost of problem
(1).
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