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Abstract. We revisit the implementation of the Krylov subspace method based on the
Hessenberg process for general linear operator equations. It is established that at each
step, the computed approximate solution by the corresponding approach can be regarded
as the minimizer of a certain norm of residual corresponding to the obtained approximate
solution of system. Test problems are numerically examined for solving tensor equations
with cosine transform product arising from image restoration to compare the performance
of Krylov subspace methods in conjunction with the Tikhonov regularization technique
based on Hessenberg and Arnoldi processes.
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1. Introduction

A multidimensional array of data is called a tensor whose modes stand for its number
of indices. Throughout this paper, vectors and matrices are respectively denoted by
lowercase and capital letters, and tensors are represented by Euler script.

For the sake of generality, we consider the following linear operator equation

F(X) =, (1)

where F(-) is a given linear operator from RI1*f2XXIN ontg RIXI2XXIN = The
tensor equation in the form (1) incorporates several class of recently mentioned
tensor equations in the literature including multilinear systems [6, 9, 19], Sylvester
matrix equation [4, 5, 7], Stein tensor equation [4] and etc. Basically, special cases
of Eq. (1) appear in numerous areas such as Markov process [8], physics [9] and
numerical discretization of (high order) partial differential equations [4, 5, 7, 19]
from engineering problems.

Based on the Arnoldi process, several variants of Krylov subspace methods have
been developed in the literature for solving systems in the form (1), see [4, 5, 9, 10]
and references therein. To be more precise, let us consider the Sylvester tensor
equation (STE) as a special case of (1) and review some of recently proposed methods
to solve STEs. To this end, first, we need to present the definitions of mode-n product
[22].
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Definition 1. The n-mode (matriz) product of a tensor X € RIv}IX-=xIN wyth g
matriz U € R7*I» is denoted by X x, U and is of size

I x oo x Loy X J X Ipyy - x Ip,
and its elements are defined as follows:

In
(X0 U)oty ygiaring = E Tiyig-wviny Wjiy -

in=1

Consider the STE as follows:

X x1 AN + X xs AP oo 4 X xy AN =D, (2)
where the right-hand side tensor D € Rt *f2xxIn and coefficient matrices A €
RInxIn (n = 1,2,...,N) are known and X € RI>*2X*IN i5 ynknown. In the

literature, several variants of the Krylov subspace methods were proposed for solving
the above STE, see [5, 7, 10, 23, 26] and the references therein. In particular,
Kressner and Tobler [23] applied Krylov subspace methods based on (extended)
Arnoldi process for the case that the right-hand side D is a tensor of low rank. For
the case that D does not necessarily have a low rank, Chen and Lu [10] developed
the generalized minimal residual (GMRES) method in tensor framework. The tensor
form of the full orthogonalization method (FOM) was presented in [6]. STEs with
dense coefficient matrices A1), A®) . ADN) can possibly arise from discretization
of three-dimensional partial differential equations by spectral methods [24, 25]. In
[26], it is observed that using the Hessenberg process instead of Arnoldi process
can lead to a computationally cheaper Krylov subspace method when the coefficient
matrices in the STE are dense.

It is known that replacing the Hessenberg process by the Arnoldi process can
lead to cost—effective Krylov subspace methods, see [18, 29]. This fact motivated
several researchers to extend Krylov subspace methods based on Hessenberg pro-
cess for solving different types of linear operator equations in the form (1). For
instance, the block Changing Minimal Residual method based on the Hessenberg
(CMRH) method was proposed in [1] to solve linear systems of the form AX = B
where A is nonsymmetric. The weighted and flexible versions of block CMRH were
also presented in [2]. Gu et al. [13] proposed a restarted Hessenberg method to
solve shifted nonsymmetric linear systems. In [14], the restarted CMRH process
was presented for solving multi-shifted linear systems with non-Hermitian coeffi-
cient matrices. Recently, a Hessenberg—type method was applied for the solution of
PageRank problems, see [15]. Brief discussions are included in Appendix A to recall
Hessenberg and Arnoldi processes associated with linear operator F(-) in the tensor
equation (1) and compare their computational costs.

The remainder of this paper is organized as follows: In Section 2, we briefly ex-
plain how the Hessenberg method is used for solving (1). The optimality property of
approximate solution obtained by the Hessenberg method is established in Section
3. Numerical experiments are reported in Section 4 to disclose comparison results
between Hessenberg and Arnoldi processes in conjunction with the Tikhonov regu-
larization technique for a class of tensor equations arising from image restoration.
We finish the paper by some concluding remarks in Section 5.
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2. An overview on the Hessenberg method

In this section, we briefly review the implementation of Hessenberg method for (1).
To do so, we need to recall the inner product between two tensors and its induced

norm. The inner product between two same size tensors X and Y in Rfr*12xxIn
is given by
I, I In
(X, 9) = E E § LirinerinYirin-in (3)
i1=liz=1  in=1

Given a tensor X € RI1*/2XXIN the induced norm from the above inner product
is defined by

I Is In
X7 =2 D D whiain
i1=112=1 in=1 o

Corresponding to the tensor X € RItxI2xxIN frontal slices or column tensors
of X have the following form:

Xeoooowy € RIOVEXXInaa o — 1 90 Ty,

(N—1)—times

see [22] for further details. When X is a tensor of order three, we also use the nota-
tion X*) to denote its k-th frontal slice.

Constructing iterative schemes based on Hessenberg process for solving (1) follows
from similar strategy used in [26] and related details are omitted here. Basically,
one can develop the Hessenberg method by constructing the basis {V1,Va, ...,V }
for the following Krylov subspace

Km(]:‘7320) :span{fRo,}"(fRo),...7.7:7”_1(330)}, (4)
using Algorithm 1 in Appendix A such that
<vi+1,9]‘>=0, for j=1,2,...,i,

in which the linearly independent tensors Y;s of order I; X I3 X - - - X Iy are available,
Ro = G — F(Xp) and the initial guess Xy € RI1>*12XXIn g given.
In what follows, we define

_ Hm
Hm o <6;7r,,hm,+1,m) ’

where the (7, j)-th entry of H,, is denoted by h;; being computed in Lines 5 and 8
of Algorithm 1.

Suppose that \~7m and gm are (IV 4+ 1)-mode tensors with column tensors V;s and
Yis for i = 1,2,...,m. The following theorem is useful to derive Krylov subspace
methods based on Hessenberg process for linear operator equations in the form (1).
The proof of theorem follows from similar strategies used in [5, 26].
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Theorem 1. Let W,, be the (N +1)-mode tensor with column tensors W := F(V;)
for 3 =1,...,m. Then the following statements hold

Wm = vm—&-l X(N+1) Hy—l—m (5)

Wm = ’\~7m ><(N-{—l) H;,E + hm+1,mz’ ><(N-l—l) Ema (6)

in which Z is an (N 4+ 1)—mode tensor with “m” column tensors 0,...,0, V41 and
E,, is an m X m matriz of the form E,, = [0,...,0, ;] where ey, is the m-th column

of the identity matriz of order m.

Let V1,Va,...,V,, be a basis for I, (F,Rp) produced via Algorithm 1. The
m-~th approximate solution X,, is determined such that

xm S xO + ]C7n(f, fRo),

which implies that

X =Xo+ Y Viyly. (7)
i=1

The following orthogonality conditions in the Hessenberg method are imposed
(R, Y:i) =0, for i=1,2,...,m, (8)
to obtain the unknown vector ¥, = (y%); yﬁg); . ;y,(fln)) where R,, = § — F(X,)
and the MATLAB notation (wy;ws; . . .; wy,) represents the vector (wy,ws, ..., wm,) .

Using Theorem 1, is not difficult to verify that y,, satisfies

Hmym = 6617 (9)

with 5 = (Ro,Y1). It can be verified that
Rm - 9 - ]:(xm) - _hm+1,myq(71m)vm+1,

see [26] for more details.

3. An optimality property of the Hessenberg method

Let F : Rlvxlax--xIn _y RIixIoxXIN he g given arbitrary invertible linear oper-
ator, i.e., F(X) = 0 implies X = 0. In this section, we show that the computed
approximate solution by the Hessenberg method at each step satisfies an optimality
property. To this end, first, we need to recall a special case of contracted tensor
product.

Definition 2. /5] The XY product between N-mode tensors X € RIv<>In-1xIn
and Y € RIv<>In—1XIn s defined as an Iy x Ix matriz whose (i,7)-th entry is

[XRN Yl = tr(X....; RN 1Y), N=34,...,

where :
x@Qy:xTy’ XERIMIQ,HERIMIQ.
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We comment that the XY product between X and Y is a reformulation of a
special case of the contracted product [11]. As pointed out in [5], it can be verified
that

XY =tr(XRNY), N=273 ..., (10)
for X,Y € RI>x2xxIn

Now we define a new inner product and its associated norm as well in order to
establish the following proposition showing that computed approximate solution by
the Hessenberg method is the minimizer of residual corresponding to the approxi-
mate solution of (1).

Definition 3. Let gk be a (N + 1)-mode tensor with frontal slices Y; for i =
1,2,...,m and € > 0 is given. For X,2 € RIt*I2XXIN e define the following
inner product

(X, 2)3, . = <9k RV+D o, G, BV+D z> +e(X,2). (11)

The corresponding tensor norm is given by ||3C||123k =Xy,

We add the following remark to the previous definition to clarify the fact that
the bilinear form (11) is an inner product.

Remark 1. Considering the equality (10), one can see that
(9 ROV 2 G VD 2) = (w,,w.)
where wy = ((Y1,X) 5 (Y2, X) ;... (Y, X)) and w. = ((41,2); (Y2,2) 5.5 (Im, Z)) -

Therefore, the bilinear form (11) is basically the summation of two inner products.
Since € > 0, it is not difficult to verify that the bilinear form (11) is indeed an inner
product.

Proposition 1. Assume that the linear operator F(-) is invertible, i.e., F(X) =0
implies X = 0. Let Xy, be the k-th approximate solution of F(X) = G obtained after
implementing Hessenberg method. Then, there exists € > 0 such that

IS = F@lg, . < |5 - FO)|,

Yk €

for 0<e<eé, (12)
for any X € Xo+Kr(F,Ro) provided that Y XNV F(Xy, fDAC) # 0. Here the frontal
slices of (N + 1)-mode tensor Yy, are given by Y1,Y2,...,Yx such that

(R, Y:) =0, for i=1,2,...k,
in which Ry, =G — F(Xy).
Proof. Let X € X, + Kr(F,Ro) and Y, RV+1) F (X — 56) # 0. It is not difficult to
verify that

|5 -7

Z = (3-F7%),5-F(0),

= <iRk +]~"(9Ck —DAC),ka+]-"(DCk —§C)>

YK€
= el 2 (R P - K)o R - D)

(13)

k€
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Notice that F(X — Xj) # 0, hence, the invertibility of F(-) implies that F(X) #
F(Xk). From (13), one can see that

|s -7

2 ~ ~ ~
‘9 = ||9Q1c||12;;,wE +2 (<‘ék RN Ry, Yp RV F (%, — 3C)>
ky€ |

2

k€

+ e (R FG - 0))) + Hf(xk - 56)’

Invoking the fact that Y, RN+ R, is a zero vector, we obtain
9 2
N

2 ‘<Rk,]-"(xk - x)>’ . (14)

Jo- o]

+ 2€ <R}c,]‘-(ka - :AX)>
) ) o
>t 4o,

If <R;€, F (X — §C)> = 0, the assertion follows from the above inequality for any € >

0. Consequently, without loss of generality, we assume that <ka,}" (Xp — 5C)> #0
and define ,
vz,

€:= - (15)
2‘<5Rk,f(xk fx)>’
In view of (14), for any e < €, we have
112 ) 12 X N
|- F@O, > IR}, +||FE =D, - 2] (Re F0 - D)
Y€ ’ Yk€
) 2
= [|Rellg, . +€ H}'(xig - fJC)H
> 1Rell§, . = IS = FOWI, .
which completes the proof. O

We end this part with the following remark on choosing e.

Remark 2. Assume that the assumptions of Proposition 1 hold. In view of (15)

and Cauchy—-Schwarz inequality, one may set

1 {IW(Z)II
. min

2 0£2eKp(F,Ro) | | Rkl

@:

| Ry #0 and W(Z) 750}

to eliminate the dependency of € on X in the statement of Proposition 1 where
W(Z) := Y RN+ F(2). In fact, the k-th approzimate solution obtained via Hes-
senberg method satisfies the optimality property (12) for any 0 < e < €.

4. An application from image processing

Developing efficient image deblurring methods is an active area of research. For
iterative methods based on the Krylov subspace, one can refer to [4, 7, 12, 26, 30,
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31, 32] and the reference therein. For example, Guo et al. [16] recently developed
a three-dimensional fractional total variation based-model for three-dimensional
image deblurring problem.

In this section, we aim to experimentally illustrate the performance of the Hes-
senberg method in the context of image deblurring. For this application, the imple-
mentation of the Hessenberg method has been already considered in [26] when Eq.
(1) is reduced to the Sylvester tensor equation. Here, we implement the method
for solving an alternative tensor equation. To this end, before presenting numerical
results, we need to review some preliminaries.

4.1. Basic concepts

To present our mentioned tensor equation in reported numerical experiments, we
need to recall the definition of *.-product from [20].

Definition 4 (*.-product). Let A € R™**" and B € R*PX". The tensor-tensor
product C = A *x. B is of size m X p X n such that

é(l) = A(Z)‘E(l)7 for 1 = 1, o, n,

where A = AxsM, B =BxsM and C = Cx3 M. The matric M = W-1C(I+2)
can be computed in MATLAB using

C =dct(eye(n)), W =diag(C(:;,1)), Z =diag(ones(n—1,1),1).
We consider the following tensor equation
Ax.X =G, (16)

where tensor A € R>*™ and the right-hand side § € R**P*™ are given and X €

Rf*PXm ig the unknown tensor. The tensor problem (16) may appear in engineering,

signal processing, image and video data processing problems, see [12, 20, 21, 27, 28].
Notice that the linear operator F(-) takes the following form

F - fopxm N REXpXm
X F(X):=Ax.X.

In the sequel, we briefly explain the strategy for exploiting tensors to reformat a
typical discrete model for image blurring; see [20] for further details. Consider the
linear system of equations

Bz =g, (17)

where B denotes the discrete blurring matrix of order n? and x is the vectorized
form of the image X. The right-hand side of the above equation contains an error e
which is called “noise”, i.e., g = g+ e where § is the unknown noise-free unavailable
right-hand side. Following the discussions in [20], one can reformulate Eq. (17) by

AxX=G,  G=G+N\, (18)
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where the image X is obtained by “reshaping” the first column of mat(X), and the
right-hand side tensor G is obtained by ten(g), see [20] for the definition of mat(-)
and ten(-). The tensor § in (18) is contaminated by a noise tensor N with normally
distributed random entries with zero mean and scaled to correspond to a specific
noise level n = ||N]||/|IS]|.

Let B=T ®T and T is a Toeplitz matrix representing a Gaussian blur. We
created T' € R™*™ in MATLAB as follows:

T= - toeplitz (z) (19)

1
V2mo?
with

z = [exp (—([0 : band — 1]%)/(207)) , zeros(1, n — band)]

where band and o are given for each of our test problems, and “toeplitz(-)” is
a command in MATLAB. To generate coefficient tensor A in (18), we set A =
T(i,1)T for i = 1,2,...,n, recalling that A® denotes the i-th frontal slice of A.

4.2. Numerical experiments

All numerical experiments were computed using MATLAB version 9.9 (R2020b) run-
ning on an Intel Core i5 CPU at 2.50 GHz with 8 GB of memory using Tensor
Toolbox [3].

The Tikhonov regularization technique consists of replacing the solution of (18)
by the following minimization problem

. 2 2
comin{[Mose 20— G117 + ul|X}

where p > 0 is the regularization parameter. In the following, we compare the perfor-
mance of Hessenberg and Arnoldi methods in conjunction with the Tikhonov regular-
ization method. The corresponding methods are respectively called by Hessenberg-
Tikhonov and Arnoldi-Tikhonov methods. For more details on the implementation
of the Hessenberg and Arnoldi methods in conjunction with the Tikhonov regular-
ization method, we refer the readers to [6, 7, 26].

In Table 1, we report the total required number of iterations and consumed CPU-
time (in seconds) under “Iter” and “CPU(s)”, respectively. For more detail, we also
disclose the relative error )

X — %
[
where §§ denotes the exact solution of the problem with error-free right-hand side
tensor § associated with G, and X, ; denotes the k-th computed approximation
determined by the algorithms. We note that the deblurred images based on com-
puted regularized solutions are obtained by reshaping the first column of mat(X,, ).
The regularization parameter py, is determined by the discrepancy principle, see [17,
Chapter 7] for more details.

The initial approximate solution in all experiments is the zero tensor and the

iterations were terminated once a maximum 60 number of iterations is reached or
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the following condition holds

Xk —X _
” pr K tr—1,k 1” <7 (20)

[Dormpt

for a user-specified value of the parameter 7 > 0.

In Tables 1 and 2, the MATLAB function PSNR denotes the peak signal-to-noise
ratio between the original and a blurred (or restored) image in decibels. The higher
the PSNR is, the better is the quality of deblurred image.

We examine the following two test problems to compare the performance of the
Hessenberg-Tikhonov and Arnoldi-Tikhonov methods to restore an image contami-
nated by blur and noise.

Example 1. We use the blur operator obtained by (19) and set 7 = 5-1072 in (20).
The results are reported for the following two cases:

Case I. band = 11 and o = 4. The exact solution is the rice image from MATLAB.

Case II. band = 16 and ¢ = 6. The exact solution is the airplane’ image.

Both gray-scale images is represented by an array of 256 x 256 pixels. The original
and blurred-noisy images are plotted in Figure 1 for further details. The blurred-
noisy image G is obtained by reshaping the first column of mat(§). The obtained
regularized solutions are shown in Figure 1 for the noise level n = 0.01.

We report the numerical results for Example 1 in Table 1. As observed, here, both
methods works well and determine suitable approximations for the exact solution for
both noise levels. Overall, using Hessenberg-Tikhonov method leads to better results
than Arnoldi-Tikhonov method in Case I. For the second case, the Hessenberg-
Tikhonov method surpasses Arnoldi-Tikhonov method for the level of noise n =
0.001. For the noise of level n = 0.01, Hessenberg-Tikhonov method provides slightly
more accurate solution than Arnoldi-Tikhonov method.

¥This image is available at http://sipi.usc.edu/database/download.php?vol=misc&img=>5.1.11
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Table 1: Comparison results for Example 1.

Case I

Noise level () Method Iter CPU(s) Err PSNR
Hessenberg-Tikhonov 6 0.6176  1.3911-10~! 23.4779

0.01 Arnoldi-Tikhonov 9 1.3402  1.8424-101 21.3066
Hessenberg-Tikhonov 8 1.0822 1.0984-10~1  25.7960

0.001 Arnoldi-Tikhonov 12 21456 1.0965-10~! 25.8106

Case 11

Noise level () Method Iter CPU(s) Err PSNR
Hessenberg-Tikhonov 12 2.1506 8.1811-1072 24.0145

0.01 Arnoldi-Tikhonov 10 15554  8.5115-10"2  23.6695
Hessenberg-Tikhonov 6 0.5611  6.8164-10~2  25.5971

0.001 Arnoldi-Tikhonov 10 1.4410  6.9903-10~2 25.3772

Original Blurred & Noisy Hessenberg-Tikhonov Arnoldi-Tikhonov

Z""\’/‘

Figure 1: Original, Noisy and restored images using the Tikhonov regularization in conjunction with the
Hessenberg and Arnoldi process.

Example 2. The exact solution of this test example is the boat® image, which is
represented by an array of 512 x 512 pixels and displayed in Figure 2. We use the
blur operator obtained by (19) with band = 3, 0 = 4. The iterations are terminated
as soon as the stopping criterion (20) is satisfied where 7 =4 - 1072,

Results for this example are reported in Table 2. Both methods work well for
both noise levels. The original, noisy and restored images are respectively plotted
in Figures 2 and 3 for further details. As seen, here, Hessenberg-Tikhonov method
consumes slightly less CPU-time (in seconds) in comparison with Arnoldi-Tikhonov

8This image is available at https://sipi.usc.edu/database/download.php?vol=misc&img=boat.512
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method. The provided approximate solutions by Hessenberg-Tikhonov are also a bit
more accurate.

Table 2: Comparison results for Example 2.

Noise level () Method Iter CPU(s) Err PSNR

Hessenberg-Tikhonov 4 5.5581 12472101 23.5330
0.01 Arnoldi-Tikhonov 56118  1.2915-10"1  23.2042

4
Hessenberg-Tikhonov 4 5.5583 1.0742-10~"  24.8391
0.001 Arnoldi-Tikhonov 4 56160 1.1840-10' 23.9633

Blurred & Noisy

Original

Figure 2: Exact image (left) and contaminated image (right).

____Arnoldi-Tikhonov

e — e St

Figure 3: Restored images using the Tikhonov regularization in conjunction with the Hessenberg and
Arnoldi process for noise of level 0.01.
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5. Conclusions

The Hessenberg method was considered to solve a general class of linear operator
equations. It was shown that at each iterate, the Hessenberg method produces
approximate solution satisfying an optimality property. The performance of the
Hessenberg method had not been previously reported in the literature for solving
the tensor equation A %, X = G. Therefore, two image restoration test problems in
the above form were taken from [20]. Numerical comparison results were reported
between the Hessenberg and Arnoldi processes in conjunction with the well-known
Tikhonov regularization technique.
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Appendix A.

In this part, we summarize the Hessenberg and Arnoldi processes. Brief discussions
are also included to compare the computational costs of these processes. In addition,
we recall the presented algorithm in [6] for finding the set of indices for which a tensor
takes its maximum value in modulus.

Notice that the well-known Arnoldi process can be regarded as a special case of
Algorithm 1 setting V; =Y, for i = 1,2,...,m. In practical implementation, in the
Hessenberg process the tensor Y; is chosen as a tensor having only one nonzero entry
being equal to one. We comment that the iterative methods based on the Hessenberg
process are applied with the pivoting strategy to avoid a possible breakdown, for
further details see [18, 29]. To this end, at each step of the Hessenberg process,
Algorithm 2 is used for finding the set of indices corresponding to the maximum
element (in modulus) of a tensor; see [26] for more details. Basically, in this case,
Algorithm 1 reduces to Algorithm 3.

We finish this part by comparing the number of required operations for the
Arnoldi process and Algorithm 3 at each step of computing the new approximation
for the solution of (1). Evidently, the differences between number of operations
in Arnlodi process and Algorithm 3 are in the requirement of using Algorithm 2,
computing the values of S and h; j for 1 =1,2,...,m+1landj =1,2,...,m. At each
step, the total number of operations of Arnoldi process is higher than Algorithm 3
due to the more expensive computational costs of h; ; in Arnoldi process. Basically,
evaluation of each h; ; corresponds to computing an inner product of the form (3).
Consequently, Lines 6 and 10 of Algorithm 3 demonstrate that each step of Arnoldi
process is more expensive than Algorithm 3. Notice that the cost of implementing
Algorithm 2 is negligible especially in the case that N <« max(Iy,Is,...,Iy).

Algorithm 1 Hessenberg process. [26]

Require: Input tensor V and scalar m > 1 as the maximum allowed dimension of
the Krylov subspace;
Ensure: The upper Hessenberg matrix H,, = [P, ] (m+1)xm and (N 4+ 1)-mode
tensor V,,, with the column tensors Vi, Vo, ..., V.
1: Set 8= (V,Y;) and V; =V/5.
2: for j=1,2,...,m do

3: W = ]:(Vj);

4. fori=1,2,...,j5do

5: hij = (i, W);

6: W=W — hm-\?i;

7. end for

8: hj+17j = <1jj+1,w>. If hj+1,j = 0, then stop;

9: Vg1 =W/hjt1;
10: end for
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Algorithm 2 Pivoting strategy for a 7—mode tensor [6, Algorithm 1]

Require: Input a tensor R € R xfax-xIr.

Ensure: Index group (i1,42,...,4:);
L [~, j] = max(|vec(R)]);
2: fori=1:(r—1) do

@

lr—iy1 = | 7= |

I1 I

£=1
T—1

4 A=j— (lr—iy1 — 1) I] Is;
=1

5: ji=4

6: end for

70, =4 — (ZQ — 1)[1,

Algorithm 3 Hessenberg_BTF process with maximum strategy. [26]

Require: Input an I7; x I X ... X I, tensor V and the restart parameter m.

Ensure: The upper Hessenberg matrix H,, = [Pl (m+1)xm and (N 4+ 1)-mode
tensor V,,, with the column tensors Vi, Vo, ..., V.
1: Determine triple (i1 0,%2,0,--.,in,0) using Algorithm 2 for the input V;

2: Set 8= Vi, giin0,inos V1 = V/B; and py,y = iy forn =1,2,..., N;
3: for j=1,...,m do
4: u Z.F(VJ),

50 fori=1,...,7 do

6: hivj = upi,lvpi,2 ----- Di N>

7 UZU—hi,jVi;

8: end for

9:  Determine triple (i1,0,42,0,---,%n,0) using Algorithm 2 for the input U,

10: 0 Set hjpr; = Wiigingeine: Vitr = Whigigs pjpin = ino for n =
1,2,...,N;

11: end for




