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1. Introduction

Let Ω = C0 ( [0, 𝑇]) represent the space of continuous functions on the interval [0, 𝑇] that vanish at zero,
equipped with the supremum norm, thus making it a Banach space. We consider the Borel𝜎-fieldF := B(Ω)
and a probability measure 𝑃 under which the canonical process defined by 𝐵𝐻

𝑡 (𝜔) = 𝜔(𝑡) is a fractional
Brownian motion (fBm) with Hurst parameter 𝐻 > 1/2. Throughout this paper, we will work in this
underlying probability space (Ω,F , 𝑃).

A fractional Brownian motion 𝐵𝐻 = {𝐵𝐻
𝑡 ; 𝑡 ∈ [0, 𝑇]} is a centered Gaussian process with covariance

function given by

𝑅𝐻 (𝑡, 𝑠) := E[𝐵𝐻
𝑡 𝐵

𝐻
𝑠 ] =

|𝑡 |2𝐻 + |𝑠 |2𝐻 − |𝑡 − 𝑠 |2𝐻
2

.

Although this process does not exhibit independent increments, its increments are stationary. This feature,
together with the Gaussianity of 𝐵𝐻 , allows us to establish the inequality

E( |𝐵𝐻
𝑡 − 𝐵𝐻

𝑠 |𝑝) ≤ 𝐶 |𝑡 − 𝑠 |𝑝𝐻 ,

which, by Kolmogorov’s continuity criterion, indicates that 𝐵𝐻 has 𝛾-Hölder continuous paths for any
𝛾 ∈ (0, 𝐻).

This paper focuses on stochastic delay differential equations (SDDEs) driven by a fractional Brownian
motion with 𝐻 > 1/2, specifically following the form introduced by Ferrante and Rovira in [4]:{

𝑋𝑡 = 𝜂0 +
∫ 𝑡

0 𝜎(𝑋𝑠−𝑟 ) 𝑑𝐵𝐻
𝑠 +

∫ 𝑡

0 𝑏(𝑋𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇],
𝑋𝑡 = 𝜂𝑡 , 𝑡 ∈ [−𝑟, 0],

(1)

where 𝜂 is a smooth function, 𝑟 > 0 is a constant delay parameter and 𝐵𝐻 is a fBm of Hurst parameter
𝐻 > 1/2. Given the regularity properties of 𝐵𝐻 for 𝐻 > 1/2, the stochastic integral in this equation can
be interpreted as a Riemann-Stieltjes integral, leveraging Young’s results in [11]. Furthermore, Zähle’s
framework for fractional calculus [12] allows us to represent this integral as a Lebesgue integral via an
integration by parts formula.

In 2002, Nualart and Rascanu established in their work [10] the existence and uniqueness of solutions
for general stochastic differential equations (SDEs) driven by a fBm with Hurst parameter 𝐻 > 1/2. Their
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proof can be easily adapted to prove the existence and uniqueness of solutions for stochastic delay differential
equations of the form (1). In 2006, Ferrante and Rovira presented in [4] an alternative approach to proving
the existence and uniqueness of solutions to equation (1). They utilized an inductive strategy that specifically
leveraged the delay property, thereby providing a different perspective from that of Nualart and Rascanu.
Additionally, Ferrante and Rovira established the existence and smoothness of the solution’s density using
methods tailored for the delayed framework. A significant advancement in understanding the law of general
SDEs was made by Nualart and Saussereau in 2009. In [8], they proved the existence of the density by
connecting Malliavin differentiability with Fréchet differentiability. Again, the proof presented for the
general framework in [8] can also be straightforwardly adapted to SDDEs. In 2012, León and Tindel proved
in [6] the smoothness of the density of solutions to SDDEs using rough path techniques, arriving at the same
conclusion as Rovira and Ferrante in [4] for 𝐻 > 1/2 using a different method.

In this paper, as a starting point we take the results of [4] and [6], which ensure that the density of
the solution to (1) is smooth, and we aim to prove that under smoothness conditions on the coefficients
this density function is strictly positive. In order to prove this, we derive a Gaussian-type lower bound for
the density of the solution to a stochastic delay differential equation combining two methods widely used
in the literature: the Nourdin and Viens method (see [7]), which is the most frequently used method for
bounding the density of solutions to stochastic differential equations with additive noise and Kohatsu-Higa’s
method (see [5]), which is widely used for bounding density functions of solutions to stochastic differential
equations where the noise is not additive but the conditional law of the solution with respect to the𝜎-algebras
generated by the noise driving the equation can be compared to a Gaussian distribution. The advantage of
delay equations lies in their structure, which provides greater flexibility when applying different methods to
bound the density of their solutions. In a general setting of stochastic differential equations (SDEs), such
flexibility is typically not available, and in some cases, it may not even be possible to find a method that
yields satisfactory results.

SDDEs of this nature are significant in various fields, including mathematical finance and biological
modeling, where delays in data and external noise—modeled as fractional noise—play a crucial role. For
instance, Arriojas et al. [1] examined financial models driven by SDDEs, while similar frameworks are
utilized in biology to account for delayed feedback influenced by noisy environments.

Our main result, stated formally in Theorem 1, provides a lower bound for the density function of the
solution to the SDDE. Specifically, we prove that under certain regularity and ellipticity conditions on 𝜎
and 𝑏, the density 𝑝𝑡 (𝑥) of the solution to equation (1) satisfies:

𝑝𝑡 (𝑥) ≥
E( |𝑋𝑡 − 𝑚𝑡 |)

𝑐1𝑡2𝐻
exp

(
−𝑐2 (𝑥 − 𝑚𝑡 )2

𝑡2𝐻

)
, (2)

for 𝑡 ∈ (0, 𝑟] and

𝑝𝑡 (𝑥) ≥
𝑐3

𝑡𝐻
exp

(
−𝑐4 (𝑥 − 𝜂0)2

𝑡2𝐻

)
, (3)

for 𝑡 ∈ (𝑟, 𝑇], where 𝑚𝑡 = E[𝑋𝑡 ]. This result implies the strict positivity of the density as an immediate
corollary.

The paper is organized as follows: Section 2 introduces the Malliavin calculus tools and techniques
used to get to the conclusion of this work. In section 3 we prove that the density function of the solution
to (1) satisfies bounds (2) and (3). In the same section, we also state the corollary that concludes the work
presented in this paper. Finally, there is an appendix containing two auxiliary results of real analysis that
are key to derive the Gaussian-type lower bound of the density 𝑝𝑡 (𝑥) of the solution to (1).

2. Preliminaries

2.1. Wiener space associated to the fractional Brownian motion
We define E as the space of step functions of the form

𝑠(𝑡) =
𝑛∑︁
𝑗=1

𝑎 𝑗1[0,𝑡 𝑗 ] (𝑡), 𝑎 𝑗 ∈ R, 𝑡 𝑗 ∈ [0, 𝑇] for all 𝑗 = 1, . . . , 𝑛
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with respect to the inner product defined by

⟨1[0,𝑡 ] , 1[0,𝑠]⟩H = 𝑅𝐻 (𝑡, 𝑠), (4)

where 𝑅𝐻 is the covariance function of the fBm. This inner product extends to E by linearity. We define H
as the closure of E with respect to the inner product (4). Moreover, for 𝜑, 𝜓 ∈ H, the inner product (4) can
be written as

⟨𝜑, 𝜓⟩H = 𝛼𝐻

∫ 𝑇

0

∫ 𝑇

0
𝜑𝑢𝜓𝑣 |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣,

where
𝛼𝐻 = 𝐻 (2𝐻 − 1).

Consider the kernel 𝐾𝐻 : [0, 𝑇]2 → R defined by

𝐾𝐻 (𝑡, 𝑠) = 𝑐𝐻 𝑠1/2−𝐻
∫ 𝑡

𝑠

(𝑢 − 𝑠)𝐻−3/2𝑢𝐻−1/2𝑑𝑢,

𝑐𝐻 =

√︄
𝐻 (2𝐻 − 1)

𝛽(2 − 2𝐻, 𝐻 − 1/2)

for 𝑡 > 𝑠 and 𝐾𝐻 (𝑡, 𝑠) = 0 in the case 𝑡 ≤ 𝑠. This kernel induces an isometry between H and 𝐿2 ( [0, 𝑇]).
Indeed, the operator 𝐾∗

𝐻
defined by

(𝐾∗
𝐻𝜑)𝑠 =

∫ 𝑇

𝑠

𝜑𝑡𝜕𝑡𝐾𝐻 (𝑠, 𝑡)𝑑𝑡

satisfies that, for every 𝜑, 𝜓 ∈ H,
⟨𝜑, 𝜓⟩H = ⟨𝐾∗

𝐻𝜑, 𝐾
∗
𝐻𝜓⟩𝐿2 .

Moreover, if 𝑊 = {𝑊𝑡 ; 𝑡 ∈ [0, 𝑇]} denotes a standard Brownian motion and we fix 𝐻 > 1/2, then the
Volterra process

𝐵𝐻
𝑡 :=

∫ 𝑡

0
𝐾𝐻 (𝑡, 𝑠)𝑑𝑊𝑠

is a fractional Brownian motion of Hurst index 𝐻. Abusing the notation, we also define 𝐵𝐻 := {𝐵𝐻 (ℎ); ℎ ∈
H} the isonormal process associated toH, that is, a centered Gaussian process indexed byH with covariance
function E[𝐵𝐻 (𝜑)𝐵𝐻 (𝜓)] = ⟨𝜑, 𝜓⟩H. Notice that the process 𝐵𝐻

𝑡 := 𝐵𝐻 (1[0,𝑡 ]) is, again, a fractional
Brownian motion of Hurst index 𝐻. We can represent 𝐵𝐻 (ℎ) as

𝐵𝐻 (ℎ) =
∫ 𝑇

0
ℎ𝑡𝑑𝐵

𝐻
𝑡 ,

where this last integral can be understood in the Young sense (see [11]).

2.2. Malliavin calculus tools
Definition 1. We define S as the space of random variables 𝐹 of the form

𝐹 = 𝑓 (𝐵𝐻 (ℎ1), . . . , 𝐵𝐻 (ℎ𝑛)),

where 𝑛 ≥ 1 and 𝑓 ∈ C∞
𝑝 (R𝑛) (i.e. 𝑓 is a real-valued smooth function and 𝑓 , together with all its partial

derivatives, has at most polynomial growth). We say that S is the space of cylindrical random variables.

We can define the Malliavin derivative in this class of random variables S.

3



Ò. Burés and C. Rovira

Definition 2. For 𝐹 ∈ S, we define 𝐷𝐹 as the H-valued random variable of the form

𝐷𝐹 =

𝑛∑︁
𝑗=1

𝜕 𝑗 𝑓 (𝐵𝐻 (ℎ1), . . . , 𝐵𝐻 (ℎ𝑛))ℎ 𝑗 .

Given ℎ ∈ H, we can also define the derivative of 𝐹 in the direction of ℎ as

𝐷ℎ𝐹 = ⟨𝐷𝐹, ℎ⟩H.

We also define the process {𝐷𝑡𝐹; 𝑡 ∈ [0, 𝑇]} as

𝐷𝑡𝐹 =

𝑛∑︁
𝑗=1

𝜕 𝑗 𝑓 (𝐵𝐻 (ℎ1), . . . , 𝐵𝐻 (ℎ𝑛))ℎ 𝑗 (𝑡).

In the same way in which we have introduced first order derivatives, we can define derivatives of order
𝑘 ≥ 2 as follows: for 𝑡1, . . . 𝑡𝑘 ∈ [0, 𝑇], we define 𝐷 (𝑘 )

𝑡1 ,...,𝑡𝑘
as the the random variable

𝐷
(𝑘 )
𝑡1 ,...,𝑡𝑘

𝐹 = 𝐷𝑡1 · · ·𝐷𝑡𝑘𝐹.

Notice that the random variable 𝐷 (𝑘 )𝐹 is therefore an H⊗𝑘-valued random variable. For every 𝑘 ≥ 1 and
𝑝 ≥ 1, the operators 𝐷 (𝑘 ) are closable from S to 𝐿 𝑝 (Ω;H⊗𝑘). We denote by D𝑘, 𝑝 the closure of S with
respect to the norm

| |𝐹 | |𝑘, 𝑝 =
©­«E[|𝐹 |𝑝] +

𝑘∑︁
𝑗=1

E[| |𝐷 ( 𝑗 )𝐹 | |𝑝H⊗ 𝑗 ]
ª®¬

1/𝑝

.

Notice thatD𝑘, 𝑝 ⊂ D𝑙, 𝑝 if 𝑙 ≤ 𝑘 andD𝑘, 𝑝 ⊂ D𝑘,𝑞 if 𝑞 ≤ 𝑝. We also define the spaceD∞ := ∩𝑘≥1∩𝑝≥1D𝑘, 𝑝 .
The same Malliavin-Sobolev spaces can be defined for an isonormal process based on a standard Brownian
motion 𝑊 . In such case, we will write D𝑘, 𝑝

𝑊
to stress the underlying isonormal process. For a random

variable 𝐹 ∈ D1,2, we define Γ𝐹 and Γ−1
𝐹

(provided | |𝐷𝐹 | |2H > 0 a.s.) as

Γ𝐹 = | |𝐷𝐹 | |2H, Γ−1
𝐹 =

(
| |𝐷𝐹 | |2H

)−1
.

In the same way in which we have introduced the Malliavin derivative in the classical Malliavin calculus
setting, we need to introduce the conditional Malliavin calculus. To this end, let F = {F𝑡 ; 𝑡 ∈ [0, 𝑇]} be the
natural filtration associated to 𝐵𝐻 . For a given 𝑡 ∈ [0, 𝑇] and a random variable 𝐹 ∈ 𝐿1 (Ω), we set

𝐸𝑡 [𝐹] = 𝐸 [𝐹 |F𝑡 ] .

As in the classical Malliavin calculus, we denote by | |𝐹 | |𝑘, 𝑝,𝑡 and Γ𝐹,𝑡 the following objects

| |𝐹 | |𝑘, 𝑝,𝑡 = ©­«𝐸𝑡 [|𝐹 |𝑝] +
𝑘∑︁
𝑗=1

𝐸𝑡 [| |𝐷 ( 𝑗 )𝐹 | |𝑝H[𝑡 ,𝑇 ]⊗ 𝑗 ]
ª®¬

1/𝑝

,

Γ𝐹,𝑡 = | |𝐷𝐹 | |2H[𝑡 ,𝑇 ] , (5)

for 𝑡 ∈ [0, 𝑇], where for 𝑠, 𝑡 ∈ [0, 𝑇] with 𝑠 ≤ 𝑡 and 𝜑 ∈ H,

| |𝜑 | |2H[𝑠,𝑡 ] =

∫ 𝑡

𝑠

∫ 𝑡

𝑠

𝜑𝑢𝜑𝑣 |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣.

We are now interested in an integration by parts formula similar to the one found in [9, Proposition 2.1.4].
For our purposes, we will use a conditional version of this formula. The result is stated in the Wiener process
𝑊 in the [0, 𝑇] framework. Since our aim is a conditional integration by parts formula for the fBm case, the
first thing we shall show in order to make sense of this result is that the Malliavin derivative with respect to
𝑊 and the Malliavin derivative with respect to 𝐵𝐻 are related in some way. The relation between these two
operators can be stated as follows:
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Proposition 1. Let D1,2
𝑊

be the Malliavin-Sobolev space associated to𝑊 . Then D1,2 = (𝐾∗
𝐻
)−1D1.2

𝑊
and for

every 𝐹 ∈ D1,2
𝑊

, we have
𝐷𝑊𝐹 = 𝐾∗

𝐻𝐷𝐹,

whenever both sides of the equality are well defined.

Proof. See [9, Proposition 5.2.1]. □

In the same way in which we have defined the objects (5) in the fractional Brownian motion case, we
can define them in the standard Brownian motion case. When working in this framework, we define:

| |𝐹 | |𝑘, 𝑝,𝑡 ,𝑊 =
©­«𝐸𝑡 [|𝐹 |𝑝] +

𝑘∑︁
𝑗=1

𝐸𝑡 [| | (𝐷𝑊 ) 𝑗𝐹 | |𝑝
𝐿2 [𝑡 ,𝑇 ]⊗ 𝑗

]ª®¬
1/𝑝

, Γ𝑊
𝐹,𝑡 = | |𝐷𝑊𝐹 | |2

𝐿2 [𝑡 ,𝑇 ] . (6)

Now that we know that there exists a relation between the derivative operators with respect to 𝑊 and 𝐵𝐻 ,
we can state the conditional integration by parts formula for 𝑊 and the result for 𝐵𝐻 will be a direct
consequence of applying Proposition 1. The result for the Wiener process 𝑊 is stated in [9, Proposition
2.1.4]. Its conditional version (see, for instance, [5] or [3]) can be formulated as follows:

Proposition 2. Fix 𝑛 ≥ 1. Suppose 𝐹 is a non-degenerate random variable; let 𝑍 ∈ D∞
𝑊

be an F𝑠-
measurable random variable such that 𝐹 + 𝑍 is a non-degenerate random variable and let 𝐺 ∈ D∞

𝑊
. We

denote by 1𝑛 := (1, . . . , 1) ∈ R𝑛. For any function 𝑔 ∈ C∞
𝑝 (R) there exists a random variable 𝐻𝑠

(1𝑛 ) (𝐹, 𝐺)
such that

𝐸𝑠 [𝑔 (𝑛) (𝐹 + 𝑍)𝐺] = 𝐸𝑠 [𝑔(𝐹 + 𝑍)𝐻𝑠
(1𝑛 ) (𝐹, 𝐺)], (7)

where 𝐻𝑠
(1𝑛 ) (𝐹, 𝐺) is defined recursively by

𝐻𝑠
(1) (𝐹, 𝐺) = 𝛿

𝑊
𝑠 (𝐺 (Γ−1

𝐹,𝑠)𝐷𝐹)

and
𝐻𝑠

(1𝑛 ) (𝐹, 𝐺) = 𝐻
𝑠
(1) (𝐹, 𝐻

𝑠

(1𝑛−1 ) (𝐹, 𝐺)).

Here, 𝛿𝑊𝑠 denotes the Skorohod integral in the interval [𝑠, 𝑇]. Moreover, for 𝑞1, 𝑞2, 𝑞3 such that 1
𝑝

=
1
𝑞1

+ 1
𝑞2

+ 1
𝑞3

, the following estimate holds:

| |𝐻𝑠
(1𝑛 ) (𝐹, 𝐺) | |𝑝,𝑠,𝑊 ≤ 𝑐 | | (Γ𝑊

𝐹,𝑠)
−1 | |𝑛2𝑛−1𝑞1 ,𝑠,𝑊

| |𝐹 | |2(𝑛+1)
𝑛+2,2𝑛𝑞2 ,𝑠,𝑊

| |𝐺 | |𝑛,𝑞3 ,𝑠,𝑊 . (8)

Some remarks can be deduced from this proposition.
Remark 1. Notice that using an approximation argument, the conclusion of Proposition 2 holds for 𝑔(𝐹+𝑍) =
1{𝐹+𝑍>𝑥} . Indeed, consider a sequence {𝑔𝑘 ; 𝑘 ≥ 1} of smooth compactly supported functions that converge
to de Dirac’s delta centered at a point 𝑥 ∈ R. Then, using the dominated convergence theorem, it is clear
that the right-hand side of (7) converges to

𝐸𝑠 [1{𝐹+𝑍>𝑥}𝐻
𝑠
(1𝑛 ) (𝐹, 𝐺)],

while, concerning the left-hand side, the limit is

𝐸𝑠 [𝑔 (𝑛) (𝐹 + 𝑍)𝐺],

where 𝑔 (𝑛) is the 𝑛-th order distributional derivative of 𝑔.
Remark 2. It is interesting to study (and will be useful in the future) how the integration by parts formula
changes with rescalings of 𝐹. More precisely, given 𝜇 ∈ R, we want to see how estimate (8) changes when
we consider 𝜇𝐹 instead of 𝐹. We will prove by using induction on 𝑛 that

𝐻𝑠
(1𝑛 ) (𝜇𝐹, 𝐺) =

1
𝜇𝑛
𝐻𝑠

(1𝑛 ) (𝐹, 𝐺).
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First, we cover the case 𝑛 = 1. Observe that

(Γ𝑊
𝜇𝐹,𝑠)

−1 = ( | |𝜇𝐷𝑊𝐹 | |2
𝐿2 [𝑠,𝑇 ])

−1 = 𝜇−2 (Γ𝑊
𝐹,𝑠)

−1

and obviously 𝐷𝑊𝜇𝐹 = 𝜇𝐷𝑊𝐹. Then using the linearity of 𝛿𝑊𝑠 we have

𝐻𝑠
(1) (𝜇𝐹, 𝐺) =

1
𝜇
𝐻𝑠

(1) (𝐹, 𝐺).

Observe also that 𝐻𝑠
(1) (𝐹, 𝜇𝐺) = 𝜇𝐻𝑠

(1) (𝐹, 𝐺). Assume that it holds for 𝑛 − 1. For 𝑛 we have

𝐻𝑠
(1𝑛 ) (𝜇𝐹, 𝐺) =𝐻(1) (𝜇𝐹, 𝐻𝑠

(1𝑛−1 ) (𝜇𝐹, 𝐺))

=
1
𝜇
𝐻(1)

(
𝐹,

1
𝜇𝑛−1𝐻

𝑠

(1𝑛−1 ) (𝐹, 𝐺)
)

=
1
𝜇𝑛
𝐻(1)

(
𝐹, 𝐻𝑠

(1𝑛−1 ) (𝐹, 𝐺)
)

=
1
𝜇𝑛
𝐻𝑠

(1𝑛 ) (𝐹, 𝐺).

This proves the desired scaling property of 𝐻𝑠
(1𝑛 ) .

Notice that from the relation given by Proposition 1, the formula still holds for the Malliavin spaces
associated to the fractional Brownian motion with the change of the underlying Hilbert space and shifting
the random variables via 𝐾∗

𝐻
. Hence, Proposition 2 also holds in the fractional Brownian motion framework.

3. Lower bound for the density

The objective of this section is to give a proof of the lower bound of the density of 𝑋𝑡 . The main result
concerning this bound is encapsulated in the following theorem:

Theorem 1. Let 𝑋𝑡 be the solution to equation (1) with 𝜎, 𝑏 ∈ C∞
𝑏
(R), 𝜂 ∈ C∞

𝑏
((−𝑟, 0)) (i.e. 𝜎, 𝑏 and 𝜂 are

real-valued smooth functions and these functions are, together with all their partial derivatives, bounded),
and moreover, there exist two constants 0 < 𝜆 < Λ such that

𝜆 ≤ inf
𝑥∈R

𝜎(𝑥) ≤ sup
𝑥∈R

𝜎(𝑥) ≤ Λ.

Then, for every 𝑡 ∈ (0, 𝑇], the density function 𝑝𝑡 (𝑥) of 𝑋𝑡 satisfies

𝑝𝑡 (𝑥) ≥
E( |𝑋𝑡 − 𝑚𝑡 |)

𝑐1𝑡2𝐻
exp

(
−𝑐2 (𝑥 − 𝑚𝑡 )2

𝑡2𝐻

)
(9)

if 𝑡 ∈ (0, 𝑟], and

𝑝𝑡 (𝑥) ≥
𝑐3

𝑡𝐻
exp

(
−𝑐4 (𝑥 − 𝜂0)2

𝑡2𝐻

)
(10)

if 𝑡 ∈ (𝑟, 𝑇] for every 𝑥 ∈ R, where 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0 are real constants and 𝑚𝑡 = E[𝑋𝑡 ].

Remark 3. Notice that since 𝜎 and 𝑏 are assumed to be bounded, then one can show that 𝑚𝑡 = E[𝑋𝑡 ] < ∞
using direct estimates.
Remark 4. The result is stated for one-dimensional stochastic delay differential equations. The generalization
to the multidimensional case is straightforward (see, for instance, [3] for an example of a multidimensional
case).
Remark 5. Notice that this result is highly dependent on the fact that the delay 𝑟 > 0 is constant. For another
types of delay, another strategy has to be considered in order to prove the lower bound for the density.
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Remark 6. The derivation of bound (9) relies heavily on the restriction 𝑡 ∈ (0, 𝑟] and the proof of (10) is
simplified by assuming 𝑡 > 𝑟. Nevertheless, the method used for (10) can in fact be extended to all 𝑡 > 0
(see [3] and [5] for some applications of the method in this scenario), thereby providing results valid on the
whole interval (0, 𝑇]. Consequently, for the region 𝑡 ∈ (0, 𝑟], one can obtain two different bounds: the one
specific to this interval, as in (9), and the one arising from the extension of the second method.

Throughout the section, we will provide the auxiliary results needed to prove Theorem 1. As mentioned,
in order to prove this result, we will make a distinction in the cases (0, 𝑟] and (𝑟, 𝑇]. For the case (0, 𝑟], we
will make use of the techniques developed in [7], as it is the most comfortable method to study the density
of the solution 𝑋𝑡 when 𝑡 ∈ (0, 𝑟] because of the structure of the equation in this interval of time.

3.1. The case 𝑡 ∈ (0, 𝑟]
3.1.1. A general bounding technique

In order to illustrate how to obtain a bound for the density in this case, we will briefly recall the method
developed by Nourdin and Viens in [7]. The bound relies on the following results:

Theorem 2. Let 𝐹 ∈ D1,2 with zero mean, let 𝑔𝐹 (𝑥) be the function defined as

𝑔𝐹 (𝑥) = 𝐸
[
⟨𝐷𝐹,−𝐷𝐿−1𝐹⟩H |𝐹 = 𝑥

]
,

where 𝐿 denotes the Ornstein-Uhlenbeck operator associated to 𝐵𝐻 (see [9, Section 1.4] for a full discussion
about the operator 𝐿). The law of 𝐹 has a density 𝑝𝐹 (𝑥) if and only if the random variable 𝑔𝐹 (𝐹) is strictly
positive almost surely. In this case, the support of 𝑝𝐹 , 𝑠𝑢𝑝𝑝(𝑝𝐹), is a closed interval of R of the form [𝐴, 𝐵]
with −∞ ≤ 𝐴 < 𝐵 ≤ ∞ containing zero and, for almost 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝑝𝐹),

𝑝𝐹 (𝑥) =
E[|𝐹 |]
2𝑔𝐹 (𝑥)

exp
(
−

∫ 𝑥

0

𝑧

𝑔𝐹 (𝑧)
𝑑𝑧

)
.

This result has the following consequence.

Corollary 1. If there exist 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 > 0 such that

𝜎2
𝑚𝑖𝑛 ≤ 𝑔𝐹 (𝐹) ≤ 𝜎2

𝑚𝑎𝑥 ,

then 𝐹 has density function satisfying

E[|𝐹 |]
2𝜎2

𝑚𝑎𝑥

exp

(
− 𝑥2

2𝜎2
𝑚𝑖𝑛

)
≤ 𝑝𝐹 (𝑥) ≤

E[|𝐹 |]
2𝜎2

𝑚𝑖𝑛

exp
(
− 𝑥2

2𝜎2
𝑚𝑎𝑥

)
.

Even though this result gives us the lower and the upper bound, it is not clear from the definition of 𝑔𝐹
how to analyze this function. Indeed, we have to keep in mind that in our case, 𝐹 will be related to the
solution of an SDDE, so computing 𝐷𝐿−1𝐹 seems, a priori, a difficult task. Concerning our case, let 𝐵𝐻

be a fractional Brownian motion with Hurst parameter 𝐻 > 1/2. As an abuse of notation, we will denote by
𝐵𝐻 the isonormal process asociated to H. In [7], the authors obtain a formula for 𝑔𝐹 (𝑥) which avoids the
computation of −𝐷𝐿−1𝐹. The result from [7] concerning the computation of 𝑔𝐹 is the following.

Proposition 3. Assume 𝐷𝐹 = Φ𝐹 (𝐵𝐻 ) for a measurable function Φ𝐹 : RH → H. Then, we have

⟨𝐷𝐹,−𝐷𝐿−1𝐹⟩H =

∫ ∞

0
𝑒−𝜃 ⟨Φ𝐹 (𝐵𝐻 ),E′

(
Φ𝐹 (𝑒−𝜃𝐵𝐻 +

√︁
1 − 𝑒−2𝜃𝐵𝐻′ )

)
⟩H𝑑𝜃

and, therefore,

𝑔𝐹 (𝐹) =
∫ ∞

0
𝑒−𝜃E

(
⟨Φ𝐹 (𝐵𝐻 ),Φ𝐹 (𝑒−𝜃𝐵𝐻 +

√︁
1 − 𝑒−2𝜃𝐵𝐻′ )⟩H |𝐹

)
𝑑𝜃,

where 𝐵𝐻′ stands for an independent copy of 𝐵𝐻 such that 𝐵𝐻 and 𝐵𝐻′ are defined in the probability space
(Ω ×Ω′,F ⊗ F ′, 𝑃 × 𝑃′), E′ denotes the expectation with respect to 𝑃′ and E denotes the expectation with
respect to 𝑃 × 𝑃′.
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We will rely heavily on this way of computing 𝑔𝐹 in order to prove the following bounds for 𝑡 ∈ (0, 𝑟]:

Proposition 4. Let 𝑋 be the solution (1) with 𝜎, 𝑏 satisfying the hypothesis of Theorem 1. If 𝜎 is (𝜆,Λ)-
elliptic, then for every 𝑡 ∈ (0, 𝑟], there exist constants 𝑐1 < 𝑐2 such that the density 𝑝𝑡 (𝑥) of 𝑋𝑡 satisfies:

𝑐1E[|𝑋𝑡 − 𝑚𝑡 |]
2Λ2𝑡2𝐻

exp
(
− (𝑥 − 𝑚𝑡 )2

2𝜆2𝑡2𝐻

)
≤𝑝𝑡 (𝑥)

≤𝑐2E[|𝑋𝑡 − 𝑚𝑡 |]
2𝜆2𝑡2𝐻

exp
(
− (𝑥 − 𝑚𝑡 )2

2Λ2𝑡2𝐻

)
,

where 𝑚𝑡 = E[𝑋𝑡 ].

Proof. We will apply Corollary 1. Notice that for 𝑡 ∈ (0, 𝑟], 𝑋𝑡 solves the equation

𝑋𝑡 = 𝜂0 +
∫ 𝑡

0
𝜎(𝜂(𝑠 − 𝑟))𝑑𝐵𝐻

𝑠 +
∫ 𝑡

0
𝑏(𝑋𝑠)𝑑𝑠.

Hence, the Malliavin derivative of 𝑋𝑡 in the direction 𝑠 < 𝑡 satisfies the following equation:

𝐷𝑠𝑋𝑡 = 𝜎(𝜂(𝑠 − 𝑟)) +
∫ 𝑡

0
𝜎′ (𝜂(𝑢 − 𝑟))𝐷𝑠𝜂(𝑢 − 𝑟)𝑑𝐵𝐻

𝑢 +
∫ 𝑡

0
𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢.

Since 𝜂 is deterministic, 𝐷𝑠𝜂(𝑢 − 𝑟) = 0, so the equation satisfied by 𝐷𝑠𝑋𝑡 is reduced to

𝐷𝑠𝑋𝑡 = 𝜎(𝜂(𝑠 − 𝑟)) +
∫ 𝑡

0
𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢.

This is an ODE with initial condition 𝜎(𝜂(𝑠 − 𝑟)), so the explicit solution to this equation is

𝐷𝑠𝑋𝑡 = 𝜎(𝜂(𝑠 − 𝑟)) exp
(∫ 𝑡

𝑠

𝑏′ (𝑋𝑢)𝑑𝑢
)
.

Moreover, from the fact that |𝑏′ (𝑋𝑢) | ≤ | |𝑏′ | |∞ and the ellipticity condition on 𝜎 we deduce that there exists
𝑀 > 0 such that

𝜆𝑒−𝑀𝑟 ≤ 𝐷𝑠𝑋𝑡 ≤ Λ𝑒𝑀𝑟 . (11)
The important conclusion of this bound is that (11) holds uniformly with respect to 𝜔 ∈ Ω. Notice that
one has that 𝑋𝑡 ∈ D1,2, but Theorem 2 (and its reformulation in Proposition 3) works for centered random
variables. Hence, in order to apply the bounding technique, we will prove the result for the centered random
variable 𝐹 = 𝑋𝑡 − E(𝑋𝑡 ) and we will deduce from there the result for 𝑋𝑡 . Since E(𝑋𝑡 ) is a real number,
𝐷𝐹 = 𝐷𝑋𝑡 . Moreover, recall that if 𝜑, 𝜓 ∈ H, then

⟨𝜑, 𝜓⟩H =

∫ 𝑇

0

∫ 𝑇

0
𝜑𝑢𝜓𝑣 |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣.

Hence, if we define 𝐹 𝜃 := 𝐹 (𝑒−𝜃𝜔 +
√

1 − 𝑒−2𝜃𝜔′), we can write 𝑔𝐹 as

𝑔𝐹 (𝐹) =
∫ ∞

0
𝑒−𝜃E

[
E′

(∫ 𝑡

0

∫ 𝑡

0
𝐷𝑢𝑋𝑡 (𝐷𝑣𝑋𝑡 ) 𝜃 |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 |𝐹

)]
𝑑𝜃.

Indeed, since we are working under the canonical space of the fractional Brownian motion, one has that

Φ𝐹 (𝑒−𝜃𝐵𝐻 (𝜔) +
√︁

1 − 𝑒−2𝜃𝐵𝐻′ (𝜔′)) = Φ𝐹 (𝑒−𝜃𝜔 +
√︁

1 − 𝑒−2𝜃𝜔′).

Hence, if 𝐷𝐹 (𝜔) = Φ𝐹 (𝜔), then

Φ𝐹 (𝑒−𝜃𝜔 +
√︁

1 − 𝑒−2𝜃𝜔′) = 𝐷𝐹 (𝑒−𝜃𝜔 +
√︁

1 − 𝑒−2𝜃𝜔′) =: 𝐷𝐹 𝜃 (𝜔, 𝜔′).

Using the bounds (11) we can easily find that there exist 𝑐1, 𝑐2 > 0 such that

𝑐1𝜆
2𝑡2𝐻 ≤ 𝑔𝐹 (𝐹) ≤ 𝑐2Λ

2𝑡2𝐻 ,

which finishes the proof. □
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Notice that renaming the constants, we derive bound (9). Some comments about this method are that,
as the reader can observe, it is extremely comfortable to study stochastic differential equations driven by an
additive noise and, under a suitable hypothesis on 𝜎, the same arguments work for equations of type (1) for
𝑡 ∈ (0, 𝑟]. The fact that for 𝑡 > 𝑟 the diffusion coefficient is random makes it impossible to keep applying
this same method.

3.2. The case 𝑡 > 𝑟
As mentioned, a natural approach to address the case 𝑡 > 𝑟 is continuing with the same approach as in the
case 𝑡 ∈ (0, 𝑟]. However, one can see that this method turns out to be difficult to apply. Indeed, consider
now 𝑡 > 𝑟. Then, the Malliavin derivative of 𝑋𝑡 in the direction 𝑠 < 𝑟 < 𝑡 is now

𝐷𝑠𝑋𝑡 =𝜎(𝑋𝑠−𝑟 ) +
∫ 𝑡

𝑠+𝑟
𝜎′ (𝑋𝑢−𝑟 )𝐷𝑠𝑋𝑢−𝑟𝑑𝐵

𝐻
𝑢 +

∫ 𝑡

𝑠

𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢

=𝜎(𝜂𝑠−𝑟 ) +
∫ 𝑡

𝑠+𝑟
𝜎′ (𝑋𝑢−𝑟 )𝐷𝑠𝑋𝑢−𝑟𝑑𝐵

𝐻
𝑢 +

∫ 𝑡

𝑠

𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢.

Observe now that the integral with respect to 𝐵𝐻 does not vanish, as it did in the case 𝑡 ∈ [0, 𝑟]. Hence
𝐷𝑠𝑋𝑡 is now the solution to a stochastic differential equation driven by a fractional Brownian motion, so we
can not expect 𝐷𝑠𝑋𝑡 to have upper and lower bounds which hold uniformly in 𝜔 ∈ Ω. This does not imply
that the procedure inferred from the results in [7] can not be applied in a smart way to obtain bounds for the
density of 𝑋𝑡 , but we decided to apply the methodology from [5] which turns out to be more natural and
efficient in the case where we have a constant delay 𝑟 > 0.

The strategy found in [5] has been utilized in several contexts for proving lower bounds for the density of
solution to stochastic differential equations. For instance, an application of the method to general equations
driven by a fractional Brownian motion with 𝐻 > 1/2 can be found in [3].

One big difference between our adaptation to the delay case of the method presented in [5] and the one
used for the case 𝑡 ∈ (0, 𝑟] based on the results in [7] is that the latter method also produces l an upper bound
for 𝑝𝑡 (𝑥). The method that we will use will only give us a lower bound, but it can be complemented by an
upper bound using similar arguments as in [2], adapting them properly to the delay scenario.

In general, proving Gaussian type lower bounds for density functions of the solutions to stochastic
differential equations is generally a long and technically demanding task. One of the main objectives of this
work is to illustrate how the delays are actually helpful in order to get simpler proofs.

The first step to work with this method is to represent the density function 𝑝𝑡 (𝑥) as E[𝛿𝑥 (𝑋𝑡 )]. To do
so, we rely on the following result.

Theorem 3. Under the hypothesis of Theorem 1, the unique solution to (1) is a non-degenerate random
variable in the sense of Malliavin for all 𝑡 ∈ (0, 𝑇], that is,

(i) 𝑋𝑡 ∈ D∞.

(ii) Γ−1
𝑋𝑡
> 0 almost surely, and Γ−1

𝑋𝑡
∈ ⋂

𝑝≥1 𝐿
𝑝 (Ω).

Moreover, the density 𝑝𝑡 (𝑥) of 𝑋𝑡 admits the representation 𝑝𝑡 (𝑥) = E[𝛿𝑥 (𝑋𝑡 )], where 𝛿𝑥 denotes Dirac’s
delta measure at 𝑥.

Proof. Items (𝑖) and (𝑖𝑖) are proved in [4]. Hence, by the same argument as in [5], we obtain that the density
𝑝𝑡 (𝑥) of 𝑋𝑡 can be expressed as

𝑝𝑡 (𝑥) = E[𝛿𝑥 (𝑋𝑡 )],

as desired. □

In order to analyze 𝑝𝑡 (𝑥) = E[𝛿𝑥 (𝑋𝑡 )], we will construct an approximating sequence {𝐹𝑛; 0 ≤ 𝑛 ≤ 𝑁}
such that 𝐹𝑁 = 𝑋𝑡 , and we will evaluate 𝑝𝑡 (𝑥) via evaluating the conditional densities of every 𝐹𝑛. Notice
that this method considers 𝑁 as large as needed but fixed. The value of 𝑁 will be chosen appropriately
later on, since several constraints on 𝑁 will need to be simultaneously satisfied. By construction, analyzing
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𝑝𝑡 (𝑥) is equivalent to analyzing E[𝛿𝑥 (𝐹𝑁 )] thanks to the representation given by Theorem 3. In order to
construct such an approximating sequence, we will construct a partition 𝜋 = {0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑡}
such that |𝑡𝑛 − 𝑡𝑛−1 | < 𝜀 for a small enough 𝜀 > 0 that will be chosen conveniently in the future. Then, 𝐹𝑛
will be an F𝑡𝑛 -measurable random variable. In order to exploit the property of the delay, we will consider
𝐹𝑛 of the form

𝐹𝑛 = 𝐹𝑛−1 + 𝐼𝑛 + 𝑅𝑛,

where 𝐼𝑛 is a stochastic integral of a predictable process and 𝑅𝑛 is the remainder term. In the case of a
general stochastic differential equation, the choice of 𝐼𝑛 is not direct. In fact, choosing 𝐼𝑛 as the integral
of a predictable process makes the term 𝑅𝑛 difficult to study. Thanks to the delays, our choice of 𝐼𝑛 is
straightforward and natural. We therefore define

𝐹𝑛−1 = 𝜂0 +
∫ 𝑡𝑛−1

0
𝜎(𝑋𝑠−𝑟 )𝑑𝐵𝐻

𝑠 +
∫ 𝑡𝑛−1

0
𝑏(𝑋𝑠)𝑑𝑠,

𝐼𝑛 =

∫ 𝑡𝑛

𝑡𝑛−1

𝜎(𝑋𝑠−𝑟 )𝑑𝐵𝐻
𝑠 ,

and
𝑅𝑛 =

∫ 𝑡𝑛

𝑡𝑛−1

𝑏(𝑋𝑠)𝑑𝑠.

This allows us to write
𝑝𝑡 (𝑥) = E[𝛿𝑥 (𝐹𝑁 )] = E[𝛿𝑥 (𝐹𝑁−1 + 𝐼𝑁 + 𝑅𝑁 )],

which, by the properties of the conditional expectation, can also be written as

𝑝𝑡 (𝑥) = E[𝐸𝑡𝑁−1 (𝛿𝑥 (𝐹𝑁−1 + 𝐼𝑁 + 𝑅𝑁 ))] .

Therefore, in order to get information about 𝑝𝑡 (𝑥) we first need to get as much information as we can about
𝐸𝑡𝑁−1 [𝛿𝑥 (𝐹𝑁−1 + 𝐼𝑁 + 𝑅𝑁 )]. Using a Taylor expansion, this term can be written as

𝐸𝑡𝑁−1 [𝛿𝑥 (𝐹𝑁−1 + 𝐼𝑁 + 𝑅𝑁 )] =𝐸𝑡𝑁−1 [𝛿𝑥 (𝐹𝑁−1 + 𝐼𝑁 )]

+ 𝐸𝑡𝑁−1

[∫ 1

0
𝛿′𝑥 (𝐹𝑁−1 + 𝐼𝑁 + 𝜌𝑅𝑁 )𝑅𝑁 𝑑𝜌

]
,

where the derivative in the third term has to be understood as the second order derivative in the distributional
sense of 1{𝐹𝑁−1+𝐼𝑁+𝜌𝑅𝑁>𝑥} . Inspired by this decomposition, we write for all 1 ≤ 𝑛 ≤ 𝑁 ,

𝐽1,𝑛 = 𝐸𝑡𝑛−1 [𝛿𝑥 (𝐹𝑛−1 + 𝐼𝑛)], 𝐽2,𝑛 = 𝐸𝑡𝑛−1

[∫ 1

0
𝛿′𝑥 (𝐹𝑛−1 + 𝐼𝑛 + 𝜌𝑅𝑛)𝑅𝑛𝑑𝜌

]
. (12)

So, a first (and natural) lower bound is

𝐸𝑡𝑛−1 [𝛿𝑥 (𝐹𝑛−1 + 𝐼𝑛 + 𝑅𝑛)] = 𝐽1,𝑛 + 𝐽2,𝑛 ≥ 𝐽1.𝑛 − |𝐽2,𝑛 |.

The following sections are devoted to the derivation of a lower bound for 𝐽1,𝑛 and an upper bound for |𝐽2,𝑛 |.
From now on, we will use 𝐶, 𝑐 as constants that may depend on 𝜎,𝑏, 𝑇 , 𝐻, 𝑟 or the exponents appearing in
the integration by parts estimate (8). However, these constants are independent of 𝑁 and 𝑡, so we will not
track their precise dependencies as it not relevant to the proof of the Gaussian lower bound. It is important
to note, nonetheless, that the dependency on 𝑟 prevents us from obtaining a similar lower bound for the
density of general stochastic differential equations driven by a fBm with 𝐻 > 1/2.

3.2.1. Lower bound for 𝐽1,𝑛

The first constraint we will impose on the constant 𝑁 to make the lower bound possible is that 𝑁 is large
enough so that

𝛼𝐻

𝑡2𝐻

𝑁
< 𝑟2𝐻 .

The key to give a lower bound for 𝐽1,𝑛 is the following result:

10
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Proposition 5. Assume there exist two real constants 0 < 𝜆 < Λ such that 𝜆 ≤ inf𝑥∈R 𝜎(𝑥) ≤ sup𝑥∈R 𝜎(𝑥) ≤
Λ. Let 𝐽1,𝑛 be defined as in (12). Then, if the partition 𝜋 is such that |𝑡𝑛 − 𝑡𝑛−1 |2𝐻 = 𝜎2

𝑁
:= 𝛼𝐻

𝑡2𝐻

𝑁
, then

𝐽1,𝑛 ≥ 1√︃
2𝜋Λ2𝜎2

𝑁

exp

(
− (𝑥 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
.

Proof. Notice that the term 𝐽1,𝑛 is the conditional density of 𝐹𝑛−1 + 𝐼𝑛 with respect to F𝑡𝑛 . Hence, in order
to get a lower bound for 𝐽1,𝑛, we need to find and bound this conditional density.

On the one hand, 𝐹𝑛−1 isF𝑡𝑛−1 -measurable, so it behaves like a constant when we condition it with respect
to F𝑡𝑛−1 . From the fact that 𝑡𝑛 − 𝑡𝑛−1 < 𝑟, we have that 𝜎(𝑋𝑠−𝑟 ) is F𝑡𝑛−1 measurable for all 𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛]
and therefore, the law of 𝐹𝑛−1 + 𝐼𝑛, when conditioned to F𝑡𝑛−1 , follows a Gaussian distribution with mean
𝐹𝑛−1 and variance | |𝜎(𝑋·−𝑟 ) | |2H[𝑡𝑛−1 ,𝑡𝑛 ] . Moreover, from the ellipticity condition on 𝜎 and the definition of
𝜎2
𝑁

we readily find that
𝜆2𝜎2

𝑁 ≤ ||𝜎(𝑋·−𝑟 ) | |2H[𝑡𝑛−1 ,𝑡𝑛 ] ≤ Λ2𝜎2
𝑁 .

This allows us to conclude that

𝐽1,𝑛 ≥ 1√︃
2𝜋Λ2𝜎2

𝑁

exp

(
− (𝑥 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
,

as claimed. □

Remark 7. It remains to check the fact that such a partition defined as in Proposition 5 exists. However,
proving that there exists a unique partition 𝜋 = {0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑡} of the interval [0, 𝑡] with the
property that |𝑡𝑛 − 𝑡𝑛−1 |2𝐻 = 𝜎2

𝑁
:= 𝛼𝐻

𝑡2𝐻

𝑁
is direct.

Observe that the proof of Proposition 5 holds true under the assumption of the existence of such a
partition 𝜋, which is equivalent to assuming that 𝑁 can be chosen arbitrarily large. In the upcoming sections
we will see that the constraints on 𝑁 allow us to choose this parameter as large as desired.

3.2.2. Upper bound for |𝐽2,𝑛 |

The result concerning the bound for |𝐽2,𝑛 | as follows.

Proposition 6. Let 𝐽2,𝑛 be defined as in (12). If the partition 𝜋 is the same as in Proposition 5, there exist
two constants 𝐶, 𝛾 > 0 such that

|𝐽2,𝑛 | ≤ 𝐶
𝑁−𝛾

𝜎𝑁

. (13)

The proof of this proposition is not immediate. In order to conclude (13), we need to derive a first
estimate using the integration by parts formula and then we will bound each of the terms involved using
some technical lemmas. First, recall that

𝐽2,𝑛 = 𝐸𝑡𝑛−1

[∫ 1

0
𝛿′𝑥 (𝐹𝑛−1 + 𝐼𝑛 + 𝜌𝑅𝑛)𝑅𝑛𝑑𝜌

]
.

We introduce a new random variable𝑈𝜌
𝑛 defined by

𝜎𝑁𝑈
𝜌
𝑛 = 𝐼𝑛 + 𝜌𝑅𝑛.

With this random variable, 𝐽2,𝑛 can now be written as

𝐽2,𝑛 = 𝐸𝑡𝑛−1

[∫ 1

0
𝛿′𝑥 (𝐹𝑛−1 + 𝜎𝑁𝑈

𝜌
𝑛 )𝑅𝑛𝑑𝜌

]
.

11
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Using Fubini’s theorem, we can rewrite 𝐽2,𝑛 as

𝐽2,𝑛 =

∫ 1

0
𝐸𝑡𝑛−1

[
𝛿′𝑥 (𝐹𝑛−1 + 𝜎𝑁𝑈

𝜌
𝑛 )𝑅𝑛

]
𝑑𝜌.

Integration by parts formula (7) for second order derivatives and Remark 1 now yields

𝐽2,𝑛 =

∫ 1

0
𝐸𝑡𝑛−1

[
1{𝐼𝑛+𝜌𝑅𝑛>𝑥−𝐹𝑛−1 }𝐻

𝑡𝑛−1
(12 ) (𝜎𝑁𝑈

𝜌
𝑛 , 𝑅𝑛)

]
𝑑𝜌.

Then, using Remark 2, this last expression can be expressed as

𝐽2,𝑛 = 𝜎−2
𝑁

∫ 1

0
𝐸𝑡𝑛−1

[
1{𝐼𝑛+𝜌𝑅𝑛>𝑥−𝐹𝑛−1 }𝐻

𝑡𝑛−1
(12 ) (𝑈

𝜌
𝑛 , 𝑅𝑛)

]
𝑑𝜌.

Now, from the fact that 1{𝐼𝑛+𝜌𝑅𝑛>𝑥−𝐹𝑛−1 } ≤ 1, Hölder’s inequality and the estimate (8), 𝐽2,𝑛 is bounded in
the following way:

|𝐽2,𝑛 | ≤ 𝑐𝜎−2
𝑁 𝐴1

∫ 1

0
𝐴2 (𝜌)𝐴3 (𝜌)𝑑𝜌,

where
𝐴1 = | |𝑅𝑛 | |𝑘1 , 𝑝1 ,𝑡𝑛−1 ,

𝐴2 (𝜌) = | |Γ−1
𝑈

𝜌
𝑛 ,𝑡𝑛−1

| |𝑘3
𝑝3 ,𝑡𝑛−1

,

and
𝐴3 (𝜌) = | |𝑈𝜌

𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

for some constants 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑝1, 𝑝2, 𝑝3 > 0. The exact values of the constants are not extremely
important, but they can be determined according to the integration by parts formula estimate (8). Indeed,
for the second order derivative case, we know that 𝑘1 = 2, 𝑘2 = 4, 𝑘3 = 2, 𝑘4 = 6 and 𝑝1 = 𝑞3, 𝑝2 = 4𝑞2,
𝑝3 = 2𝑞1, where 𝑞1, 𝑞2, 𝑞3 satisfy 1

𝑞1
+ 1

𝑞2
+ 1

𝑞3
= 1. The bound on the quantities 𝐴 𝑗 relies on the following

lemma:

Lemma 1. Let 𝜋 be the partition defined as in Proposition 5. If 𝑠1, . . . , 𝑠 𝑗 , 𝜏 ∈ [𝑡𝑛−1, 𝑡𝑛] with 𝑠1∨· · ·∨𝑠 𝑗 < 𝜏,
then 𝐷 ( 𝑗 )

𝑠1 ,...,𝑠 𝑗 𝑋𝜏 is uniformly bounded in 𝜔 ∈ Ω.

Proof. The result for the first order derivative is straightforward. Indeed, differentiating equation (1) in the
direction 𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛] we obtain

𝐷𝑠𝑋𝜏 = 𝜎(𝑋𝑠−𝑟 ) +
∫ 𝜏

0
𝐷𝑠𝑋𝑢−𝑟𝜎

′ (𝑋𝑢−𝑟 )𝑑𝐵𝐻
𝑢 +

∫ 𝜏

0
𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢.

Now, since 𝐷𝑠𝑋𝑢−𝑟 = 0 for all 𝑢 ∈ [0, 𝜏] due to the choice of the partition, the last expression can be written
as

𝐷𝑠𝑋𝜏 = 𝜎(𝑋𝑠−𝑟 ) +
∫ 𝜏

0
𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢𝑑𝑢.

This equation has an explicit solution

𝐷𝑠𝑋𝜏 = 𝜎(𝑋𝑠−𝑟 ) exp
(∫ 𝜏

𝑠

𝑏′ (𝑋𝑢)𝑑𝑢
)
.

Finally, from the hypothesis on 𝜎 and 𝑏′, we have that there exists a constant 𝐶 > 0 such that

|𝐷𝑠𝑋𝜏 | ≤ 𝐶.
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In order to prove the result for higher order derivatives, we will use an induction argument. Assume that all
derivatives up to order 𝑗 − 1 are bounded. The derivative of order 𝑗 satisfies the following equation:

𝐷
( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝜏 =

𝑗∑︁
𝑞=1

𝐷𝑠1 · · · ˇ𝐷𝑠𝑞 · · ·𝐷𝑠 𝑗𝜎(𝑋𝑠−𝑟 )

+
∫ 𝜏

0
𝐷𝑠1 . . . 𝐷𝑠 𝑗𝜎(𝑋𝑢−𝑟 )𝑑𝐵𝐻

𝑢

+
∫ 𝜏

0
𝐷𝑠1 . . . 𝐷𝑠 𝑗 𝑏(𝑋𝑢)𝑑𝑢.

(14)

Now, since 𝑠1 ∨ · · · ∨ 𝑠 𝑗 − 𝑟 < 𝑡𝑛−1 and 𝜏 ∈ [𝑡𝑛−1, 𝑡𝑛], then equation (14) can be written as

𝐷
( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝜏 =

𝑗∑︁
𝑞=1

𝐷𝑠1 · · · ˇ𝐷𝑠𝑞 · · ·𝐷𝑠 𝑗𝜎(𝑋𝑠𝑞−𝑟 ) +
∫ 𝜏

𝑠1∨···∨𝑠 𝑗
𝐷𝑠1 . . . 𝐷𝑠 𝑗 𝑏(𝑋𝑢)𝑑𝑢, (15)

where ˇ𝐷𝑠𝑞 means that the term 𝐷𝑠𝑞 is omitted (for instance, 𝐷𝑠1𝐷𝑠2𝐷𝑠3 = 𝐷𝑠1𝐷𝑠3 ). On the one hand, each
term of the form

𝐷𝑠1 · · · ˇ𝐷𝑠𝑞 · · ·𝐷𝑠 𝑗𝜎(𝑋𝑠𝑞−𝑟 )

involves derivatives of orders 𝑘 = 1, . . . , 𝑗 − 1 of 𝑋𝑡 and derivatives of orders 𝑙 = 1, . . . 𝑗 of 𝜎. Since 𝜎 has
bounded derivatives of all orders and, by induction hypothesis, all derivatives up to order 𝑗 − 1 of 𝑋𝑡 are
bounded, we get that there exists 𝐶1 > 0 such that

𝑗∑︁
𝑞=1

|𝐷𝑠1 · · · ˇ𝐷𝑠𝑞 · · ·𝐷𝑠 𝑗𝜎(𝑋𝑠𝑞−𝑟 ) | ≤ 𝐶1.

Concerning the term 𝐷𝑠1 . . . 𝐷𝑠 𝑗 𝑏(𝑋𝑢), we use the product rule and the chain rule for Malliavin derivatives
𝑗 times and we find that

𝐷𝑠1 . . . 𝐷𝑠 𝑗 𝑏(𝑋𝑢) =
𝑗∑︁

𝑘=1
𝑏 (𝑘 ) (𝑋𝑢)

∑︁
Π∈P ( 𝑗 ,𝑘 )

𝑘∏
𝑙=1

𝐷
( |Π𝑙 | )
𝑠Π𝑙

𝑋𝑢,

where P ( 𝑗 , 𝑘) denotes the set of all partitions of {𝑠1, . . . , 𝑠 𝑗 } into 𝑘 subsets and Π𝑙 denotes the 𝑙-th subset
of this partition. |Π𝑙 | denotes its length and 𝑠Π𝑙

= (𝑠𝑖1 , . . . , 𝑠𝑖|Π𝑙 ) if Π𝑙 = {𝑠𝑖1 , . . . , 𝑠𝑖|Π𝑙 | }. Even though it is
a sum with a lot of terms, the only one that involves a 𝑗-th order derivative of 𝑋𝑢 is

𝑏′ (𝑋𝑢)𝐷 ( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝑢.

Taking that all derivatives of 𝑏 are bounded and all derivatives of 𝑋𝑢 up to order 𝑗 − 1 are bounded, we find
that there exist 𝐶2, 𝐶3 > 0 such that

𝐷𝑠1 . . . 𝐷𝑠 𝑗 𝑏(𝑋𝑢) ≤ 𝐶2 + 𝐶3𝐷
( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝑢. (16)

Inserting this into (15) leads us to

𝐷
( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝜏 ≤ 𝐶1 +

∫ 𝜏

0

(
𝐶2 + 𝐶3𝐷

( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝑢

)
𝑑𝑢.

Using Gronwall’s lemma, we conclude that |𝐷 ( 𝑗 )
𝑠1 ,...,𝑠 𝑗 𝑋𝜏 | is uniformly bounded. □

We can now proceed to derive the estimates. Concerning the following 3 lemmas, in the proofs we will
use𝐶 as a universal constant that may switch from line to line. If several different constants are involved, we
will name them 𝐶1, 𝐶2, . . . . To streamline the reading of the paper, we omit the dependency of the constant
on the parameters.
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Lemma 2 (Bound for 𝐴1). Recall that 𝐴1 = | |𝑅𝑛 | |𝑘1 , 𝑝1 ,𝑡𝑛−1 . Under the same hypothesis as in Lemma 1,
there exists a constant 𝐶 > 0 depending on the maximum of the derivatives of the function 𝑏 (which is finite
because 𝑏 ∈ C∞

𝑏
(R)), the Hurst parameter 𝐻 and 𝑇 such that

𝐴1 ≤ 𝐶𝑁−1/(2𝐻 ) .

In particular, there exists 𝛾 > 0 depending on the Hurst parameter 𝐻 and 𝐶 > 0 depending on 𝑏 (and its
derivatives), 𝑇 , and 𝐻 such that

𝜎−2
𝑁 𝐴1 ≤ 𝐶 𝑁

−𝛾

𝜎𝑁

.

Proof. By definition,

𝐴
𝑝1
1 = | |𝑅𝑛 | |𝑝1

𝑘1 , 𝑝1 ,𝑡𝑛−1
= 𝐸𝑡𝑛−1 ( |𝑅𝑛 |𝑝1 ) +

𝑘1∑︁
𝑗=1

𝐸𝑡𝑛−1

(
| |𝐷 ( 𝑗 )𝑅𝑛 | |𝑝1

H⊗ 𝑗 [𝑡𝑛−1 ,𝑡𝑛 ]

)
.

The strategy of the proof is to verify that |𝑅𝑛 | is of the order of 𝑁−1/(2𝐻 ) , and the Malliavin derivatives are
𝑜(𝑁−1), so that the asymptotic behaviour of 𝐴1 is dominated by the first term of 𝐴1, and the terms involving
the derivatives of 𝑅𝑛 are negligible. For the first term, notice that |𝑅𝑛 | ≤

∫ 𝑡𝑛

𝑡𝑛−1
|𝑏(𝑋𝑠) |𝑑𝑠 ≤ ||𝑏 | |𝐿∞ |𝑡𝑛− 𝑡𝑛−1 |.

Since the partition is chosen so that

|𝑡𝑛 − 𝑡𝑛−1 |2𝐻 = 𝛼𝐻

𝑡2𝐻

𝑁
≤ 𝛼𝐻

𝑇2𝐻

𝑁
,

we can conclude that there exists a constant 𝐶 > 0 depending on 𝑏, 𝑇 and 𝐻 such that |𝑅𝑛 | ≤ 𝐶𝑁−1/(2𝐻 ) ,
so we can find 𝐶 > 0 such that 𝐸𝑡𝑛−1 ( |𝑅𝑛 |𝑝1 ) ≤ 𝐶𝑁−𝑝1/(2𝐻 ) , which is a consistent estimate with what we
want to prove.

The rest of the proof is done by bounding all the derivatives of order 𝑗 from 1 up to 𝑘1. We will show
the bound for the first derivative since its computation will be useful in future lemmas, and the conclusion
for the higher order derivatives can be easily derived by using estimate (16) and the fact that the Malliavin
derivatives of 𝑋𝑡 are bounded thanks to Lemma 1. For the first derivative,

| |𝐷𝑅𝑛 | |𝑝1
H[𝑡𝑛−1 ,𝑡𝑛 ] =

(∫ 𝑡𝑛

𝑡𝑛−1

∫ 𝑡𝑛

𝑡𝑛−1

𝐷𝑢𝑅𝑛𝐷𝑣𝑅𝑛 |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣

) 𝑝1/2
.

Now, using the fact that

|𝐷𝑠𝑅𝑛 | ≤
∫ 𝑡𝑛

𝑡𝑛−1

|𝑏′ (𝑋𝑢)𝐷𝑠𝑋𝑢 |𝑑𝑢 ≤ 𝐶 |𝑡𝑛 − 𝑡𝑛−1 | ≤ 𝐶𝑁−1/(2𝐻 ) ,

we find that
| |𝐷𝑅𝑛 | |𝑝1

H[𝑡𝑛−1 ,𝑡𝑛 ] ≤ 𝐶
(
𝑁−1/𝐻 |𝑡𝑛 − 𝑡𝑛−1 |2𝐻

) 𝑝1/2
≤ 𝐶𝑁− 𝑝1 (1+

1
𝐻

)
2 . (17)

Hence,

𝐸𝑡𝑛−1

(
| |𝐷𝑅𝑛 | |𝑝1

H[𝑡𝑛−1 ,𝑡𝑛 ]

)
≤ 𝐶𝑁− 𝑝1 (1+

1
𝐻

)
2 ,

as desired. □

Lemma 3 (Bound for 𝐴2 (𝜌)). Recall that 𝐴2 (𝜌) = | |Γ−1
𝑈

𝜌
𝑛 ,𝑡𝑛−1

| |𝑘3
𝑝3 ,𝑡𝑛−1

. Under the same hypothesis as in
Lemma 1, the quantity 𝐴2 (𝜌) is uniformly bounded.

Proof. Recall that
𝜎𝑁𝑈

𝜌
𝑛 = 𝐼𝑛 + 𝜌𝑅𝑛,

so
𝜎2
𝑁 | |𝐷𝑈𝜌

𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] = | |𝐷𝐼𝑛 + 𝜌𝐷𝑅𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] .
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Now, using Lemma 5 in the appendix and the fact that −𝜌 ≥ −1, we have

𝜎2
𝑁 | |𝐷𝑈𝜌

𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] ≥
||𝐷𝐼𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ]

2
− ||𝐷𝑅𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] .

Since

𝐼𝑛 =

∫ 𝑡𝑛

𝑡𝑛−1

𝜎(𝑋𝑠−𝑟 )𝑑𝐵𝐻
𝑠 ,

it is clear that for 𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛] we have
𝐷𝑠 𝐼𝑛 = 𝜎(𝑋𝑠−𝑟 ).

From the fact that 𝜎(𝑋𝑠−𝑟 ) > 𝜆 and
∫ 𝑡𝑛

𝑡𝑛−1

∫ 𝑡𝑛

𝑡𝑛−1
|𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 = 𝐶𝜎2

𝑁
(see Lemma 6 in the appendix) we

derive the following estimate:

| |𝐷𝐼𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] =

∫ 𝑡𝑛

𝑡𝑛−1

∫ 𝑡𝑛

𝑡𝑛−1

𝜎(𝑋𝑢−𝑟 )𝜎(𝑋𝑣−𝑟 ) · |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 ≥ 𝐶𝜎2
𝑁 .

Moreover, by inequality (17) in the proof of the previous lemma for 𝑝1 = 2, we have that

| |𝐷𝑅𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] ≤ 𝐶𝑁
−1− 1

𝐻 .

Since 𝜎2
𝑁
= 𝑂 (𝑁−1), for 𝑁 big enough we deduce that there exist 𝐶1, 𝐶2 > 0 not depending on 𝑡 such that

𝜎2
𝑁 | |𝐷𝑈𝜌

𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] ≥ 𝐶1𝜎
2
𝑁 − 𝐶2𝑁

−1− 1
𝐻 .

Now, since

𝐶1𝜎
2
𝑁 − 𝐶2𝑁

−1− 1
𝐻 =𝜎2

𝑁

(
𝐶1 −

𝐶2

𝛼𝐻 𝑡
2𝐻𝑁

1
𝐻

)
≥𝜎2

𝑁

(
𝐶1 −

𝐶2

𝛼𝐻𝑟
2𝐻𝑁

1
𝐻

)
,

because 𝑡 > 𝑟, we can choose 𝑁 large enough so that there exists 𝐶3 > 0 with

𝐶1𝜎
2
𝑁 − 𝐶2𝑁

−1− 1
𝐻 ≥ 𝜎2

𝑁

(
𝐶1 −

𝐶2

𝛼𝐻𝑟
2𝐻𝑁

1
𝐻

)
≥ 𝐶3𝜎

2
𝑁 ,

so

| |𝐷𝑈𝜌
𝑛 | |2H[𝑡𝑛−1 ,𝑡𝑛 ] ≥ 𝐶3

𝜎2
𝑁

𝜎2
𝑁

= 𝐶3 > 0.

This implies that

Γ−1
𝑈

𝜌
𝑛 ,𝑡𝑛−1

≤ 1
𝐶3
.

Taking conditional norms, we deduce that there exists 𝐶 > 0 satisfying | |Γ−1
𝑈

𝜌
𝑛 ,𝑡𝑛−1

| |𝑘3
𝑝3 ,𝑡𝑛−1

≤ 𝐶, which proves
the uniform bound of 𝐴2 (𝜌). □

Lemma 4 (Bound for 𝐴3 (𝜌)). Recall that 𝐴3 (𝜌) = | |𝑈𝜌
𝑛 | |𝑘4

𝑘2 , 𝑝2 ,𝑡𝑛−1
. Under the same hypothesis as in Lemma

1, the quantity 𝐴3 (𝜌) is uniformly bounded in 𝜌 and in 𝜔 ∈ Ω.

Proof. Applying the relation 𝜎𝑁𝑈
𝜌
𝑛 = 𝐼𝑛 + 𝜌𝑅𝑛, we readily see by applying norms that

𝜎
𝑘4
𝑁
| |𝑈𝜌

𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

= | |𝐼𝑛 + 𝜌𝑅𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

.
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By virtue of Minkowski’s inequality, the fact that ( |𝑎 | + |𝑏 |)𝑘4 ≤ 𝐶 ( |𝑎 |𝑘4 + |𝑏 |𝑘4 ) and 𝜌 ≤ 1, we have

| |𝑈𝜌
𝑛 | |𝑘4

𝑘2 , 𝑝2 ,𝑡𝑛−1
≤ 𝐶𝜎−𝑘4

𝑁

(
| |𝐼𝑛 | |𝑘4

𝑘2 , 𝑝2 ,𝑡𝑛−1
+ ||𝑅𝑛 | |𝑘4

𝑘2 , 𝑝2 ,𝑡𝑛−1

)
, (18)

so it is enough to bound the quantities | |𝐼𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

and | |𝑅𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

separately. Lemma 2 gives us the
bound

| |𝑅𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

≤ 𝐶𝑁−𝑘4/2𝐻 .

In particular, this bound implies that

𝜎
−𝑘4
𝑁

| |𝑅𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

≤ 𝐶𝑁
−𝑘4

2 ( 1
𝐻
−1) . (19)

For the 𝐼𝑛 term, we know that 𝐷𝑠 𝐼𝑛 = 𝜎(𝑋𝑠−𝑟 ), and therefore, the 𝑗-th order derivatives of 𝐼𝑛 in directions
belonging to [𝑡𝑛, 𝑡𝑛−1] 𝑗 vanish if 𝑗 ≥ 2 due to the fact that the partition is chosen so that 𝑠 − 𝑟 < 𝑡𝑛−1 for all
𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛]. This implies that

| |𝐼𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

=

(
𝐸𝑡𝑛−1 ( |𝐼𝑛 |𝑝2 ) + 𝐸𝑡𝑛−1 ( | |𝐷𝐼𝑛 | |

𝑝2
H[𝑡𝑛−1 ,𝑡𝑛 ])

) 𝑘4/𝑝2
.

On the one hand, since 𝐼𝑛 =
∫ 𝑡𝑛

𝑡𝑛−1
𝜎(𝑋𝑠−𝑟 )𝑑𝐵𝐻

𝑠 and 𝑠 − 𝑟 < 𝑡𝑛−1, the law of 𝐼𝑛 conditioned to F𝑡𝑛−1 is
conditionally Gaussian with zero mean and variance | |𝜎(𝑋·−𝑟 ) | |2H[𝑡𝑛−1 ,𝑡𝑛 ] . Hence, it is then well-known that
by the properties of the moments of Gaussian random variables we have

𝐸𝑡𝑛−1 ( |𝐼𝑛 |𝑝2 ) = 𝐶 | |𝜎(𝑋·−𝑟 ) | |𝑝2
H[𝑡𝑛−1 ,𝑡𝑛 ] .

Finally, taking that 𝜎(𝑋𝑠−𝑟 ) ≤ Λ it is easy to find that

| |𝜎(𝑋·−𝑟 ) | |𝑝2
H[𝑡𝑛−1 ,𝑡𝑛 ] ≤ Λ𝑝2𝜎

𝑝2
𝑁
, (20)

from which we conclude that
𝐸𝑡𝑛−1 ( |𝐼𝑛 |𝑝2 ) ≤ 𝐶𝜎𝑝2

𝑁

for a certain constant 𝐶 > 0. Now, since | |𝐷𝐼𝑛 | |𝑝2
H[𝑡𝑛−1 ,𝑡𝑛 ] = | |𝜎(𝑋·−𝑟 ) | |𝑝2

H[𝑡𝑛−1 ,𝑡𝑛 ] , we resort to inequality
(20) to conclude that there exists 𝐶 > 0 such that

𝐸𝑡𝑛−1 ( | |𝐷𝐼𝑛 | |
𝑝2
H[𝑡𝑛−1 ,𝑡𝑛 ]) ≤ 𝐶𝜎

𝑝2
𝑁
.

All in all, the conclusion of the previous estimates is that

| |𝐼𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

≤ 𝐶𝜎𝑘4
𝑁
,

and in particular,
𝜎

−𝑘4
𝑁

| |𝐼𝑛 | |𝑘4
𝑘2 , 𝑝2 ,𝑡𝑛−1

≤ 𝐶. (21)

To end the proof of this lemma, we insert in estimates (19) and (21) into (18) and get

| |𝑈𝜌
𝑛 | |𝑘4

𝑘2 , 𝑝2 ,𝑡𝑛−1
≤ 𝐶

for a constant 𝐶 > 0 depending on 𝑝2,Λ, 𝑘4 and 𝐻. □

Let us now illustrate how these 3 lemmas prove Proposition 6. Recall that, using the integration by parts
formula, we derived the estimate

|𝐽2,𝑛 | ≤ 𝜎−2
𝑁 𝐴1

∫ 1

0
𝐴2 (𝜌)𝐴3 (𝜌)𝑑𝜌.

First, the conclusion of Lemma 2 is that
𝜎−2
𝑁 𝐴1 ≤ 𝐶𝑁−𝛾

𝜎𝑁
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for real constants𝐶, 𝛾 > 0. Moreover, the conclusion of Lemmas 3 and 4 is that there exists a constant𝐶 > 0
such that 𝐴2 (𝜌) ≤ 𝐶 and 𝐴3 (𝜌) ≤ 𝐶 uniformly in 𝜌 ∈ [0, 1] and in 𝜔 ∈ Ω, respectively. This information
leads us to the following estimate:

|𝐽2,𝑛 | ≤ 𝜎−2
𝑁 𝐴1

∫ 1

0
𝐴2 (𝜌)𝐴3 (𝜌)𝑑𝜌 ≤ 𝐶𝑁−𝛾

𝜎𝑁

, (22)

which proves Proposition 6. With these bounds on 𝐽1,𝑛 and 𝐽2,𝑛, we have all the tools needed in order to
prove the lower bound for 𝑡 > 𝑟 .

3.3. Proof of the lower bound
In Section 3.1, we have already proved the result when 𝑡 ∈ (0, 𝑟], and in Subsections 3.2.1 and 3.2.2 we have
proved all the auxiliary results that allow us to prove the lower bound. This section is devoted to putting all
the information together and concluding that the density of the solution 𝑋𝑡 to (1) is strictly positive.

Proof of Theorem 1. Recall that, thanks to Proposition 5 and the bound we have concluded in equation (22),
we can bound 𝐸𝑡𝑛−1 [𝛿𝑥 (𝐹𝑛)] as

𝐸𝑡𝑛−1 [𝛿𝑥 (𝐹𝑛)] ≥
1√︃

2𝜋Λ2𝜎2
𝑁

exp

(
− (𝑥 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
− 𝐶𝑁−𝛾

𝜎𝑁

. (23)

We define the intervals 𝐼𝑛 = 𝐼 (𝑦𝑛, 𝑐1𝜎𝑁 ) := {𝑧 ∈ R; |𝑧 − 𝑦𝑛 | < 𝑐1𝜎𝑁 } for some constant 𝑐1 > 0 to be
determined and 𝑦𝑛 = 𝜂0 + 𝑛

𝑁
(𝑥 − 𝜂0), where 𝑦0 = 𝜂0 = 𝐹0 is the initial condition of the SDDE. We also

define {𝑥𝑛; 𝑛 = 0, . . . , 𝑁}, where 𝑥0 = 𝜂0 = 𝐹0, 𝑥 𝑗 ∈ 𝐼 𝑗 for 𝑗 = 1, . . . , 𝑁 − 1 and 𝑥𝑁 = 𝑥. Moreover, we will
assume that |𝑦𝑛 − 𝑦𝑛−1 | ≤ 𝑐1𝜎𝑁 (later in the proof we will see that the constants 𝑐1 and 𝑁 can be chosen so
that it is satisfied). We first rewrite the density of 𝐹𝑁 as

E[𝛿𝑥 (𝐹𝑁 )] =
∫
R
E[𝛿𝑥 (𝐹𝑁 )𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝑑𝑥𝑁−1.

Then, due to the positivity of E[𝛿𝑥 (𝐹𝑁 )𝛿𝑥𝑁−1 (𝐹𝑁−1)] (see [5, Theorem 1]) we have the bound∫
R
E[𝛿𝑥 (𝐹𝑁 )𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝑑𝑥𝑁−1 ≥

∫
𝐼𝑁−1

E[𝛿𝑥 (𝐹𝑁 )𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝑑𝑥𝑁−1.

Using the properties of the conditional expectation and estimate (23) we find that

E[𝛿𝑥 (𝐹𝑁 )]

≥ 𝑐

𝜎𝑁

∫
𝐼𝑁−1

E

[(
exp

(
− (𝑥 − 𝐹𝑁−1)2

2𝜆2𝜎2
𝑁

)
− 𝐶𝑁−𝛾

)
𝛿𝑥𝑁−1 (𝐹𝑁−1)

]
𝑑𝑥𝑁−1.

We want this integral to give a strictly positive contribution (otherwise, the resulting bound is 𝑝𝑡 (𝑥) ≥ 0,
which gives us no information). In order to achieve this objective, since 𝑥𝑁−1 ∈ 𝐼𝑁−1, we can observe
by Fubini’s theorem that the expectation is taken in the set {𝜔 ∈ Ω; 𝐹𝑁−1 (𝜔) ∈ 𝐼𝑁−1} since the term
𝛿𝑥𝑁−1 (𝐹𝑁−1) vanishes if 𝐹𝑁−1 ∉ 𝐼𝑁−1. Moreover, if 𝐹𝑁−1 ∈ 𝐼𝑁−1 we have

|𝑥 − 𝐹𝑁−1 | ≤ |𝑥 − 𝑦𝑁 | + |𝑦𝑁 − 𝑦𝑁−1 | + |𝑦𝑁−1 + 𝐹𝑁−1 | ≤ 3𝑐1𝜎𝑁 ≤ 4𝑐1𝜎𝑁 , (24)

where we choose bound 4𝑐1𝜎𝑁 instead of 3𝑐1𝜎𝑁 to make the computations nicer. In order to obtain a
Gaussian type bound, we will choose the constants 𝑐1 and 𝑁 appropriately. First, we choose 𝑐1 small enough
so that

exp

(
−

8𝑐2
1

𝜆2

)
≥ 1

2
.
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Regarding the choice of 𝑁 , we consider a constant 𝑐2 ≥ 1
4𝑐2

1
and choose 𝑁 of the form

𝑁 =
𝑐2 |𝑥 − 𝜂0 |2

𝑡2𝐻
.

Notice that under this definition of 𝑐2 and 𝑁 , condition (24) is satisfied. The idea is that 𝑐2 is a constant that
controls how big we want 𝑁 to be, so the larger 𝑐2, the larger 𝑁 .

Since 𝑐2 ≥ 1
4𝑐2

1
can be chosen arbitrarily large, we will demand 𝑐2 to be large enough so that 𝑁 =

𝑐2 |𝑥−𝜂0 |2
𝑡2𝐻

satisfies 𝐶𝑁−𝛾 ≤ 1/4. Under this first restriction we have that

exp

(
− (𝑥 − 𝐹𝑁−1)2

2𝜆2𝜎2
𝑁

)
≥ exp

(
−

16𝑐2
1𝜎

2
𝑁

2𝜆2𝜎2
𝑁

)
= exp

(
−

8𝑐2
1

𝜆2

)
≥ 1

2
.

On the other hand, taking that 𝐶𝑁−𝛾 ≤ 1/4, we find that the integrand is stricly positive. We can therefore
proceed to bound the density as follows:

E[𝛿𝑥 (𝐹𝑁 )] ≥
𝑐

𝜎𝑁

∫
𝐼𝑁−1

E

[(
exp

(
− (𝑥 − 𝐹𝑁−1)2

2𝜆2𝜎2
𝑁

)
− 𝐶𝑁−𝛾

)
𝛿𝑥𝑁−1 (𝐹𝑁−1)

]
𝑑𝑥𝑁−1

≥ 𝑐

𝜎𝑁

∫
𝐼𝑁−1

E
[(

1
2
− 1

4

)
𝛿𝑥𝑁−1 (𝐹𝑁−1)

]
𝑑𝑥𝑁−1,

so we are led to
E[𝛿𝑥 (𝐹𝑁 )] ≥

𝑐

4𝜎𝑁

∫
𝐼𝑁−1

E[𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝑑𝑥𝑁−1.

In particular, these constraints imply that 𝐸𝑡𝑛−1 [𝛿𝑥𝑛 (𝐹𝑛)] ≥ 𝑐
4𝜎𝑁

for all 𝑛 = 1, . . . , 𝑁 . Indeed, by equation
(23) we have

𝐸𝑡𝑛−1 [𝛿𝑥𝑛 (𝐹𝑛)] ≥
𝑐

𝜎𝑁

[
exp

(
− (𝑥𝑛 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
− 𝐶𝑁−𝛾

]
≥ 𝑐

𝜎𝑁

[
exp

(
− (𝑥𝑛 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
− 1

4

]
.

Now, using the fact that

|𝑥𝑛 − 𝐹𝑛−1 | ≤ |𝑥𝑛 − 𝑦𝑛 | + |𝑦𝑛 − 𝑦𝑛−1 | + |𝑦𝑛−1 + 𝐹𝑛−1 | ≤ 3𝑐1𝜎𝑁 ≤ 4𝑐1𝜎𝑁 ,

if |𝑦𝑛 − 𝑦𝑛−1 | ≤ 𝑐1𝜎𝑁 , we have that

exp

(
− (𝑥𝑛 − 𝐹𝑛−1)2

2𝜆2𝜎2
𝑁

)
≥ exp

(
−

16𝑐2
1𝜎

2
𝑁

2𝜆2𝜎2
𝑁

)
≥ 1

2
.

We can proceed iterating this same procedure one step from 𝑁 − 1 to 𝑁 − 2 and taking that 𝛿𝑥𝑁−2 (𝐹𝑁−2) is
F𝑡𝑁−2 -measurable to get

E[𝛿𝑥 (𝐹𝑁 )] ≥
𝑐

4𝜎𝑁

∫
𝐼𝑁−1

E[𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝑑𝑥𝑁−1

≥ 𝑐

4𝜎𝑁

∫
𝐼𝑁−1

∫
𝐼𝑁−2

E[𝛿𝑥𝑁−1 (𝐹𝑁−1)𝛿𝑥𝑁−2 (𝐹𝑁−2)]𝑑𝑥𝑁−2𝑑𝑥𝑁−1

=
𝑐

4𝜎𝑁

∫
𝐼𝑁−1

∫
𝐼𝑁−2

E
[
𝐸𝑡𝑁−2 [𝛿𝑥𝑁−1 (𝐹𝑁−1)]𝛿𝑥𝑁−2 (𝐹𝑁−2)

]
𝑑𝑥𝑁−2𝑑𝑥𝑁−1

≥
(
𝑐

4𝜎𝑁

)2
|𝐼𝑁−1 |

∫
𝐼𝑁−2

E[𝛿𝑥𝑁−2 (𝐹𝑁−2)]𝑑𝑥𝑁−2,
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as long as 𝑦𝑁−1, 𝑦𝑁−2 ∈ 𝐼𝑁−1 ∩ 𝐼𝑁−2 ≠ ∅, which holds because we are working under the assumption that
|𝑦𝑁−1 − 𝑦𝑁−2 | ≤ 𝑐1𝜎𝑁 . One can check by iterating this procedure from 𝑁 − 1 all the way to 1 and taking
that all intervals 𝐼 𝑗 have the same length as the interval centered at the origin with radius 𝑐1𝜎𝑁 that

E[𝛿𝑥 (𝐹𝑁 )] ≥
(
𝑐

4𝜎𝑁

)𝑁
|𝐼 (0, 𝑐1𝜎𝑁 ) |𝑁−1

=

( 𝑐
4

)𝑁 (
𝑁1/2

𝑡𝐻

)𝑁 (
𝑡𝐻

𝑁1/2

)𝑁−1

(2𝑐1)𝑁−1

=
𝑁1/2

𝑡𝐻

( 𝑐
4

)𝑁
(2𝑐1)𝑁−1

=
1

2𝑐1𝑡𝐻
exp

(
𝑁 log

( 𝑐 · 𝑐1
2

)
+ 1

2
log(𝑁)

)
.

To the previous restriction on 𝑐1, i.e. exp
( −8𝑐2

1
𝜆2

)
≥ 1

2 , we also impose that

𝐿 := − log
( 𝑐 · 𝑐1

4

)
> 0,

and
𝑁𝐿𝑁 ≥ 1.

Now, taking into account that 𝑁 =
𝑐2 |𝑥−𝜂0 |2

𝑡2𝐻 , and assuming that 𝑁 ≥ 1 (because we want 𝑁 to be a natural
number) we get

E [𝛿𝑥 (𝐹𝑁 )] ≥
1

𝑐1𝑡𝐻
exp

(
−𝐿𝑐2 |𝑥 − 𝜂0 |2

𝑡2𝐻

)
,

which is a bound consistent with the one in (10). The only task left to do is to adjust the constant 𝑐2 so that
it is compatible with all of the previous constraints, i.e.:

• |𝑦𝑛 − 𝑦𝑛−1 | ≤ 𝑐1𝜎𝑁 .

• 𝑐2 ≥ 1
4𝑐2

1
.

• 𝑁 =
𝑐2 |𝑥−𝜂0 |2

𝑡2𝐻 .

On the one hand, we have to take 𝑐2 so that

|𝑦𝑛+1 − 𝑦𝑛 | ≤ 𝑐1𝜎𝑁 .

Now, from the definition of 𝑦𝑛’s, we have

|𝑦𝑛+1 − 𝑦𝑛 | =
|𝑥 − 𝜂0 |
𝑁

=
|𝑥 − 𝜂0 |√

𝑁

1
√
𝑁

and taking that 𝑁 =
𝑐2 |𝑥−𝜂0 |2

𝑡2𝐻 we get

|𝑦𝑛+1 − 𝑦𝑛 | =
|𝑥 − 𝜂0 |√

𝑁

1
√
𝑐2

𝑡𝐻

|𝑥 − 𝜂0 |
=
𝜎𝑁√
𝑐2
.

Hence, it is enough to consider 𝑐2 in such a way that
1

√
𝑐2

≤ 𝑐1, 𝑐2 ≥ 1
4𝑐2

1
,

where the first constraint follows from the fact that we need |𝑦𝑛 − 𝑦𝑛−1 | ≤ 𝑐1𝜎𝑁 and the second constraint
follows from relation (24). Choosing therefore an arbitrarily large 𝑐2 satisfying

1
√
𝑐2

≤ 𝑐1

is enough to conclude the bound. Finally, renaming the constants, we obtain the desired bound (10). □
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As a corollary of this result, we can state the conclusion of this work.

Corollary 2. Let 𝑋 be the solution to (1). Under the same hypothesis as in Theorem 1, the density function
𝑝𝑡 (𝑥) of 𝑋𝑡 is strictly positive.

Proof. A direct consequence of Theorem 1. □
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Appendix A. Real analysis tools

Lemma 5. Let H be a real Hilbert space. Denote by ⟨·, ·⟩ the scalar product in H and | | · | | its norm. Then,
for any 𝑓 , 𝑔 ∈ H, we have

| | 𝑓 + 𝑔 | |2 ≥ || 𝑓 | |2
2

− ||𝑔 | |2.

Proof. Notice that

⟨ 1
√

2
𝑓 +

√
2𝑔,

1
√

2
𝑓 +

√
2𝑔⟩ = 1

2
| | 𝑓 | |2 + 2| |𝑔 | |2 + 2⟨ 𝑓 , 𝑔⟩ ≥ 0. (25)

Then, taking that
| | 𝑓 + 𝑔 | |2 = | | 𝑓 | |2 + ||𝑔 | |2 + 2⟨ 𝑓 , 𝑔⟩,
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equation (25) turns into

| | 𝑓 + 𝑔 | |2 − || 𝑓 | |2
2

+ ||𝑔 | |2 ≥ 0,

which proves the inequality. □

Lemma 6. Let 0 < 𝑎 < 𝑏 be two positive real constants. Then,∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 =
1
𝛼𝐻

|𝑏 − 𝑎 |2𝐻 . (26)

Proof. Notice that the left-hand side of (26) can be expressed as∫ 𝑏

𝑎

∫ 𝑏

𝑎

|𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 =

∫ 𝑇

0

∫ 𝑇

0
1[𝑎,𝑏] (𝑢)1[𝑎,𝑏] (𝑣) |𝑢 − 𝑣 |2𝐻−2𝑑𝑢𝑑𝑣 =

1
𝛼𝐻

⟨1[𝑎,𝑏] , 1[𝑎,𝑏]⟩H.

Recall that
⟨1[0,𝑎] , 1[0,𝑏]⟩H = 𝑅𝐻 (𝑎, 𝑏)

and 𝑅𝐻 (𝑎, 𝑎) = 𝑎2𝐻 . Now, taking that 1[𝑎,𝑏] (𝑢) = 1[0,𝑏] (𝑢) − 1[0,𝑎) (𝑢), we have that

⟨1[𝑎,𝑏] , 1[𝑎,𝑏]⟩H = ⟨1[0,𝑏] − 1[0,𝑎) , 1[0,𝑏] − 1[0,𝑎)⟩H = 𝑅𝐻 (𝑏, 𝑏) + 𝑅𝐻 (𝑎, 𝑎) − 2𝑅𝐻 (𝑎, 𝑏).

Using now the definition of 𝑅𝐻 , we find that

𝑅𝐻 (𝑏, 𝑏) + 𝑅𝐻 (𝑎, 𝑎) − 2𝑅𝐻 (𝑎, 𝑏) = 𝑏2𝐻 + 𝑎2𝐻 − 𝑏2𝐻 − 𝑎2𝐻 + |𝑏 − 𝑎 |2𝐻 = |𝑏 − 𝑎 |2𝐻 ,

so equality (26) holds. □
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