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differential equations driven by a fractional Brownian motion
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1. Introduction

Let Q = Cy([0,T]) represent the space of continuous functions on the interval [0, 7] that vanish at zero,
equipped with the supremum norm, thus making it a Banach space. We consider the Borel o-field F := B(Q)
and a probability measure P under which the canonical process defined by B (w) = w(t) is a fractional
Brownian motion (fBm) with Hurst parameter H > 1/2. Throughout this paper, we will work in this
underlying probability space (Q, F, P).

A fractional Brownian motion B = {BH:t € [0,T]} is a centered Gaussian process with covariance

function given by
2H
_

H pH [ ]
Ry (t,s) :=E[B/ B'] =

2
Although this process does not exhibit independent increments, its increments are stationary. This feature,
together with the Gaussianity of B, allows us to establish the inequality

+|s

E(|Bf' - BY|P) < C|t — 5|PH,

which, by Kolmogorov’s continuity criterion, indicates that B has y-Holder continuous paths for any
y € (0, H).
This paper focuses on stochastic delay differential equations (SDDEs) driven by a fractional Brownian
motion with H > 1/2, specifically following the form introduced by Ferrante and Rovira in [4]:
X =no+ [} o(Xep)dB + [/ b(X,)ds, 1€ (0,T),
ey
Xi =1y te[-r0],

where 7 is a smooth function, » > 0 is a constant delay parameter and B is a fBm of Hurst parameter
H > 1/2. Given the regularity properties of B for H > 1/2, the stochastic integral in this equation can
be interpreted as a Riemann-Stieltjes integral, leveraging Young’s results in [11]. Furthermore, Zihle’s
framework for fractional calculus [12] allows us to represent this integral as a Lebesgue integral via an
integration by parts formula.

In 2002, Nualart and Rascanu established in their work [10] the existence and uniqueness of solutions
for general stochastic differential equations (SDEs) driven by a fBm with Hurst parameter H > 1/2. Their
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proof can be easily adapted to prove the existence and uniqueness of solutions for stochastic delay differential
equations of the form (1). In 2006, Ferrante and Rovira presented in [4] an alternative approach to proving
the existence and uniqueness of solutions to equation (1). They utilized an inductive strategy that specifically
leveraged the delay property, thereby providing a different perspective from that of Nualart and Rascanu.
Additionally, Ferrante and Rovira established the existence and smoothness of the solution’s density using
methods tailored for the delayed framework. A significant advancement in understanding the law of general
SDEs was made by Nualart and Saussereau in 2009. In [8], they proved the existence of the density by
connecting Malliavin differentiability with Fréchet differentiability. Again, the proof presented for the
general framework in [8] can also be straightforwardly adapted to SDDEs. In 2012, Le6n and Tindel proved
in [6] the smoothness of the density of solutions to SDDEs using rough path techniques, arriving at the same
conclusion as Rovira and Ferrante in [4] for H > 1/2 using a different method.

In this paper, as a starting point we take the results of [4] and [6], which ensure that the density of
the solution to (1) is smooth, and we aim to prove that under smoothness conditions on the coefficients
this density function is strictly positive. In order to prove this, we derive a Gaussian-type lower bound for
the density of the solution to a stochastic delay differential equation combining two methods widely used
in the literature: the Nourdin and Viens method (see [7]), which is the most frequently used method for
bounding the density of solutions to stochastic differential equations with additive noise and Kohatsu-Higa’s
method (see [5]), which is widely used for bounding density functions of solutions to stochastic differential
equations where the noise is not additive but the conditional law of the solution with respect to the o--algebras
generated by the noise driving the equation can be compared to a Gaussian distribution. The advantage of
delay equations lies in their structure, which provides greater flexibility when applying different methods to
bound the density of their solutions. In a general setting of stochastic differential equations (SDEs), such
flexibility is typically not available, and in some cases, it may not even be possible to find a method that
yields satisfactory results.

SDDEs of this nature are significant in various fields, including mathematical finance and biological
modeling, where delays in data and external noise—modeled as fractional noise—play a crucial role. For
instance, Arriojas et al. [1] examined financial models driven by SDDEs, while similar frameworks are
utilized in biology to account for delayed feedback influenced by noisy environments.

Our main result, stated formally in Theorem 1, provides a lower bound for the density function of the
solution to the SDDE. Specifically, we prove that under certain regularity and ellipticity conditions on o
and b, the density p,(x) of the solution to equation (1) satisfies:

E(|X; —m;|) CZ(X_mt)2
pt(x) = CltZH exp - t2H s (2)
for ¢t € (0, r] and
c ca(x —10)?
pi(x) 2 t_; exp (—%) ; 3)

for t € (r,T], where m; = E[X;]. This result implies the strict positivity of the density as an immediate
corollary.

The paper is organized as follows: Section 2 introduces the Malliavin calculus tools and techniques
used to get to the conclusion of this work. In section 3 we prove that the density function of the solution
to (1) satisfies bounds (2) and (3). In the same section, we also state the corollary that concludes the work
presented in this paper. Finally, there is an appendix containing two auxiliary results of real analysis that
are key to derive the Gaussian-type lower bound of the density p, (x) of the solution to (1).

2. Preliminaries

2.1. Wiener space associated to the fractional Brownian motion

We define £ as the space of step functions of the form

n

s(1) = Zajmtj,(t), aj €R,t; €[0,T] forall j=1,...,n

Jj=1
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with respect to the inner product defined by

(Ljo,e15 Ljo,s1)1 = Ru(t, s), “)

where Ry is the covariance function of the fBm. This inner product extends to £ by linearity. We define H
as the closure of £ with respect to the inner product (4). Moreover, for ¢, € H, the inner product (4) can
be written as

T T
(. ¥)n = Q'H/ / Oy |lu — v|2H_2dudv,
0o Jo

where
ay = H(ZH— 1)

Consider the kernel Ky : [0,T]?> — R defined by

t
Ku(t,s) = CHSI/Z_H/ (u—s)A=32H-12 gy
S

B HQH - 1)
H=\B2-2H,H-1/2)

for t > s and Ky (¢, s) = 0 in the case r < s. This kernel induces an isometry between # and L>([0,T]).
Indeed, the operator K7, defined by

T
(Kiy0)s = / 010Kt (5, 1)t

satisfies that, for every ¢, € H,
(. ¥)n = (Ko, Kppth) 2.

Moreover, if W = {W;;t € [0,T]} denotes a standard Brownian motion and we fix H > 1/2, then the
Volterra process

t
Bfl ::/ Ky (t,s)dW;
0

is a fractional Brownian motion of Hurst index H. Abusing the notation, we also define Bf := {BH (h); h €
‘H} the isonormal process associated to 7, that is, a centered Gaussian process indexed by H with covariance
function E[BH (¢)B (¢)] = (¢, ¥)x. Notice that the process B := BH(1;,)) is, again, a fractional
Brownian motion of Hurst index H. We can represent BY (1) as

T
B (h) = /0 h;dBH,

where this last integral can be understood in the Young sense (see [11]).

2.2. Malliavin calculus tools
Definition 1. We define S as the space of random variables F of the form
F = f(BH(hl)7 AR 7BH(hn))7

where n > 1 and f € C;(R") (i.e. f is areal-valued smooth function and f, together with all its partial
derivatives, has at most polynomial growth). We say that S is the space of cylindrical random variables.

We can define the Malliavin derivative in this class of random variables S.
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Definition 2. For F € S, we define DF as the H-valued random variable of the form
n
DF = 3" 9;f(B" (h),.... B" (ha))h;.
j=1

Given h € H, we can also define the derivative of F in the direction of 4 as
DyF = (DF, h)y.

We also define the process {D,F;t € [0,T]} as
n
DiF =" 0, f(B"(h),.... B" (hn)h;(0).
j=1

In the same way in which we have introduced first order derivatives, we can define derivatives of order

.....

p

I,eees

th :Dll "’Dth.

Notice that the random variable D (¥) F is therefore an H®*-valued random variable. For every k > 1 and
p > 1, the operators D¥) are closable from S to LP (Q; H®*). We denote by D7 the closure of S with
respect to the norm

1
X /p

IFllk,p = [BIFIP1+ Y BLIDDFZ,,]
j=1

Notice that D*-? ¢ DbP if | < k and D*%? ¢ D9 if g < p. We also define the space D™ := Ny ﬁplek’p.
The same Malliavin-Sobolev spaces can be defined for an isonormal process based on a standard Brownian
motion W. In such case, we will write D]‘;’,p to stress the underlying isonormal process. For a random
variable F € D', we define I'r and I';;! (provided ||DF||3, > 0 a.s.) as

2 -1 2\
T =IIDFI, T = (IDFIG,) .

In the same way in which we have introduced the Malliavin derivative in the classical Malliavin calculus
setting, we need to introduce the conditional Malliavin calculus. To this end, let F = {F;;r € [0,T]} be the
natural filtration associated to BH. For a given ¢ € [0, T] and a random variable F € L'(Q), we set

E[F] = E[F|F].
As in the classical Malliavin calculus, we denote by ||F||x ., and I'r; the following objects

1
X /p

1Fllpe = | EIFIPY+ D ELNIDYVFIR, o] e = IDFIy, 1y (5)
j=1

fort € [0,T], where for s,z € [0, 7] with s <t and ¢ € H,

t t
el = [ [ oupilu=vP 2duas.
S S

We are now interested in an integration by parts formula similar to the one found in [9, Proposition 2.1.4].
For our purposes, we will use a conditional version of this formula. The result is stated in the Wiener process
W in the [0, T] framework. Since our aim is a conditional integration by parts formula for the fBm case, the
first thing we shall show in order to make sense of this result is that the Malliavin derivative with respect to
W and the Malliavin derivative with respect to B are related in some way. The relation between these two
operators can be stated as follows:
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Proposition 1. Let D % be the Malliavin-Sobolev space associated to W. Then D2 = = (Ky)~ 1D{,",2 and for
every F € DW , we have
DY F = K},DF,
whenever both sides of the equality are well defined.
Proof. See [9, Proposition 5.2.1]. o

In the same way in which we have defined the objects (5) in the fractional Brownian motion case, we
can define them in the standard Brownian motion case. When working in this framework, we define:

1/p

Fllepw = | ELIFIP] +ZE, IOMYFIL, el o TE =IDYFIR e (6
j=1

Now that we know that there exists a relation between the derivative operators with respect to W and B,
we can state the conditional integration by parts formula for W and the result for B will be a direct
consequence of applying Proposition 1. The result for the Wiener process W is stated in [9, Proposition
2.1.4]. Its conditional version (see, for instance, [5] or [3]) can be formulated as follows:

Proposition 2. Fix n > 1. Suppose F is a non-degenerate random variable; let Z € Dy, be an Fi-
measurable random variable such that F + Z is a non-degenerate random variable and let G € DY,. We
denote by 1" := (1,...,1) € R". For any function g € C};(R) there exists a random variable H )(F, G)

such that

ar

Es[¢")(F + 2)G] = E,[g(F + Z)H;{ .., (F,G)], (7)
where Hsln) (F, G) is defined recursively by

H}) (F,G) = 6y (G(Tg)DF)

and
(ln)(F G) il)(F’ Hfln—l)(F’ G))

Here, 6V denotes the Skorohod integral in the interval [s,T]. Moreover, for qi,q2,q3 such that i =

q—ll + é + —-, the following estimate holds:

2 |
) (Fs Gl ps,w < el ) sy s w1 0wl 1G s (8)

Some remarks can be deduced from this proposition.

Remark 1. Notice that using an approximation argument, the conclusion of Proposition 2 holds for g(F+Z) =
1{F+z>x}- Indeed, consider a sequence {gx; k > 1} of smooth compactly supported functions that converge
to de Dirac’s delta centered at a point x € R. Then, using the dominated convergence theorem, it is clear
that the right-hand side of (7) converges to

ES [1{F+Z>x}Hfln) (F’ G)],
while, concerning the left-hand side, the limit is
Es[¢"™(F + 2)G],

where g™ is the n-th order distributional derivative of g.

Remark 2. 1t is interesting to study (and will be useful in the future) how the integration by parts formula
changes with rescalings of F. More precisely, given y € R, we want to see how estimate (8) changes when
we consider uF instead of F. We will prove by using induction on »n that

1 Y
H:y (WF.G) = —H}y, (F.G).
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First, we cover the case n = 1. Observe that
(e )™ = (DY FI )™ = 02T

and obviously DY uF = uDY F. Then using the linearity of 6% we have
1
Hfl)(uF, G) = ;Hfl)(F, G).

Observe also that H?, | (F, uG) =

) (F, G). Assume that it holds for n — 1. For n we have

(l)

H{yny(uF, G) =H 1) (uF, Hiy,ooi ) (1F, G))
1

1
Z_Hl (F’ n— (F G))
1 (&) 1 (1 )

1
=—H (F. 1,0 (F.G)
u
Hiyo (F.G).
This proves the desired scaling property of H (51,,).
Notice that from the relation given by Proposition 1, the formula still holds for the Malliavin spaces

associated to the fractional Brownian motion with the change of the underlying Hilbert space and shifting
the random variables via KF,. Hence, Proposition 2 also holds in the fractional Brownian motion framework.

3. Lower bound for the density

The objective of this section is to give a proof of the lower bound of the density of X;. The main result
concerning this bound is encapsulated in the following theorem:

Theorem 1. Let X, be the solution to equation (1) with o, b € ;Y (R), n € C;°((=r,0)) (i.e. o, b and n are
real-valued smooth functions and these functions are, together with all their partial derivatives, bounded),
and moreover, there exist two constants 0 < A < A such that

A< 1nf o(x) <supo(x) <A.
xeR

Then, for every t € (0,T], the density function p,(x) of X, satisfies

- _ 2
pi(x) > E(|X; 2Hmr|) exp (_ ca(x 2Hmt) ) o
cit ¢
if‘t € (O’ r]; and
— 2
pi(x) > :—13 exp (_04(3;2—;70)) )

ift € (r,T] for every x € R, where cy, ca, c3,c4 > 0 are real constants and m; = E[ X;].

Remark 3. Notice that since o and b are assumed to be bounded, then one can show that m; = E[X;] < oo
using direct estimates.

Remark 4. The resultis stated for one-dimensional stochastic delay differential equations. The generalization
to the multidimensional case is straightforward (see, for instance, [3] for an example of a multidimensional
case).

Remark 5. Notice that this result is highly dependent on the fact that the delay » > 0 is constant. For another
types of delay, another strategy has to be considered in order to prove the lower bound for the density.
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Remark 6. The derivation of bound (9) relies heavily on the restriction ¢ € (0, 7] and the proof of (10) is
simplified by assuming ¢ > r. Nevertheless, the method used for (10) can in fact be extended to all > 0
(see [3] and [5] for some applications of the method in this scenario), thereby providing results valid on the
whole interval (0, T]. Consequently, for the region ¢ € (0, r], one can obtain two different bounds: the one
specific to this interval, as in (9), and the one arising from the extension of the second method.

Throughout the section, we will provide the auxiliary results needed to prove Theorem 1. As mentioned,
in order to prove this result, we will make a distinction in the cases (0, 7] and (r, T]. For the case (0, 7], we
will make use of the techniques developed in [7], as it is the most comfortable method to study the density
of the solution X; when ¢ € (0, r] because of the structure of the equation in this interval of time.

3.1. The case r € (0, 7]
3.1.1. A general bounding technique

In order to illustrate how to obtain a bound for the density in this case, we will briefly recall the method
developed by Nourdin and Viens in [7]. The bound relies on the following results:

Theorem 2. Let F € D'2 with zero mean, let gr(x) be the function defined as
gr(x) = E [(DF,-DL™'F)y|F = x|,

where L denotes the Ornstein-Uhlenbeck operator associated to BY (see [9, Section 1.4] for a full discussion
about the operator L). The law of F has a density pr(x) if and only if the random variable gg (F) is strictly
positive almost surely. In this case, the support of pr, supp(pr), is a closed interval of R of the form [A, B]
with —oco < A < B < oo containing zero and, for almost x € supp(pr),

_ E[IFI] Tz
Pr(x) = 28r(x) T (_/0 gr(2) dz)'

This result has the following consequence.

Corollary 1. If there exist Opin, Omax > 0 such that

2 2
Tmin = gF(F) S Omax>

then F has density function satisfying

2 2
E[|F] exp(_2x2 )wﬂx)s]fﬂf” exp(_ x )

2 2
2a-max 2O-mux

nmin min
Even though this result gives us the lower and the upper bound, it is not clear from the definition of gr
how to analyze this function. Indeed, we have to keep in mind that in our case, F' will be related to the
solution of an SDDE, so computing DL~'F seems, a priori, a difficult task. Concerning our case, let BY
be a fractional Brownian motion with Hurst parameter H > 1/2. As an abuse of notation, we will denote by
B the isonormal process asociated to . In [7], the authors obtain a formula for g (x) which avoids the
computation of —DL~'F. The result from [7] concerning the computation of gf is the following.

Proposition 3. Assume DF = ®(B™) for a measurable function ®r : R" — H. Then, we have

(DF,~DL"'F)y = /we*f’(cDF(BH),E’ (@F(e*HB” +1 - e—ZHB”’))>Hd9

0

and, therefore,
gr(F) = / e E (@7 (B). @ ("B + V1= 2087 )y |F) b,
0

where B® stands for an independent copy of B such that BY and B®' are defined in the probability space
(QxQ', FQF',PxP),E denotes the expectation with respect to P’ and E denotes the expectation with
respect to P X P’.
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We will rely heavily on this way of computing g in order to prove the following bounds for ¢ € (0, r]:

Proposition 4. Let X be the solution (1) with o, b satisfying the hypothesis of Theorem 1. If o is (A, A)-
elliptic, then for every t € (0, r], there exist constants c| < ¢y such that the density p;(x) of X; satisfies:

c1E[1X; — m,] _(x_mt)2 <p, (%)
IA22H cepen | SPt
<02E[|Xt —my|] _(x - mr)2
a2H P\ TTprpH )

where m; = E[X;].
Proof. We will apply Corollary 1. Notice that for ¢ € (0, r], X; solves the equation
t t
X =no +/ o(n(s - r))dBﬁI +/ b(Xy)ds.
0 0

Hence, the Malliavin derivative of X; in the direction s < ¢ satisfies the following equation:

DX, =o(n(s—r)) + /Ot o’ (n(u—-r))Dgn(u — r)dBuH + ‘/Ot b’ (X,)DsX,du.

Since 7 is deterministic, Dyn(u — r) = 0, so the equation satisfied by D X; is reduced to

t
DXy =o(n(s—r)) + / b'(Xu)Ds Xy du.
0

This is an ODE with initial condition o-(r7(s — r)), so the explicit solution to this equation is

DX, = o(n(s—r))exp (/t b’(Xu)du) .

Moreover, from the fact that |b’(X,,)| < ||0’|| and the ellipticity condition on o~ we deduce that there exists
M > 0 such that
de™" < DX, < AeM”. (11)

The important conclusion of this bound is that (11) holds uniformly with respect to w € €. Notice that
one has that X, € D2, but Theorem 2 (and its reformulation in Proposition 3) works for centered random
variables. Hence, in order to apply the bounding technique, we will prove the result for the centered random
variable F = X, — E(X;) and we will deduce from there the result for X;. Since E(X;) is a real number,
DF = DX;. Moreover, recall that if ¢, € H, then

T pT
(o, V) = / / oty |u — V|2H_2dudv.
o Jo
Hence, if we define FY := F(e w + V1 — e~20w’), we can write g5 as

e t t
gr(F) = / e ’E|E (/ / DX (D, X)) u - v|2H2dudv|F)
0 o Jo
Indeed, since we are working under the canonical space of the fractional Brownian motion, one has that

Op(e B (w) + mBH’(w')) =Dp(e w+ ma)').

Hence, if DF(w) = ®g(w), then

Ore Pw+V1-e200)=DF(e w+ V1 -e200) = DF (w, ).

Using the bounds (11) we can easily find that there exist cy, ¢, > 0 such that

de.

12020 < gp(F) < oA PH,

which finishes the proof. O
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Notice that renaming the constants, we derive bound (9). Some comments about this method are that,
as the reader can observe, it is extremely comfortable to study stochastic differential equations driven by an
additive noise and, under a suitable hypothesis on o, the same arguments work for equations of type (1) for
t € (0,r]. The fact that for ¢ > r the diffusion coefficient is random makes it impossible to keep applying
this same method.

3.2. Thecaset > r

As mentioned, a natural approach to address the case ¢ > r is continuing with the same approach as in the
case t € (0,r]. However, one can see that this method turns out to be difficult to apply. Indeed, consider
now ¢ > r. Then, the Malliavin derivative of X, in the direction s < r < t iS now

t t
DX, =r (X + [0 ue)D Xyl + [ B (X)D X

S+r N

t t
=0 (ns_r) + / ' (Xu_r)DsX,_,dBH + / b’ (X,)DsX,du.
S

S+r S

Observe now that the integral with respect to B does not vanish, as it did in the case ¢ € [0,r]. Hence
DX, is now the solution to a stochastic differential equation driven by a fractional Brownian motion, so we
can not expect D X; to have upper and lower bounds which hold uniformly in w € Q. This does not imply
that the procedure inferred from the results in [7] can not be applied in a smart way to obtain bounds for the
density of X;, but we decided to apply the methodology from [5] which turns out to be more natural and
efficient in the case where we have a constant delay r > 0.

The strategy found in [5] has been utilized in several contexts for proving lower bounds for the density of
solution to stochastic differential equations. For instance, an application of the method to general equations
driven by a fractional Brownian motion with H > 1/2 can be found in [3].

One big difference between our adaptation to the delay case of the method presented in [5] and the one
used for the case t € (0, r] based on the results in [7] is that the latter method also produces | an upper bound
for p,(x). The method that we will use will only give us a lower bound, but it can be complemented by an
upper bound using similar arguments as in [2], adapting them properly to the delay scenario.

In general, proving Gaussian type lower bounds for density functions of the solutions to stochastic
differential equations is generally a long and technically demanding task. One of the main objectives of this
work is to illustrate how the delays are actually helpful in order to get simpler proofs.

The first step to work with this method is to represent the density function p,(x) as E[d,(X;)]. To do
so, we rely on the following result.

Theorem 3. Under the hypothesis of Theorem 1, the unique solution to (1) is a non-degenerate random
variable in the sense of Malliavin for all t € (0,T1], that is,

(i) X; € D*.
(ii) F;(tl > 0 almost surely, and F)‘(r] € Mps1 LP(Q).

Moreover, the density p;(x) of X; admits the representation p;(x) = E[6,(X;)], where 6, denotes Dirac’s
delta measure at x.

Proof. Items (i) and (if) are proved in [4]. Hence, by the same argument as in [5], we obtain that the density
p:(x) of X; can be expressed as

pi(x) = E[6x(Xp)],

as desired. m]

In order to analyze p;(x) = E[6,(X;)], we will construct an approximating sequence {F,;0 < n < N}
such that Fy = X;, and we will evaluate p,(x) via evaluating the conditional densities of every F,,. Notice
that this method considers N as large as needed but fixed. The value of N will be chosen appropriately
later on, since several constraints on N will need to be simultaneously satisfied. By construction, analyzing
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p:(x) is equivalent to analyzing E[J,(Fn)] thanks to the representation given by Theorem 3. In order to
construct such an approximating sequence, we will construct a partition 7 = {0 =g < t; < --- <ty =t}
such that |t,, — t,,-1| < & for a small enough & > 0 that will be chosen conveniently in the future. Then, F,,
will be an F;, -measurable random variable. In order to exploit the property of the delay, we will consider
F,, of the form
Fon=Fp1+1,+ Ry,

where [, is a stochastic integral of a predictable process and R, is the remainder term. In the case of a
general stochastic differential equation, the choice of I, is not direct. In fact, choosing I,, as the integral
of a predictable process makes the term R,, difficult to study. Thanks to the delays, our choice of I, is
straightforward and natural. We therefore define

In-1 In-1
Fn_ =no+/ o (Xy_,)dBH +/ b(Xy)ds,
0 0

tn
In =/ O—(Xs—r)dBfl,
1

-1

and

tn
Rn=/ b(Xy)ds.

-1
This allows us to write
pi(x) = E[6x(FN)] = E[6x(FN-1 +IN + RN)],
which, by the properties of the conditional expectation, can also be written as

pi(x) = B[E;y_ (6x(Fn-1+ 1IN + RN))].

Therefore, in order to get information about p, (x) we first need to get as much information as we can about
Ety_[0x(Fn-1 + In + Rn)]. Using a Taylor expansion, this term can be written as

Epy [6x(FN-1 + Iy + RN)] =Eqy_, [6:(Fy-1 + IN)]
1
+Eiy, [/ 0 (Fno1+ 1y +,0RN)RNdp] s
0

where the derivative in the third term has to be understood as the second order derivative in the distributional
sense of 1Fy_, +Iy+pRy>x}- Inspired by this decomposition, we write forall 1 <n < N,

|
Jl,n = Etn_l [5x(Fn71 + In)]7 JZ,n = Et,,_| / 6;(Fn71 +1, +,0Rn)Rndp] . (12)
0

So, a first (and natural) lower bound is
Et,l,l [6x(Fn—1 + In + Rn)] = Jl,n + J2,n = Jl.n - |J2,n|-

The following sections are devoted to the derivation of a lower bound for J; ,, and an upper bound for |J5 ,|.
From now on, we will use C, ¢ as constants that may depend on o,b, T, H, r or the exponents appearing in
the integration by parts estimate (8). However, these constants are independent of N and ¢, so we will not
track their precise dependencies as it not relevant to the proof of the Gaussian lower bound. It is important
to note, nonetheless, that the dependency on r prevents us from obtaining a similar lower bound for the
density of general stochastic differential equations driven by a fBm with H > 1/2.

3.2.1. Lower bound for J; ,

The first constraint we will impose on the constant N to make the lower bound possible is that N is large
enough so that

2H
ag—— < FZH.
N

The key to give a lower bound for J; , is the following result:

10
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Proposition 5. Assume there exist two real constants 0 < A < A suchthat A < infyecg 0(x) < sup, g o(x) <

A. Let Jy , be defined as in (12). Then, if the partition © is such that |t, — t,_ 2H = 0'12\, =ay jv , then

—F._1)?
Jin> ———exp (_%
2720, oy

Proof. Notice that the term J ,, is the conditional density of F,,_ + I, with respect to F;, . Hence, in order
to get a lower bound for J; ,, we need to find and bound this conditional density.

On the one hand, F;,_; is F;, ,-measurable, so it behaves like a constant when we condition it with respect
to F;, ,. From the fact that ¢, — t,_; < r, we have that o-(X,_,) is F;,_ , measurable for all s € [z,,_1,1,]
and therefore, the law of F,,_; + I,,, when conditioned to F;, ,, follows a Gaussian distribution with mean
F,_1 and variance ||0'(X._r)||§{[ trerin]’ Moreover, from the ellipticity condition on ¢ and the definition of

o3, we readily find that

2oy < oKXy, < A20R
This allows us to conclude that
1 —F,_1)?
Ji,n 2 ———exp (—%) s
1/27rA20'12V 2050,
as claimed. O

Remark 7. Tt remains to check the fact that such a partition defined as in Proposition 5 exists. However,
proving that there exists a unique partition 7 = {0 = #p < #; < --- <ty = t} of the interval [0, ] with the

2H
property that |t, — t,_{|*" = 0'12\, = aH is direct.

Observe that the proof of Proposition 5 holds true under the assumption of the existence of such a
partition mr, which is equivalent to assuming that N can be chosen arbitrarily large. In the upcoming sections
we will see that the constraints on N allow us to choose this parameter as large as desired.

3.2.2. Upper bound for |J; ,,|

The result concerning the bound for |J; ,| as follows.

Proposition 6. Let J; ,, be defined as in (12). If the partition m is the same as in Proposition 5, there exist
two constants C,y > 0 such that

N
|J2,n] < CE- (13)

The proof of this proposition is not immediate. In order to conclude (13), we need to derive a first
estimate using the integration by parts formula and then we will bound each of the terms involved using
some technical lemmas. First, recall that

1
Jon = Et,,,l [/ 6;(Fn—1 + 1, + pRy)Rpdp
0

We introduce a new random variable U’ defined by
onUL =1, + pR,,.

With this random variable, J> ;, can now be written as
1
-IZ,n = Et,,,,l [/ 6;(Fn—l + O-NUfl))Rndp
0

11
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Using Fubini’s theorem, we can rewrite J , as

1
JZ,n = / Etn_l [6;5(Fn—l + O’NU}(,})R"] d,O
0

Integration by parts formula (7) for second order derivatives and Remark 1 now yields

1
Joon =/ E; [1{1n+pRn>x—Fn_1}H:;;;(O-NUZ)’Rn)] dp.
0

Then, using Remark 2, this last expression can be expressed as

1
J2,n = 0—[(/2‘/‘ Etn,l |:1{In+pRn>fon_1 }HE’;;;(Uﬁ, Rn)] dp
0

Now, from the fact that 1(;,+or,>x-F,_,} < 1, Holder’s inequality and the estimate (8), J>,,, is bounded in
the following way:

1
ol < coi Ay /0 Ax(p)As(p)dp.

where
Ay = ||Rn||k1,P1J;rl’

_ -1 k3
Az(p) - ||Fuﬁ’tn7]||p3,l’n_1’
and

As(p) = [|UR||

k2, p2stn-1

for some constants ki, k», k3, ks, p1, p2, p3 > 0. The exact values of the constants are not extremely
important, but they can be determined according to the integration by parts formula estimate (8). Indeed,
for the second order derivative case, we know that k; = 2, ko =4, k3 =2, k4 = 6 and p; = g3, p2 = 49>,
p3 = 2q1, where q1, g2, g3 satisfy % + é + q—l% = 1. The bound on the quantities A; relies on the following
lemma:

Lemma 1. Let i be the partition defined as in Proposition 5. If sy, ...,5;,T € [ty_1,t,] WithsV---Vs; < T,

......

Proof. The result for the first order derivative is straightforward. Indeed, differentiating equation (1) in the
direction s € [t,,_1,,] we obtain

T T
DsX; = O—(Xsfr) + / Dqufro'/(Xufr)dBuH + / b’(Xu)Dqudu'
0 0

Now, since DX, = O forall u € [0, 7] due to the choice of the partition, the last expression can be written
as

-
D X: = o (Xs—r) +/ b’ (Xu)DsX,du.
0
This equation has an explicit solution
T
DsX; = o(Xs_,) exp (/ b’(Xu)du) .

Finally, from the hypothesis on o and ', we have that there exists a constant C > 0 such that

IDX.| <C.

12
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In order to prove the result for higher order derivatives, we will use an induction argument. Assume that all
derivatives up to order j — 1 are bounded. The derivative of order j satisfies the following equation:

Dglj,) ..... s jXT :Z Dy, --- Dvsq e DsjU'(Xs—r)
q=1
+/ Dy, ... Dyo(Xy_r)dB" (14)
) .

.
+/ Dy, ... Ds;b(Xy)du.
0

Now, since sV ---Vs; —r <t,_1 and T € [t,_1,1,], then equation (14) can be written as

T

J
DY) o Xe =) Dy Dy, Dyyo(Xy, ) + / Dy, ... Dy b(X,)du, (15)

SV Vs

where D , means that the term Dy . is omitted (for instance, Dy, DVSZDS3 = Dy, Dy,). On the one hand, each
term of the form
Dy, - D.

sq T DSjO—(XSq—V)
involves derivatives of orders k = 1, ..., j — 1 of X; and derivatives of orders [ = 1, ... j of o. Since o has
bounded derivatives of all orders and, by induction hypothesis, all derivatives up to order j — 1 of X, are

bounded, we get that there exists C; > 0 such that
j v
Z |Dy, -+ Dy, -+ Dy;0(Xg, )| < Ci.
q=1

Concerning the term Dy, . .. Dy b(X,), we use the product rule and the chain rule for Malliavin derivatives
Jj times and we find that

J

k
Dy, ...Dyb(X) = Y 6®x) 3 [[pix,,

k=1 MeP(j,k) =1
where P(j, k) denotes the set of all partitions of {sy,...,s;} into k subsets and II; denotes the /-th subset
of this partition. |II;| denotes its length and s, = (s, .., Silﬂ[) it I = {s;,..., Sim,) }. Even though it is

a sum with a lot of terms, the only one that involves a j-th order derivative of X, is

,,,,,,,
Taking that all derivatives of b are bounded and all derivatives of X,, up to order j — 1 are bounded, we find
that there exist Cp, C3 > 0 such that

Dy, ...Dyb(X,) < C2+C3DY) X, (16)

J

Inserting this into (15) leads us to
) ’ )
Dslll,...,SjX‘r <C+ / (CZ + C3Ds{ ...... s qu) du.
0

Using Gronwall’s lemma, we conclude that |D§{ )S; X+| is uniformly bounded. O

We can now proceed to derive the estimates. Concerning the following 3 lemmas, in the proofs we will
use C as a universal constant that may switch from line to line. If several different constants are involved, we
will name them Cy, Cy, . ... To streamline the reading of the paper, we omit the dependency of the constant
on the parameters.

13
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Lemma 2 (Bound for Ay). Recall that Ay = ||Rullk,,p\ 1,_,- Under the same hypothesis as in Lemma I,
there exists a constant C > 0 depending on the maximum of the derivatives of the function b (which is finite
because b € C;°(R)), the Hurst parameter H and T such that

Ay < CN~VCH)

In particular, there exists v > 0 depending on the Hurst parameter H and C > 0 depending on b (and its
derivatives), T, and H such that

oA < c]\;—:.
Proof. By definition,
ki
AT =R = B (RalP) + 3 B (IDD R, )
j=1

The strategy of the proof is to verify that |R,| is of the order of N~!/H) and the Malliavin derivatives are
o(N~1), so that the asymptotic behaviour of A is dominated by the first term of A1, and the terms involving
the derivatives of R,, are negligible. For the first term, notice that |R,,| < fzt: |b(Xs)|ds < ||b]| Lty —tn-1]-
Since the partition is chosen so that
2H 2H
t T
|tn — Z‘nfl|2H = QHW < G’HT,

we can conclude that there exists a constant C > 0 depending on b, T and H such that |R,| < CN ~1/(2H)

so we can find C > 0 such that E,_ (|[R,|P') < CN~P1/2H) which is a consistent estimate with what we
want to prove.

The rest of the proof is done by bounding all the derivatives of order j from 1 up to k;. We will show
the bound for the first derivative since its computation will be useful in future lemmas, and the conclusion
for the higher order derivatives can be easily derived by using estimate (16) and the fact that the Malliavin
derivatives of X; are bounded thanks to Lemma 1. For the first derivative,

2
. ~ th  pln H pi/
”DR””H[z,,_l,t,,] = DyR,D R, |u—v| dudv .
h-1 th-1

Now, using the fact that

n
|IDsR,| < / |6’ (X)) Ds Xpuldu < Clty — tu_y| < CN~V/CH)
tn

-1

we find that 1

B p1/2 _r1U+gp)

IDRAIZ), . <C (N VH\p |2H) <cN-THE (17)

Hence,

. P+

Eny (IDRAIGY, ) ON-720
as desired. m]
Lemma 3 (Bound for A;(p)). Recall that Ay(p) = ||Fl‘j}, . ||];i t,.,- Under the same hypothesis as in
nsln-1 2=
Lemma 1, the quantity A>(p) is uniformly bounded.
Proof. Recall that
O-NUf’l) = [}’l +pRn,
o)
0-12\/||DU5||'2]-[[[,1_1Jn] = ||D[}’l + pDRn“%.[[tn_l,th'

14
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Now, using Lemma 5 in the appendix and the fact that —p > —1, we have

D112,
[
on|IDULIG,,

In-1,tn] 2
n-15tn ] 2 2 - ||DRn||,H[tn71stn

I
Since
tn
I, = / O-(Xsfr)nga

-1
it is clear that for s € [¢,,—1, t,,] we have
Dsly = o (Xs—r).

From the fact that o-(X,_,) > A and ftt'il /tt: lu —v|*~2dudv = Co}, (see Lemma 6 in the appendix) we
derive the following estimate: '

th th
||Dln||§£[tn71,tn] = / / o (Xyer)o (Xy—p) - lu —v|*2dudv > Co3,.
n-1 YIn-1
Moreover, by inequality (17) in the proof of the previous lemma for p; = 2, we have that

<CN~ "%,

tn-1>tn] =

DRI,

Since 0'12\, = O(N~1), for N big enough we deduce that there exist C;, C; > 0 not depending on ¢ such that

2 0112 2 _1-L
O-N“DUHH?-L[tn_],t,,] > C[O’N - ()N H
Now, since
-1 C
Cioy —CN~ "1 =02, [C) - —=—
O/Hl‘ZH]VH
&)
o2 e - —& |,
apr*dfN®H

because ¢t > r, we can choose N large enough so that there exists C3 > 0 with

C
Ciol -GN 1 20 |0 - —2— | > o2,
apgr*dfN®H
SO
2 o
1DUR gy 1.1 = G35 = €3> 0.
N
This implies that
1
-1
I_‘Uf'z)’tnfl S C_3'
Taking conditional norms, we deduce that there exists C > 0 satisfying ||I“l’],1, - ||f5§,z,,- , < C, which proves
the uniform bound of A, (p). O
Lemma 4 (Bound for A3(p)). Recall that A3(p) = ||U%| |k4 . Under the same hypothesis as in Lemma

k2,p2,tn-1
1, the quantity A3 (p) is uniformly bounded in p and in w € Q.

Proof. Applying the relation on Ul = I,, + pR,,, we readily see by applying norms that

ka0 1ka _ ky
on UG pyty = Hn+ PRIl

15



0. Burés anD C. Rovira

By virtue of Minkowski’s inequality, the fact that (|a| + |b|)* < C(|a|* + |b|*) and p < 1, we have

ORI s < Cog (Ml + IR, ) (18)

ka,p2,tn-1 k2,p25tn-1 k2,p25tn-1

so it is enough to bound the quantities ||1n||],:;* - and ||Rn||i‘2‘ - separately. Lemma 2 gives us the
bound o o

k _
IRall): ., S CNTRPH
In particular, this bound implies that
_ k ka1
o RN < en D), (19)

For the I,, term, we know that DI, = o (X_,), and therefore, the j-th order derivatives of I,, in directions
belonging to [t,,t,-1]’ vanish if j > 2 due to the fact that the partition is chosen so that s — r < t,,_; for all
s € [ty-1,1,]. This implies that

ka/ p2
k.
HallE o = (B (017 + B (DL, D)

On the one hand, since [, = fz:: a'(Xs,r)stH and s — r < t,_1, the law of I,, conditioned to F;, | is
conditionally Gaussian with zero mean and variance ||o-(X._,)| Igﬂ trrin]’ Hence, it is then well-known that

>In

by the properties of the moments of Gaussian random variables we have

Ey (II17) = Cllo (X2, .

Finally, taking that o (X,_,) < A itis easy to find that

llor(X._)] < APol2, (20)

p2
’H[tnfl Jn] -

from which we conclude that
E;,_ (1,]7?) < Cof?

for a certain constant C > 0. Now, since ||DI"||1;£2[t ] T [lor(X._)| i’f[t 1,17 We resort to inequality
(20) to conclude that there exists C > 0 such that
E, (IDLID:, )< Col.
All in all, the conclusion of the previous estimates is that
kq ky
||1”||k2,p2,tn71 < CO'N s
and in particular,
VA <C 21
oy Ml 0, S C 21
To end the proof of this lemma, we insert in estimates (19) and (21) into (18) and get
O 1ka
WUn iy ppty s S €
for a constant C > 0 depending on p»>, A, k4 and H. O

Let us now illustrate how these 3 lemmas prove Proposition 6. Recall that, using the integration by parts
formula, we derived the estimate

1
ol < o2 A, / Ax(p) As(p)dp.
0

First, the conclusion of Lemma 2 is that
CN~

ON

-2
Y Al <

16
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for real constants C, y > 0. Moreover, the conclusion of Lemmas 3 and 4 is that there exists a constant C > 0
such that A;(p) < C and A3(p) < C uniformly in p € [0, 1] and in w € Q, respectively. This information
leads us to the following estimate:

1 _
_ CN~
anl < 02 / Ax(p)As(p)dp < SN, 22)
0 ON

which proves Proposition 6. With these bounds on J; ,, and J; ,, we have all the tools needed in order to
prove the lower bound for ¢ > r.

3.3. Proof of the lower bound

In Section 3.1, we have already proved the result when ¢ € (0, r], and in Subsections 3.2.1 and 3.2.2 we have
proved all the auxiliary results that allow us to prove the lower bound. This section is devoted to putting all
the information together and concluding that the density of the solution X; to (1) is strictly positive.

Proof of Theorem 1. Recall that, thanks to Proposition 5 and the bound we have concluded in equation (22),
we can bound E;, [6x(F,)] as

L (_ (x = 1)’
\2nN2 03, 2007,

We define the intervals I,, = I(y,,c10n) := {z € R;|z — yu| < cion} for some constant ¢; > 0 to be
determined and y, = no + +; (x —10), where yo = 19 = Fp is the initial condition of the SDDE. We also
define {x,;n =0,...,N}, where xg = o = Fo,xj € [ for j =1,...,N—1and xy = x. Moreover, we will
assume that |y, — y,—1| < c¢jon (later in the proof we will see that the constants ¢; and N can be chosen so
that it is satisfied). We first rewrite the density of Fy as

CN™”

Et,,_l [6X(Fn)] 2
oN

(23)

E[6.(Fy)] = /R B0+ (Fn)0xy., (Fy-1)ldty-1.

Then, due to the positivity of E[6x(Fn)dxy_, (Fn-1)] (see [5, Theorem 1]) we have the bound

/R B0 (Fn)0xn, (Fn-1)ldrn_1 > / B0+ (Fn)0xy., (Fy-1)ldcy-1.

In-1

Using the properties of the conditional expectation and estimate (23) we find that

E[ox(Fn)]

— Fn_1)?
ZL E [lexp —w —CN7Y|6xp_,(Fn-1)| dxn-1.
ON Jin_, 22%07%,

We want this integral to give a strictly positive contribution (otherwise, the resulting bound is p,(x) > 0,
which gives us no information). In order to achieve this objective, since xy_1 € Iny—-1, we can observe
by Fubini’s theorem that the expectation is taken in the set {w € Q; Fy_1(w) € Iny_1} since the term
Oxn_, (Fn—1) vanishes if Fy_; ¢ In_1. Moreover, if Fiy_; € Iy_; we have

|x = Fy_1l < lx —ynl+|yn —yn-1l + lyn-1 + Fno1] £ 3cion < 4ciop, (24)

where we choose bound 4coy instead of 3cjon to make the computations nicer. In order to obtain a
Gaussian type bound, we will choose the constants ¢; and N appropriately. First, we choose ¢ small enough

so that
86% 1
exp —? > E

17
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Regarding the choice of N, we consider a constant ¢ > ﬁ and choose N of the form
1

calx = ol

N=—"7n

Notice that under this definition of ¢, and N, condition (24) is satisfied. The idea is that ¢, is a constant that

controls how big we want N to be, so the larger ¢, the larger N.

1

Since ¢y > 72 can be chosen arbitrarily large, we will demand ¢ to be large enough so that N =
1

satisfies CN~7 < 1/4. Under this first restriction we have that

expl|———F>5 5 [ =exp | =exp|-—3 | =
2/120'N 2/12 oN A
On the other hand, taking that CN~7 < 1/4, we find that the integrand is stricly positive. We can therefore
proceed to bound the density as follows:

calx=np!?
7

N =

dxn -

E[6,(Fn)] zi/ E

ON JIn-

(x — Fy_1)? _
(exp(—w -CN77 5xN,1(FN7])

c 1 1
Za Iy 1E|:(2 4) XN-— |(FN 1):| de 1s

so we are led to

BL6, ()] > 70— / Bl6y., (Fy-1)ldtn-1.

In-1

In particular, these constraints imply that E;, [0y, (F,)] > ., N. Indeed, by equation

(23) we have
¢ (xn - Fn—1)2 _
Ef, [0, (F)] 2— [exp [-———="—|-CN7Y
ON 22%0%,
¢ (xn - n—1)2 1
>— |lexp| ————| - -
ON 2/120'12\] 4

Now, using the fact that
X = Fuot| < X0 = yul + [yn = Yn-1l + [yn-1 + Fao1l £ 3cion < 4cion,

if |y, — yu_1| < c10N, we have that

We can proceed iterating this same procedure one step from N — 1 to N — 2 and taking that 6,,_,(Fn-2) is
Fin_,-measurable to get

C
E[6x(Fn)] >4—/ E[oxy_ (Fn-1)]dxn-1
U In-1
2 / / E[0xy_ (FN-1)0xy_, (FN-2)]dxXN-2dxN -1
ON JIny_y JInoa
4 / / EtN 2[ XN- |(FN 1)]6)6}\1 z(FN 2)] d-xN 2de 1
ON JIy_y JInos

2

C

Z(—4 )|1N—1| El0xy_, (FNn-2)]dxn_2,
ON In-2

18
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aslong as yny_1,yn-2 € In—1 N Iy_> # 0, which holds because we are working under the assumption that
|lynN-1 — y~n-2] £ cion. One can check by iterating this procedure from N — 1 all the way to 1 and taking
that all intervals /; have the same length as the interval centered at the origin with radius c;o that

N
E[6x(FNn)] = (L) [1(0, cron) V!
40’1\/

e\N (NU2\N (g N _
(5" (%) (3] o

N2 (c\N _
:tT (Z) (ZCI)N !

1 xal 1
2 Yo i exp (Nlog( ) + 3 log(N)) .

To the previous restriction on ¢y, i.e. exp ( ) > 2, we also impose that

L:=-1o g( 1) > 0,
and
NLN > 1.
Now, taking into account that N = °2|X2—'7°| and assuming that N > 1 (because we want N to be a natural

number) we get

1 Lea|x = ol
E[6x(Fn)] 2 %P (_tZ—H ,

which is a bound consistent with the one in (10). The only task left to do is to adjust the constant ¢, so that
it is compatible with all of the previous constraints, i.e.:

* [Yn = Yn-1l L cron.

. 22_
4oy’

« N = ql)tcz;}mlz'
On the one hand, we have to take ¢, so that

[Vas1 =yl £ cron.
Now, from the definition of y,’s, we have

_le=mnol _fx—mnol 1

Iynl_YH|— - =
' N VN VN

. _ 2
and taking that N = °2|);2—H'7°| we get

x—mol 1 H oN

VN al-ml e
Hence, it is enough to consider ¢, in such a way that

1 1
— <c, C2—

-_ 2 9
V2 4y
where the first constraint follows from the fact that we need |y, — y,—1| < c¢jon and the second constraint
follows from relation (24). Choosing therefore an arbitrarily large ¢, satisfying
1

— <
Vea

[Yn+1 = yul =

is enough to conclude the bound. Finally, renaming the constants, we obtain the desired bound (10). O
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As a corollary of this result, we can state the conclusion of this work.

Corollary 2. Let X be the solution to (1). Under the same hypothesis as in Theorem 1, the density function
pr(x) of X, is strictly positive.

Proof. A direct consequence of Theorem 1. O
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Appendix A. Real analysis tools

Lemma 5. Let H be a real Hilbert space. Denote by (-, -) the scalar product in H and || - || its norm. Then,
forany f,g € H, we have

11
If + gl = - llgll®.

Proof. Notice that

1 1 1
(f + V25 5 +V28) = SIIAIP + 2lgl” +2(F.8) 2 0. (25)

Vv ¥

Then, taking that
Lf+gll® = 11117+ llgl* +2¢f. &),
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equation (25) turns into

111
1+l = 25 + g2 = 0.

which proves the inequality. O

Lemma 6. Let 0 < a < b be two positive real constants. Then,

b b 1
/ / lu = v*"2dudv = —|b — a|*". (26)
a a aH

Proof. Notice that the left-hand side of (26) can be expressed as

b b T T
_ _ 1

/ / |u —v|* 2 dudv =/ / 10,51 (W) L0 o)W = v 2 dudv = —(L{a,p)s Lap))H-
a a 0 0 aH

Recall that
(110,a1> L10,61)2 = Ru(a, b)

and Ry (a,a) = a*? . Now, taking that 1[5 («) = 1j0,5] (1) — 1{0,q) (), we have that
(La.p)s Ya.p)) = (10,61 = L[0.a)> L{0.6] = L{0.a))% = Ru (b, D) + Ru(a,a) —2Rp(a,b).
Using now the definition of Ry, we find that
Ry (b,b) + Ry(a,a) —2Ru(a,b) = b* + o™ — p?H _ ?H 4 b —a* = |b - a?H,

so equality (26) holds. )
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