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Abstract. We determine the maximum length of a walk on the grid graph 𝑃𝑚 × 𝑃𝑛, up to an additive error of 1. This
nearly settles McNeil’s conjecture for the square grid graph 𝑃𝑛 × 𝑃𝑛.
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1. Introduction

Let 𝑚 and 𝑛 be two positive integers and consider the grid graph 𝑃𝑚 × 𝑃𝑛. Assume that the 𝑚𝑛 vertices
of 𝑃𝑚 × 𝑃𝑛 are labeled bijectively by {1, 2, . . . , 𝑚𝑛}. The labeling induces a walk on 𝑃𝑚 × 𝑃𝑛, beginning
with the vertex labeled 1, proceeding to the vertex labeled 2, and so on, until finally the vertex labeled 𝑚𝑛

is reached. This work is concerned with the following question: What is the maximum possible length of
such a walk, denoted by 𝑀 (𝑃𝑚 × 𝑃𝑛), if the distance between consecutive labeled vertices is the Manhattan
distance? See Figure 1 for a visualization.
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Figure 1: Two walks on the grid graph 𝑃2 × 𝑃2. The left walk has length 3 = 1 + 1 + 1, while the right walk has length 2 + 1 + 2 = 5,
which is maximal. Thus, 𝑀 (𝑃2 × 𝑃2 ) = 5.

This question was studied in two special cases: the case 𝑃1 × 𝑃𝑛 reduces to standard permutations since
𝑃1 × 𝑃𝑛 is isomorphic to 𝑃𝑛. It was shown by Bulteau et al. [1] that 𝑀 (𝑃𝑛) = ⌊𝑛2/2⌋ − 1. The second case,
with 𝑚 = 𝑛, was studied by McNeil (see sequence A179094 in [3]). Based on empirical evidence, McNeil
proposed the following conjecture.

Conjecture 1. Assume that 𝑛 ≥ 2. Then

𝑀 (𝑃𝑛 × 𝑃𝑛) =
{
𝑛3 − 3, if 𝑛 is even,
𝑛3 − 𝑛 − 1, if 𝑛 is odd.

Our results are summarized in the following theorem. In particular, they nearly settle McNeil’s conjec-
ture.

Theorem 1. We have 𝑀 (𝑃2 × 𝑃𝑛) ∈ {𝑟, 𝑟 + 1}, where 𝑟 = (𝑛 + 1)2 − 4. Furthermore, if 𝑚, 𝑛 ≥ 3, then:
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1. If 𝑚 and 𝑛 are both even, then 𝑀 (𝑃𝑚 × 𝑃𝑛) ∈ {𝑟, 𝑟 + 1}, where

𝑟 =
𝑚𝑛(𝑚 + 𝑛)

2
− 3.

2. If 𝑚 and 𝑛 are both odd, then 𝑀 (𝑃𝑚 × 𝑃𝑛) ∈ {𝑟, 𝑟 + 1}, where

𝑟 =
𝑚𝑛(𝑚 + 𝑛)

2
− 𝑚 + 𝑛

2
− 1.

3. If 𝑚 is odd and 𝑛 is even, then

𝑀 (𝑃𝑚 × 𝑃𝑛) =
𝑚𝑛(𝑚 + 𝑛)

2
− 𝑛

2
− 1.

2. Main results

Throughout the paper, let 𝑚, 𝑛 ≥ 2 be two integers. We set [𝑛] = {1, 2, . . . , 𝑛} and identify the vertex set of
𝑃𝑚 × 𝑃𝑛 with𝑉 = [𝑚] × [𝑛]. Thus, the labelings we consider are bijections 𝜎 : 𝑉 → [𝑚𝑛]. The Manhattan
distance between two vertices (𝑖, 𝑗), (𝑖′, 𝑗 ′) ∈ 𝑉 is

𝑑 ((𝑖, 𝑗), (𝑖′, 𝑗 ′)) = |𝑖 − 𝑖′ | + | 𝑗 − 𝑗 ′ |.

If 𝑐 is a condition, let 1𝑐 denote its indicator function, which is equal to 1 if 𝑐 holds and 0 otherwise. For
two sequences 𝑎, 𝑏, we write 𝑎 ◦ 𝑏 for their concatenation. If 𝑎 = (𝑎1, . . . , 𝑎𝑛) is a sequence, we denote by
TV(𝑎) the total variation of 𝑎, i.e., TV(𝑎) = ∑𝑛−1

𝑖=1 |𝑎𝑖+1 − 𝑎𝑖 |. The proof of Theorem 1 consists of an upper
bound (Lemma 3) and corresponding lower bounds (Lemmas 4, 5, 6, and 7).

2.1. The upper bound
A key ingredient in the proof of the upper bound (Lemma 3) is an extension of the maximum total variation
formula of Bulteau et al. [1] from permutations (𝑚 = 1) to permutations of a multiset consisting of 𝑚 ≥ 2
copies of [𝑛] (Lemma 2). The proof of this extension uses the following result concerning the maximum
number of transitions in binary words.

Lemma 1. The maximum number of transitions from 0 to 1 or from 1 to 0 in a binary word of length 𝑛 with
𝑘 ones is

2 min{𝑘, 𝑛 − 𝑘} − 1𝑘= 𝑛
2
.

Proof. Recall that a run in a binary word is a subword consisting of consecutive zeros or ones that is not
preceded or followed by the same digit. It is well known (e.g., [4, p. 52]) that the maximum number of runs
in a binary word of length 𝑛 with 𝑘 ones is

2 min{𝑘, 𝑛 − 𝑘} + 1 − 1𝑘= 𝑛
2
.

Since the number of transitions is equal to the number of runs minus one, the assertion follows. □

Lemma 2. Denote by 𝑆(𝑚, 𝑛) the set of permutations of the elements of the multiset containing 𝑚 copies of
[𝑛]. Then

max
𝜎∈𝑆 (𝑚,𝑛)

TV(𝜎) = 2𝑚
⌊𝑛
2

⌋ ⌈𝑛
2

⌉
− 12 |𝑛. (1)

Proof. For 𝜎 = (𝜎1, . . . , 𝜎𝑚𝑛) ∈ 𝑆(𝑚, 𝑛) set

𝐶𝑘 (𝜎) =
𝑚𝑛−1∑︁
𝑖=1

1(𝜎𝑖 ≤ 𝑘 < 𝜎𝑖+1 ) or (𝜎𝑖+1 ≤ 𝑘 < 𝜎𝑖 ) .
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We claim that

TV(𝜎) =
𝑛−1∑︁
𝑘=1

𝐶𝑘 (𝜎). (2)

Indeed, for 𝑥, 𝑦 ∈ [𝑛] and 𝑘 ∈ [𝑛 − 1], we have

|𝑥 − 𝑦 | =
𝑛−1∑︁
𝑘=1

1(𝑥 ≤ 𝑘 < 𝑦) or (𝑦 ≤ 𝑘 < 𝑥 ) .

Thus,

TV(𝜎) =
𝑚𝑛−1∑︁
𝑖=1

|𝜎𝑖+1 − 𝜎𝑖 |

=

𝑚𝑛−1∑︁
𝑖=1

𝑛−1∑︁
𝑘=1

1(𝜎𝑖 ≤ 𝑘 < 𝜎𝑖+1 ) or (𝜎𝑖+1 ≤ 𝑘 < 𝜎𝑖 )

=

𝑛−1∑︁
𝑘=1

𝐶𝑘 (𝜎).

Now, let 𝑝𝑘 : 𝑆(𝑚, 𝑛) → {0, 1}𝑚𝑛 be the projection defined as follows: For 𝑖 ∈ [𝑚𝑛], let the 𝑖th
coordinate of 𝑝𝑘 (𝜎) be 1𝜎𝑖≤𝑘 . It follows that 𝐶𝑘 (𝜎) is equal to the number of transitions in 𝑝𝑘 (𝜎). Indeed,

𝐶𝑘 (𝜎) =
𝑚𝑛−1∑︁
𝑖=1

1(𝜎𝑖 ≤ 𝑘 < 𝜎𝑖+1 ) or (𝜎𝑖+1 ≤ 𝑘 < 𝜎𝑖 )

=

𝑚𝑛−1∑︁
𝑖=1

1( (𝑝𝑘 (𝜎) )𝑖 = 1 and (𝑝𝑘 (𝜎) )𝑖+1 = 0) or ( (𝑝𝑘 (𝜎) )𝑖 = 0 and (𝑝𝑘 (𝜎) )𝑖+1 = 1)

= number of transitions in 𝑝𝑘 (𝜎).

Applying Lemma 1 to the binary word 𝑝𝑘 (𝜎), which has length 𝑚𝑛 and 𝑚𝑘 ones, we conclude that

𝐶𝑘 (𝜎) ≤ 2𝑚 min{𝑘, 𝑛 − 𝑘} − 1𝑘= 𝑛
2
. (3)

Summing (3) over 𝑘 ∈ [𝑛 − 1] and using the identity

𝑛−1∑︁
𝑘=1

min{𝑘, 𝑛 − 𝑘} =
⌊𝑛
2

⌋ ⌈𝑛
2

⌉
,

which may be found, for example, in sequence A002620 in [3], together with
∑𝑛−1

𝑘=1 1𝑘= 𝑛
2
= 12 |𝑛, we conclude

from (2) that
TV(𝜎) ≤ 2𝑚

⌊𝑛
2

⌋ ⌈𝑛
2

⌉
− 12 |𝑛.

This proves that the left-hand side of (1) is at most the right-hand side. To prove the equality, we shall
construct a permutation that attains the upper bound. We distinguish between even and odd 𝑛. Assume first
that 𝑛 is odd, i.e., 𝑛 = 2𝑘 + 1 for some integer 𝑘 ≥ 1. For 𝑗 ∈ [𝑘], define a sequence 𝐵 𝑗 ,𝑚,𝑛 of length 2𝑚 by

𝐵 𝑗 ,𝑚,𝑛 = ( 𝑗 , 𝑛 + 1 − 𝑗 , 𝑗 , 𝑛 + 1 − 𝑗 , . . . , 𝑗 , 𝑛 + 1 − 𝑗).

Now define 𝜎 as follows:

𝜎 = (𝑘 + 1) ◦ 𝐵1,𝑚,𝑛 ◦ · · · ◦ 𝐵𝑘,𝑚,𝑛 ◦ (𝑘 + 1, . . . , 𝑘 + 1︸              ︷︷              ︸
𝑚 − 1 times

).

3



S. Fried

To calculate TV(𝜎), notice that TV(𝐵 𝑗 ,𝑚,𝑛) = (2𝑚 − 1) (𝑛 + 1 − 2 𝑗). Furthermore, for 𝑗 ∈ [𝑘 − 1], the
absolute difference between the last element of 𝐵 𝑗 ,𝑚,𝑛 and the first element of 𝐵 𝑗+1,𝑚,𝑛 is 𝑛 − 2 𝑗 . It follows
that

TV(𝜎) = |𝑘 + 1 − 1| +
𝑘∑︁
𝑗=1

(2𝑚 − 1) (𝑛 + 1 − 2 𝑗) +
𝑘−1∑︁
𝑗=1

(𝑛 − 2 𝑗) + |𝑛 + 1 − 𝑘 − (𝑘 + 1) |

= 2𝑚𝑘 (𝑛 − 𝑘)

= 2𝑚
⌊𝑛
2

⌋ ⌈𝑛
2

⌉
.

Assume now that 𝑛 is even, i.e., 𝑛 = 2𝑘 for some integer 𝑘 ≥ 1. For 𝑗 ∈ [𝑘] define a sequence 𝐵 𝑗 ,𝑚,𝑛 of
length 2𝑚 by

𝐵 𝑗 ,𝑚,𝑛 = (𝑛 + 1 − 𝑗 , 𝑗 , 𝑛 + 1 − 𝑗 , 𝑗 , . . . , 𝑛 + 1 − 𝑗 , 𝑗).
Now define 𝜎 in two steps: First, let

𝜎′ = 𝐵1,𝑚,𝑛 ◦ · · · ◦ 𝐵𝑘,𝑚,𝑛.

Then let 𝜎 be the sequence obtained from 𝜎′ by cutting its last element (which is 𝑘) and inserting it at the
beginning of 𝜎′. As in the odd case, TV(𝐵 𝑗 ,𝑚,𝑛) = (2𝑚 − 1) (𝑛 + 1− 2 𝑗), and, for 𝑗 ∈ [𝑘 − 1], the absolute
difference between the last element of 𝐵 𝑗 ,𝑚,𝑛 and the first element of 𝐵 𝑗+1,𝑚,𝑛 is 𝑛 − 2 𝑗 . It follows that

TV(𝜎) = |𝑘 − 𝑛| +
𝑘∑︁
𝑗=1

(2𝑚 − 1) (𝑛 + 1 − 2 𝑗) +
𝑘−1∑︁
𝑗=1

(𝑛 − 2 𝑗) − 1

= 2𝑚𝑘 (𝑛 − 𝑘) − 1

= 2𝑚
⌊𝑛
2

⌋ ⌈𝑛
2

⌉
− 1.

Thus, in both cases there is a permutation attaining the upper bound and the proof is complete. □

We may now prove the upper bound on 𝑀 (𝑃𝑚 × 𝑃𝑛).

Lemma 3. We have

𝑀 (𝑃𝑚 × 𝑃𝑛) ≤ 2𝑛
⌊𝑚

2

⌋ ⌈𝑚
2

⌉
− 12 |𝑚 + 2𝑚

⌊𝑛
2

⌋ ⌈𝑛
2

⌉
− 12 |𝑛.

Proof. Consider a labeling 𝜎 of 𝑃𝑚 × 𝑃𝑛, i.e., 𝜎 : 𝑉 → [𝑚𝑛] is a bijection. For 𝑡 ∈ [𝑚𝑛], write
(𝑖𝑡 , 𝑗𝑡 ) = 𝜎−1 (𝑡) and notice that the multiset {𝑖𝑡 : 𝑡 ∈ [𝑚𝑛]} is equal to 𝑛 copies of [𝑚] and the multiset
{ 𝑗𝑡 : 𝑡 ∈ [𝑚𝑛]} is equal to 𝑚 copies of [𝑛]. Thus, by Lemma 2,

𝑚𝑛−1∑︁
𝑡=1

𝑑 (𝜎−1 (𝑡), 𝜎−1 (𝑡 + 1)) =
𝑚𝑛−1∑︁
𝑡=1

|𝑖𝑡+1 − 𝑖𝑡 | +
𝑚𝑛−1∑︁
𝑡=1

| 𝑗𝑡+1 − 𝑗𝑡 |

≤ 2𝑛
⌊𝑚

2

⌋ ⌈𝑚
2

⌉
− 12 |𝑚 + 2𝑚

⌊𝑛
2

⌋ ⌈𝑛
2

⌉
− 12 |𝑛. □

2.2. The lower bound
The proof of the lower bound consists of four constructions, which, taken together, cover all cases listed in
Theorem 1.

Lemma 4. Assume that 𝑛 is odd. Then 𝑀 (𝑃2 × 𝑃𝑛) ≥ (𝑛 + 1)2 − 4.

Proof. Let 𝜎 : 𝑉 → [2𝑛] be the bijection given by[
𝑛 − 1 · · · 4 2 𝑛 + 1 2𝑛 𝑛 + 3 · · · 2𝑛 − 2
2𝑛 − 1 · · · 𝑛 + 4 𝑛 + 2 1 3 5 · · · 𝑛

]
.
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The walk 1 → 2 → · · · → 𝑛 has length
∑𝑛−1

𝑖=1 (𝑖 + 1). Now, 𝑛+1
2 steps lead to 𝑛 + 1 and additional 2 steps

to 𝑛 + 2. Then, a walk of length
∑𝑛−1

𝑖=3 (𝑖 + 1) leads to 2𝑛 − 1. Finally, 𝑛+3
2 steps lead to 2𝑛 and the walk is

completed with a total length of (𝑛 + 1)2 − 4. □

Lemma 5. Assume that 𝑚 and 𝑛 are both even. Then

𝑀 (𝑃𝑚 × 𝑃𝑛) ≥
𝑚𝑛(𝑚 + 𝑛)

2
− 3.

Proof. Let 𝑟 = 𝑚𝑛
2 and let 𝜎 : 𝑉 → [𝑚𝑛] be the bijection given by

𝑟 − 1 · · · · · · · · · · · · · · · · · · 𝑚𝑛 − 1
...

...
...

...

· · · · · · 3 1 𝑟 + 1 𝑟 + 3 · · · · · ·
· · · · · · · · · 𝑚𝑛 𝑟 · · · · · · · · ·
...

...
...

...

𝑟 + 2 𝑟 + 4 · · · · · · · · · · · · 4 2


.

First, we describe the bijection explicitly. The array of size 𝑚 × 𝑛 is divided into four regions, each of size
𝑚
2 × 𝑛

2 . The labels are distributed as follows:

1. The top-left region contains the odd labels 1, 3, . . . , 𝑟 − 1 arranged so that 1 is at index (𝑚2 ,
𝑛
2 ) and

each row is strictly increasing from right to left and each column is strictly increasing from bottom to
top.

2. The top-right region contains the odd labels 𝑟 + 1, 𝑟 + 3, . . . , 𝑚𝑛 − 1 arranged so that 𝑟 + 1 is at index
(𝑚2 ,

𝑛
2 + 1) and each row is strictly increasing from left to right and each column is strictly increasing

from bottom to top.

3. The bottom-right region contains the even labels 2, 4, . . . , 𝑟 arranged so that 2 is at index (𝑚, 𝑛) and
each row is strictly increasing from right to left and each column is strictly increasing from bottom to
top.

4. The bottom-left region contains the even labels 𝑟 + 2, . . . , 𝑚𝑛 arranged so that 𝑟 + 2 is at index (𝑚, 1)
and each row is strictly increasing from left to right and each column is strictly increasing from bottom
to top.

We split
∑𝑚𝑛−1

𝑡=1 𝑑 (𝜎−1 (𝑡), 𝜎−1 (𝑡 + 1)) into its horizontal and vertical parts.

1. Horizontal part - There are 𝑚𝑛
4 walks from the top-left region to the bottom-right region, each has

length 𝑛
2 . The return walks have length 𝑛+2

2 , except those that go from column 𝑛+2
2 . These have length

1, with the exception of the walk from 𝑟 to 𝑟 + 1 which has no horizontal part. By symmetry, the
walks between the other pair of diagonal regions contribute exactly the same distance. It follows that
the total horizontal contribution is

2
(
𝑚𝑛2

8
+
(𝑚𝑛

4
− 𝑚

2

) 𝑛 + 2
2

+ 𝑚

2
− 1

)
=

𝑚𝑛2

2
− 2.

2. Vertical part - There are 𝑚𝑛
4 walks from the top-left region to the bottom-right region, each has length

𝑚
2 . The walks back are also of length 𝑚

2 , except those that go from column 𝑛+2
2 . These have length

𝑚+2
2 , with the exception of the walk from 𝑟 to 𝑟 + 1 which has length 1. By symmetry, the walks

between the other pair of diagonal regions contribute exactly the same distance, except that we halt at
label 𝑚𝑛. It follows that the total vertical contribution is

2
(
𝑚2𝑛

8
+
(𝑚𝑛

4
− 𝑚

2

) 𝑚
2
+ 𝑚 − 2

2
· 𝑚 + 2

2
+ 1

)
− 1 =

𝑚2𝑛

2
− 1.
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Combining the two parts yields a total distance of

𝑚𝑛2

2
− 2 + 𝑚2𝑛

2
− 1 =

𝑚𝑛(𝑚 + 𝑛)
2

− 3,

as asserted. □

Lemma 6. Assume that 𝑚, 𝑛 ≥ 3 are both odd. Then

𝑀 (𝑃𝑚 × 𝑃𝑛) ≥
𝑚𝑛(𝑚 + 𝑛)

2
− 𝑚 + 𝑛

2
− 1.

Proof. Let 𝑟 = (𝑚+1) (𝑛−1)
2 and let 𝜎 : 𝑉 → [𝑚𝑛] be the bijection given by

𝑟 − 1 · · · · · · · · · 𝑟 + 1 𝑚𝑛 − 2 · · · · · · · · ·
...

...
...

...
...

...
... 𝑟 + 𝑚 − 2 · · · · · · 𝑟 + 𝑚 + 2 𝑟 + 𝑚

· · · · · · 3 1 𝑚𝑛 𝑟 · · · · · · · · ·

𝑚𝑛 − 1 · · · · · · · · · 𝑟 + 2
...

...
...

...
...

...
...

· · · · · · 𝑟 + 𝑚 + 3 𝑟 + 𝑚 + 1 𝑟 + 𝑚 − 1 · · · · · · 4 2


.

First, we describe the bijection explicitly. The array of size 𝑚×𝑛 is divided into seven regions and the labels
are distributed as follows:

1. The top-left region contains the odd labels 1, 3, . . . , 𝑟 − 1 arranged so that 1 is at index (𝑚+1
2 , 𝑛2 ) and

each row is strictly increasing from right to left and each column is strictly increasing from bottom to
top.

2. The top-middle region contains the odd labels 𝑟 + 1, . . . , 𝑟 + 𝑚 − 2 one above the other, arranged so
that 𝑟 + 1 is in the first row and each row is strictly increasing from top to bottom.

3. The top-right region contains the odd labels 𝑟 + 𝑚, 𝑟 + 𝑚 + 2, . . . , 𝑚𝑛 − 2 arranged so that 𝑟 + 𝑚 is
at index (𝑚−1

2 , 𝑛) and each row is strictly increasing from right to left and each column is strictly
increasing from bottom to top.

4. The bottom-right region contains the even labels 2, 4, . . . , 𝑟 and is defined similarly to the top-left
region.

5. The bottom-middle region contains the even labels 𝑟 + 2, . . . , 𝑟 +𝑚 − 1 and is defined similarly to the
top-middle region.

6. The bottom-left region contains the even labels 𝑟+𝑚+1, 𝑟+𝑚+3, . . . , 𝑚𝑛−1 and is defined similarly
to the top-right region.

7. The central region consists only of the label 𝑚𝑛 at index (𝑚+1
2 , 𝑛+1

2 ).

We split
∑𝑚𝑛−1

𝑡=1 𝑑 (𝜎−1 (𝑡), 𝜎−1 (𝑡 + 1)) into its horizontal and vertical parts.

1. Horizontal part - There are (𝑚+1) (𝑛−1)
4 walks from the top-left region to the bottom-right region, each

has length 𝑛+1
2 . The return walks have length 𝑛+3

2 , except those that go from column 𝑛+3
2 . These

have length 2, with the exception of the walk from 𝑟 to 𝑟 + 1, which has length 1. Next, the walk
𝑟 +1 → 𝑟 +2 → · · · → 𝑟 +𝑚−1 has no horizontal part. Thus, we continue from 𝑟 +𝑚−1. Moving to
𝑟 +𝑚 gives 𝑛−1

2 . Now, there are (𝑚−1) (𝑛−1)
4 walks from the top-right region to the bottom-left region,

each has length 𝑛+1
2 . The return walks have length 𝑛−1

2 , except those that go from the first column.
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These have length 𝑛 − 1, with the exception of the walk from 𝑚𝑛 − 1 to 𝑚𝑛, which has length 𝑛−1
2 . It

follows that the total horizontal contribution is

(𝑚 + 1) (𝑛2 − 1)
8

+
(
(𝑚 + 1) (𝑛 − 1)

4
− 𝑚 + 1

2

)
𝑛 + 3

2
+ 2 · 𝑚 − 1

2
+ 1 + 𝑛 − 1

2

+ (𝑚 − 1) (𝑛2 − 1)
8

+
(
(𝑚 − 1) (𝑛 − 1)

4
− 𝑚 − 1

2

)
𝑛 − 1

2
+
(
𝑚 − 1

2
− 1

)
(𝑛 − 1) + 𝑛 − 1

2

=
𝑚𝑛2 − 𝑚

2
− 1.

2. Vertical part - There are (𝑚+1) (𝑛−1)
4 walks from the top-left region to the bottom-right region, each

has length 𝑚−1
2 . The return walks have length 𝑚−1

2 , except those that go from column 𝑛+1
2 + 1. These

have length 𝑚+1
2 , with the exception of the walk from 𝑟 to 𝑟 + 1, which has length 𝑚−1

2 . Now, there
are 𝑚−1

2 walks from the top-middle region to the bottom-middle region, all having length 𝑚+1
2 . The

return walks have length 𝑚−1
2 , except the last one from 𝑟 + 𝑚 − 1 to 𝑟 + 𝑚, which has length 𝑚+1

2 .
Now, there are (𝑚−1) (𝑛−1)

4 walks from the top-right region to the bottom-left region, each has length
𝑚+1

2 . The return walks also have length 𝑚+1
2 , except those that go from the first column. These have

length 𝑚+3
2 , with the exception of the walk from 𝑚𝑛 − 1 to 𝑚𝑛, which has length 1. It follows that the

total vertical distance is

(𝑚2 − 1) (𝑛 − 1)
8

+
(
(𝑚 + 1) (𝑛 − 1)

4
− 𝑚 + 1

2

)
𝑚 − 1

2
+ 𝑚 − 1

2
· 𝑚 + 1

2

+ 𝑚 − 1
2

+ 𝑚 − 1
2

· 𝑚 + 1
2

+ 𝑚 − 3
2

· 𝑚 − 1
2

+ 𝑚 + 1
2

+ (𝑚2 − 1) (𝑛 − 1)
8

+
(
(𝑚 − 1) (𝑛 − 1)

4
− 𝑚 − 1

2

)
𝑚 + 1

2
+ 𝑚 − 3

2
· 𝑚 + 3

2
+ 1

=
𝑚2𝑛 − 𝑛

2
.

Combining the two parts yields a total distance of

𝑚𝑛2 − 𝑚

2
− 1 + 𝑚2𝑛 − 𝑛

2
=

𝑚𝑛(𝑚 + 𝑛)
2

− 𝑚 + 𝑛

2
− 1,

as asserted. □

Lemma 7. Assume that 𝑚 ≥ 3 is odd and 𝑛 ≥ 3 is even. Then

𝑀 (𝑃𝑚 × 𝑃𝑛) ≥
𝑚𝑛(𝑚 + 𝑛)

2
− 𝑛

2
− 1.

Proof. Set 𝑟 = (𝑚+1)𝑛
2 − 3 and let 𝜎 : 𝑉 → [𝑚𝑛] be the bijection given by

𝑟 · · · · · · · · · · · · 𝑟 + 5 𝑟 + 3
...

...
...

...
...

... 𝑚𝑛 − 2 · · · · · · · · ·
𝑚𝑛 − 1 · · · 3 1 𝑚𝑛 𝑟 + 1 · · · · · ·

𝑚𝑛 − 3 · · · · · · · · ·
...

...
...

...
...

...

· · · · · · 𝑟 + 4 𝑟 + 2 · · · · · · 4 2


.

First, we describe the bijection explicitly. The array of size 𝑚 × 𝑛 is divided into four regions and the labels
are distributed as follows:
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1. The top-left region is a rectangular array of size 𝑚+1
2 × 𝑛

2 missing its bottom-left cell. It contains the
odd labels 1, 3, . . . , 𝑟 arranged so that 1 is at index (𝑚+1

2 , 𝑛2 ) and each row is strictly increasing from
right to left and each column is strictly increasing from bottom to top.

2. The top-right region is a rectangular array of size 𝑚−1
2 × 𝑛

2 to which an additional cell is attached
beneath its bottom-left cell. It contains the even labels 𝑟 + 3, 𝑟 + 5, . . . , 𝑚𝑛 arranged so that 𝑟 + 3 is at
index (1, 𝑛) and each row is strictly increasing from right to left and each column is strictly increasing
from top to bottom.

3. The bottom-right region is a rectangular array of size 𝑚+1
2 × 𝑛

2 missing its top-left cell. It contains
the even labels 2, 4, . . . , 𝑟 + 1 arranged so that 2 is at index (𝑚, 𝑛) and each row is strictly increasing
from right to left and each column is strictly increasing from bottom to top.

4. The bottom-left region is a rectangular array of size 𝑚−1
2 × 𝑛

2 to which an additional cell is attached
above its top-left cell. It contains the odd labels 𝑟 + 2, 𝑟 + 4, . . . , 𝑚𝑛 − 1 arranged so that 𝑟 + 2 is at
index (𝑚, 𝑛2 ) and each row is strictly increasing from right to left and each column is strictly increasing
from bottom to top.

We split
∑𝑚𝑛−1

𝑡=1 𝑑 (𝜎−1 (𝑡), 𝜎−1 (𝑡 + 1)) into its horizontal and vertical parts.

1. Horizontal part - The first 𝑛−2
2 walks from the top-left region to the bottom-right region have length

𝑛
2 . The next walk is only 1 step long. Now come 𝑛−2

2 walks having length 𝑛+2
2 . This pattern of

1 + 𝑛−2
2 · 𝑛+2

2 repeats 𝑚−1
2 times. Now consider the return walks. At the beginning, there are 𝑛−4

2
walks having length 𝑛+2

2 . Now come two walks of length 2, followed by 𝑛−4
2 walks having length

𝑛+4
2 . This pattern of 2 · 2 + 𝑛−4

2 · 𝑛+4
2 repeats 𝑚−1

2 times. At this point we arrive at 𝑟 + 1, and two
steps bring us to 𝑟 + 2. All 𝑚−1

2 · 𝑛
2 + 1 walks from the bottom-left region to the top-right region have

length 𝑛
2 . The walks back follow the pattern of 𝑛−2

2 walks having length 𝑛+2
2 and then one step. This

pattern repeats 𝑚−1
2 times, except that the very last walk has length 𝑛

2 , instead of 1. It follows that the
total horizontal contribution is

𝑛 − 2
2

· 𝑛
2
+
(
1 + 𝑛 − 2

2
· 𝑛 + 2

2

)
𝑚 − 1

2
+ 𝑛 − 4

2
· 𝑛 + 2

2
+
(
2 · 2 + 𝑛 − 4

2
· 𝑛 + 4

2

)
𝑚 − 1

2

+ 2 +
(
𝑚 − 1

2
· 𝑛

2
+ 1

)
𝑛

2
+
(
𝑛 − 2

2
· 𝑛 + 2

2
+ 1

)
𝑚 − 1

2
− 1 + 𝑛

2

=
𝑚𝑛2

2
− 1.

2. Vertical part - The first 𝑛−2
2 walks from the top-left region to the bottom-right region have length

𝑚−1
2 . The next walk has length 𝑚+1

2 . This pattern repeats 𝑚+1
2 times, except the very last step. Now

consider the return walks. There are 𝑛−4
2 walks having length 𝑚−1

2 , followed by two walks having
length 𝑚+1

2 . This pattern repeats 𝑚+1
2 times, except the very last two steps. At this point we arrive at

𝑟 + 1 and 𝑚−1
2 steps bring us to 𝑟 + 2. The walks from the bottom-left region to the top-right region

follow this rule: For each 𝑖 ∈
[
𝑚−1

2
]
, there are 𝑛

2 walks having length 𝑚 + 1− 2𝑖. Similarly, the walks
back follow this rule: For each 𝑖 ∈

[
𝑚−1

2
]
, there are 𝑛−2

2 walks having length 𝑚 + 1 − 2𝑖 and one of
length 𝑚 − 2𝑖. This brings us to 𝑚𝑛 − 1. The walk to 𝑚𝑛 has no vertical part. It follows that the total
vertical contribution is(

𝑛 − 2
2

· 𝑚 − 1
2

+ 𝑚 + 1
2

)
𝑚 + 1

2
− 𝑚 + 1

2
+
(
𝑛 − 4

2
· 𝑚 − 1

2
+ 2 · 𝑚 + 1

2

)
𝑚 + 1

2

− 2 · 𝑚 + 1
2

+ 𝑚 − 1
2

+
𝑚−1

2∑︁
𝑖=1

𝑛

2
(𝑚 + 1 − 2𝑖) +

𝑚−1
2∑︁

𝑖=1

(
𝑛 − 2

2
(𝑚 + 1 − 2𝑖) + (𝑚 − 2𝑖)

)
=
𝑛(𝑚2 − 1)

2
.
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Combining the two parts yields a total distance of

𝑚𝑛2

2
− 1 + 𝑛(𝑚2 − 1)

2
=

𝑚𝑛(𝑚 + 𝑛)
2

− 𝑛

2
− 1,

as asserted. □

3. Conclusion

It is natural to ask what happens if we consider graphs different from the grid graph. To make it more
concrete, suppose 𝐺 is a graph of order 𝑛 with vertex set 𝑉 . The distance between two vertices 𝑥, 𝑦 ∈ 𝑉 ,
denoted by 𝑑 (𝑥, 𝑦), is the length of a shortest path along the edges of 𝐺 joining 𝑥 and 𝑦. Set

Σ = {𝜎 : 𝑉 → [𝑛] : 𝜎 is a bijection}.

Then define

𝑀 (𝐺) = max
𝜎∈Σ

𝑛−1∑︁
𝑖=1

𝑑 (𝜎−1 (𝑖), 𝜎−1 (𝑖 + 1)).

We propose to call 𝑀 (𝐺) the disorder number of 𝐺, echoing the name additive 𝑦-disorder used in [1].

Example 1. Dominus [2] proved that

𝑀 (𝑄𝑛) = (2𝑛−1 − 1) (2𝑛 − 1) + 𝑛,

where 𝑄𝑛 is the hypercube graph with 2𝑛 vertices. See also sequence A271771 in [3].

To our knowledge, the cycle graph𝐶𝑛 has not been studied in this regard. We obtain the following result.
See also sequence A000982 in [3].

Theorem 2. For 𝑛 ≥ 3, we have

𝑀 (𝐶𝑛) =
⌈
(𝑛 − 1)2

2

⌉
.

Proof. Identify the vertices of 𝐶𝑛 with the set [𝑛]. The distance 𝑑 (𝑥, 𝑦) between two vertices 𝑥, 𝑦 ∈ [𝑛] is
then min{|𝑥 − 𝑦 |, 𝑛 − |𝑥 − 𝑦 |}. We distinguish between two cases.

1. 𝑛 is even. There are 𝑛
2 pairs of vertices 𝑥, 𝑦 ∈ [𝑛] with 𝑑 (𝑥, 𝑦) = 𝑛

2 . The remaining 𝑛−2
2 steps therefore

have length at most 𝑛−2
2 . Thus,

𝑀 (𝐶𝑛) ≤
(𝑛
2

)2
+
(
𝑛 − 2

2

)2
=

(𝑛 − 1)2 + 1
2

.

On the other hand, the bijection [𝑛] → [𝑛] given by[
1,

𝑛

2
+ 1, 2,

𝑛

2
+ 2, . . . ,

𝑛

2
, 𝑛

]
obviously attains the upper bound.

2. 𝑛 is odd. The maximum distance between any two vertices is 𝑛−1
2 . Thus,

𝑀 (𝐶𝑛) ≤ (𝑛 − 1) 𝑛 − 1
2

.

On the other hand, with 𝑘 = 𝑛−1
2 and interpreting the residue 0 as 𝑛, the bijection [𝑛] → [𝑛] given by

[1, 1 + 𝑘, 1 + 2𝑘, . . . , 1 + (𝑛 − 1)𝑘] (mod 𝑛)

obviously attains the upper bound. □
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Remark 1. The Manhattan distance used in this work is induced by the ℓ1 norm. It is natural to ask what
happens if we replace it by a distance induced by another norm | | · | | on R2 (e.g., the Euclidean norm | | · | |2).
Let Σ be the set of bijections 𝜎 : 𝑉 → [𝑚𝑛]. Then one may consider

𝑀 | | · | | (𝑃𝑚 × 𝑃𝑛) = max
𝜎∈Σ

𝑚𝑛−1∑︁
𝑡=1

| |𝜎−1 (𝑡 + 1) − 𝜎−1 (𝑡) | |.

This seems interesting and may require methods different from those used in this work.
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