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1. Introduction and preliminaries

The class of almost periodic functions was first studied by H. Bohr around 1925 and later generalized by
many other mathematicians, including S. Bochner, who first defined and studied the almost automorphic
functions in 1955 (cf. research monographs [2, 10, 12, 30, 16, 18, 20, 23, 35, 36] for more details about
the subject). Almost periodic functions and almost automorphic functions are of fundamental importance
in the qualitative analysis of solutions to the abstract (nonlinear) Volterra integro-differential equations in
Banach spaces.

If (X, ] - |]) is a complex Banach space, I = [0,00) or I =R, f : I — X is a continuous function and
€ > 0, then a number 7 > 0 is said to be an e-period for f(-) if

lf(s+7)—f()|<e, s€eL

It is said that f(-) is almost periodic if for each € > 0 the set of all e-period for f(-) is relatively dense in
[0, 00), i.e., there exists I’ > 0 such that any subinterval of [0, co) of length /" meets ¥(f, €). By AP(I : X)
we denote the Banach space of all almost periodic functions f : R — X, equipped with the sup-norm.

Any almost periodic function f : I — X is uniformly recurrent, which means that f(-) is continuous
and there exists a strictly increasing sequence (ay) of positive real numbers such that limy_, 4 @ = +00
and

Jim sup||f(t + ax) = f(1)]| = 0.
—+% reR

If p > 0, then it is said that a function f € Ll’; (I : X) is Stepanov p-bounded if

s+1
Ifllse := sup / 1 (PIIP dr < +oo;
S

sel

furthermore, it is said that f(-) is Stepanov p-almost periodic if its Bochner transform f : I — LP ([0, 1] :
X), defined by f(s)(r) := f(s+7r),s € I, r € [0,1], is almost periodic (cf. [16], [22] and references
quoted therein).
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On the other hand, the class of almost periodic functions in the sense of the Lebesgue measure (also
called the class of m-almost periodic functions) was introduced by W. Stepanov in 1926 ([32]) and further
analyzed by S. Stoiniski in [33] (1994) and [34] (1999). A Lebesgue measurable function f : R — X is
said to be m-almost periodic (almost periodic in view of the Lebesgue measure m) if for each real number
€, n > 0 the set

{T eR: supm({r els,s+1]:|lf(r+7) = f(N|l = 17}) < e}
seR

is relatively dense in R. In this definition, we do not need two real numbers €, > 0: a very simple

argumentation shows that a Lebesgue measurable function f : R — X is m-almost periodic if and only if

for each real number € > 0 the set

{T eR:supm({r els,s+1]:|lfr+1)—f(N) = e}) < e}

seR

is relatively dense in R. Furthermore, we know that if g : R — C is an almost periodic function and g(-)
has a bounded analytical extension in a strip around the real axis, then the function f : R — C, given by
f(r) :=1/g(1),if g(¢) # 0, and f(¢) := 0, if g(¢) = 0O, is m-almost periodic. In particular, the function

1
f(@) = , te€R
2 + cost + cos(V2r)

is not bounded but f(-) is m-almost periodic; furthermore, we know that f(-) is not Stepanov almost
periodic, i.e., Stepanov 1-almost periodic, since it is not Stepanov bounded (see [5, Example 6] given by D.
Bugajewski and A. Nawrocki), as well as that f(-) is Stepanov (1/4)-almost periodic (see [5, Example 7,
Theorem 8]).

It is worth noting that in [14, Example 3.3], P. Kasprzaka, A. Nawrocki and J. Signerska-Rynkowska
have constructed a continuous m-almost periodic function f : R — R such that the mean value

N
M(f):= lim l'/ f(r)dr
s—+00 8 Jg
does not exist; in particular, this implies that f(-) cannot be Besicovitch almost periodic in the sense of [16]
(cf. also [14, Theorem 3.10]). We also know that there exists a bounded, uniformly continuous, Levitan
almost periodic function f : R — R such that f(-) is not m-almost periodic, as well as that there exists
a bounded, continuous function f : R — R such that f(-) is m-almost periodic but not Levitan almost

periodic; see, e.g., [28, Example 3.1, Example 3.3].

For further information concerning the class of one-dimensional m-almost periodic functions and their
applications, the reader may consult research articles [5] by D. Bugajewski, A. Nawrocki, [4] by D.
Bugajewski, K. Kasprzak, A. Nawrocki and the doctoral dissertation [29] of A. Nawrocki. Some extensions
of the class of m-almost periodic functions have been analyzed by A. Michatowicz and S. Stoiriski in [25],
following the approach of M. Levitan. It is also worth noting that in [8], L. I. Danilov has considered a class
of the Lebesgue measurable functions f : R — X such that for each real number € > 0 there exists a strictly
increasing sequence (7x) of positive real numbers such that limy ;e 7% = +00 and

lim supm({r els,s+1]: If(r+1) = f(N) = 6}) =0.

k—+00 cR

Let us explain now the main ideas which go beyond earlier papers in this area. First of all, we would
like to emphasize that the class of c-almost periodic functions in view of the Lebesgue measure has not
been analyzed so far, even in the one-dimensional setting; this fact strongly influenced us to write this
paper (¢ € C\ {0}). Furthermore, the class of multi-dimensional m-almost periodic functions has not
been considered so far; in this paper, we introduce and analyze various classes of multi-dimensional almost
periodic type functions in general measure. In place of the usually considered bounded linear operators
p = cld, where ¢ € C\ {0} and Id denotes the identity operator on the underlying Banach space, here we
consider general binary relations p (cf. our recent paper [11] by M. Feckan et al. for further information in
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this direction). An interesting application is given in the study of the existence and uniqueness of m-almost
periodic regular solutions of the wave equation in the plane, whose solutions are given by the famous
d’Alembert formula (cf. Example 2).

Before going any further, we would like to emphasize that this is probably the first paper written so
far which concerns almost periodic solutions of the abstract Volterra integro-differential inclusions with
the Stepanov-p-almost periodic inhomogeneites provided that the solution operator family is only norm
integrable. The main results of this paper are Theorem 2 and Theorem 3, where we have examined the
convolution invariance of measure almost periodicity; cf. Subsection 4.1 for more details in this direction (for
some other results established in this paper, one may refer e.g. to Proposition 1, Proposition 2, Proposition
3 and Proposition 4; cf. also Example 1 and Example 3). As a concrete application, we consider here the
existence and uniqueness of asymptotically almost periodic type solutions of the following abstract Cauchy
problem of non-scalar type:

x'(r) = Ax(1) + At b(t—s)(A+ald)x(s)ds + f(t), x(0)=xop,

where b(t) is a scalar-valued kernel, b € C'(]0,0)), a € C, f : [0,00) — H is continuous and A is a
densely defined, self-adjoint closed linear operator in an infinite-dimensional complex Hilbert space H; cf.
research article [26] by R. K. Miller and R. L. Wheeler for the first results obtained in this direction.

It should also be emphasized that this is probably the first research study which concerns the existence
and uniqueness of m-almost periodic solutions of the semilinear Volterra integral equations. As a specific
application, we consider the existence and uniqueness of solutions of the following integral equation:

u(t)=f(t)+/_t1'/_t2~--‘[tn a(t—s)F(s;u(s))ds, teR",

which belong to the space S*(R" : X) consisting of all bounded continuous functions which are Stepanov
p-almost periodic for any finite exponent p > 1; here, X is a finite-dimensional complex Banach space,
a € L'((0,0)") and the inhomogenity F(-;-) enjoys certain features.

In this paper, we essentially employ the notion of m-almost periodicity and the ideas developed by S.
Stoinski. We can freely say that these ideas are extremely important in the deeper analysis of Stepanov-p-
almost periodic functions because a very simple argumentation shows that any Stepanov-p-almost periodic
function f : I — Y is m-almost periodic (p > 0), as well as that any bounded m-almost periodic function
f I — Y is Stepanov-p-almost periodic (p > 0). Therefore, we can construct a great number of unbounded
m-almost periodic functions f : R — R which are not locally p-integrable (p > 0); cf. [22, Example 5].
Let us also mention here that the function y[o,1/21(-), where y(-) denotes the characteristic function of set
A, is bounded and equi-Weyl-p-almost periodic for any exponent p > 0 but not m-almost periodic, as easily
approved (cf. [20] for the notion and more details).

The structure of this paper can be described as follows. After explaining the notion and terminology
used, we recall the basic definitions and facts about multi-dimensional almost periodic type functions and
their Stepanov generalizations (Section 2). Our main contributions are given in Section 3, where we examine
multi-dimensional p-almost periodic type functions in general measure, and Section 4, where we consider
the applications of the established results to the abstract Volterra integro-differential inclusions. We explore
the convolution invariance of multi-dimensional p-almost periodicity in general measure in Subsection 4.1,
while the applications to the semilinear Volterra integral equations are given in Subsection 4.2. In the final
section of the paper, we provide several comments and final remarks about the introduced function spaces.

Before proceeding any further, we feel it is our duty to say that this paper is too specialized, addressed
only to a small number of specialists. We strongly believe that the introduced classes of almost periodic
functions in general measure will receive much more attention of the authors working in the field of almost
periodic functions and their applications in the near future.

Notation and terminology. We assume that (X, || - ||) and (Y, ]| - ||y) are complex Banach spaces; Id
stands for the identity operator on Y, L(Y) stands for the Banach space of all bounded linear operators
from Y into Y, n € N is a fixed integer, Ny := {0,1,2,....,n,...}, N, := {1,2,...,n} and [s] := inf{k €
Z:s <k} (s € R). By]|-| we denote the Euclidean metric in R”; if » > 0 and ty € R", then we set
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B(ty,r) := {t e R" : |[t—tg] < r} and L(tg,r) := {t € R" : |t —ty| < r}. By B we denote a certain
collection of non-empty subsets of X satisfying that for each x € X there exists B € B such that x € B; m(-)
denotes the Lebesgue measure on R” and P(A) denotes the power set of A. The vector space Cp (I : Y),
where 0 # I C R", consists of all continuous functions u : I — Y satisfying that sup;; [|[u(t)||y < +oo;
equipped with the sup-norm || - ||« := supes || - (V)|ly, Cpo({ : Y) becomes a Banach space. For more
details about the space LP(Q : Y), where 0 # Q C R" is a Lebesgue measurable set and p > 0, we
recommend the recent research article [22] and references quoted therein. We will deal henceforth with
the space LY(Q : Y) := {u : Q@ — Y ; u(-) is Lebesgue measurable and ||u||,, < oo}, where p > 0,
- 1lp = 1lv(t) - (O)]lLr(@y) and v : & — (0, o0) is a Lebesgue measurable function.

2. Multi-dimensional p-almost periodic type functions and their Stepanov general-
izations

The following notion is extremely important for us:

Definition 1. (cf. [11, Definition 2.1] and [17, Definition 2.1]) Suppose that @ # I’ C R", v : [ — [0, c0),
O0+#1CR"F:IxX —Y,pisabinary relationon Y and / + I’ C I. Then we say that:

(1) F(-;-)is Bohr (B, I’, p, v)-almost periodic if for every B € 5 and € > 0 there exists [’ > 0 such that
for each wy € I’ there exists 7 € B(wp,!”) N I’ such that, for every t € I and x € B, there exists
Yex € p(F(t;x)) with

||F(t +7;x) — yt;x”Y -v(t) <e.

(i) F(-;-)is (B,I’, p,v)-uniformly recurrent if for every B € B there exists a sequence (1) in I’ such
that limg_, 1o |T| = +00 and that, for every t € I and x € B, there exists y.x € p(F(t;x)) with

lim  sup HF(t + T3 X) — yt;x”Y -y(t) = 0.
B

k—+oote:xe

We exclude the term “v” from the symbols if v = 1.

Assumethat) # ACR", 0 #Z CY2and A+Q C A, where® £ Q CR"isa Lebesgue measurable set
and m(Q) > 0. Let Pz € Z*, 0 € Pz, let (P2, dp,) be a pseudometric space, and let || f||p, := dp, (f,0),
fePz. If F:AxX — Y, then the multi-dimensional Bochner transform Fg : A x X — Y is given by

[F“Q(t;x)](u) =F(t+wx), teA ueQ, xeX.
The following general notion has recently been analyzed in [22]:

Definition 2. Suppose that® # A C R", F : AX X — Y, R is a certain collection of sequences in R" and
the assumptions t € A, b € R and / € N imply t + b(/) € A. Then it is said that the function F(-;-) is
Stepanov (Q, R, B, Pz)-multi-almost periodic, resp. strongly Stepanov (€2, R, B, Pz)-multi-almost periodic

in the case that A = R”, if for every B € I3 and for every sequence (b = (b!, bi, -+, b})) € R there exist a
subsequence (b, = (bll, bil,~ - b’k’l)) of (by) and a function F(, : A X X — Z such that, for every / € N
and x € B, we have Fo(- + (b}q,~ -+, b )3x) = F5(+5x) € Pz and

lim sup ’ﬁg( + (b}< oo bl )ix) - F5(~;x)” =0, (1)

[—=+c0 e ! ! Pz
resp. F(- + (bjs- =Bl )ix) = F*(5x) € Pz, F*(- = (b .-+ b} )3x) = F(;x) € Pz, (1) holds and

. % 1 ny. ” . —
Jlim supl[F (- = (b, b)) = Fao)|, =o0.

Consider now the following conditions:
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(SM-1): Let0 # ACR", 0# AN CRLAN+ACAA+QCAandF: A — (0, 00).

(SM-2): Foreveryt e A, Py = (P, dy) is a pseudometric space of functions from Y containing the zero
function; || f||p, := di(f,0) for all f € P;. We also assume that P = (P, d) is a pseudometric
space of functions from C” containing the zero function and set || f||p := d(f,0) for all f € P.
The argument from A will be denoted by -- and the argument from t + Q will be denoted by -.

The following notion has been introduced in [19, Definition 2.2]:

Definition 3. Assume that (SM-1)-(SM-2) hold. By Sg’/f,’g"m (A X X :Y) we denote the set consisting

of all functions F' : A X X — Y such that, for every € > 0 and B € B, there exists a finite real number
L > 0 such that for each ty € A’ there exists 7 € B(ty, L) N A’ such that for every x € B, the mapping
u Gy(u) € p(F(u;x)), u € Qis well defined, and

)SCLEIEHF(“)”F(T +5x) — GX(.)”P"HP <e.

3. Multi-dimensional p-almost periodic type functions in general measure

We assume that ) # A C R", v : A — [0,00), m’ : P(R") — [0,00], m'(0) = 0,0 # Q C R"isa
non-empty compact set and A + Q C A. For each € > 0 and for each two functions f : A — Y and
g:AN—>Y, weset

de(f.9) = supm’({r € t+Q:I17() = g0y - v(r) 2 e} @)

define also ||f|lp. = de(0, f). Then 0 < de(f,g) and de(f, f) = 0, so that de(-;-) is a premetric
on the space of all functions from A into Y; furthermore, we have d.(f,g) = de(g, f) and de(f,g) =
de(f + h,g + h) so that d¢(+;-) is a translation invariant pseudo-semimetric on the space of all functions
from A into Y (according to M. M. Deza and M. Laurent [9], these features are sufficiently enough to call
d¢(+;-) adistance). Furthermore, the following assertions hold true:

OIff:A>Y, g:A—>Y, h:A— Y and the assumptions A, B, C C R" and A € BU C imply
m’(A) < m’(B) + m’(C), then

de(f’h) SdE/Z(f’g)+de/2(gah)» €>0. (3)

(i) Assume that @ # A CR", A+ A" C A, 7 € A’, M > 0, the assumption v € A + Q + 7 implies
v(v— 1) < Mv(v) and the assumption A C B C R" implies m’(A) < m’(B). Then we have

de(f(-+71),8(-+7)) <de/m(f.8) 4)
for any two functions f : A > Yandg: A —Y.
(iii) Assumethat7 € L(Y), f: A —Yandg: A — Y. Then
de(Tf,Tg) <dc) ) (f,8), (5)
where d¢ ) (f,g) =0for T = 0.

(iv) Assume that f : A —» Y and g : A — Y. If the assumption A C B C R" implies m’(A) < m’(B),
then for each €’ € (0, €) we have

de(f.8) <de(f.g) and |Ifllp. < fllp. - (6)
(v) Assume additionally that the function m’(-) is not identically zero. Then the triangle inequality

de(f.h) <de(f.g) +de(g. h)

does not hold in general (choose, e.g., f =€¢,g=€/2,h=0and v = 1).
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(vi) The supposition d¢(f, g) = 0 does not imply f = g a.e. (choose, e.g., f =€/2,g =€/4andv = 1).

Now we would like to introduce the following classes of functions:

Definition 4. Assume that @ # A’ C R", 0 # A CR", F: AXX — Y, p is a binary relation on Y,
R(F) C D(p) and A+ A’ C A. Then it is said that:

(1) F(-;-) is Bohr (B, A’, p,Q, m’, v)-almost periodic if for every B € 3 and € > 0 there exists I’ > 0
such that for each wy € A’ there exists 7 € B(Wg,!’) N A’ such that for every t € A, x € B and
s € t+ Q, there exists ys.x € p(F(s;x)) with

<e.

sup
xXeB

|F(- +TX) — Yox p

(i) F(-;-)is (B, A, p,Q,m’, v)-uniformly recurrent if for every B € I3 and € > 0 there exists a sequence
(1x) in A’ such that limg_, e |7x| = +co and that for every t € A, x € B and s € t + €, there exists
Ysix € p(F(s;x)) with

=0.

lim sup
PE

k—+c0 y B

‘F(' + Tk;x) —YVx

We exclude the term “v” from the notation if v = 1 and the term “A’” if A’ = A; furthermore, we exclude
the term “53” from the notation if X = {0} and the term “p” if p = Id.

Remark 1. The validity of condition A+ C A has been assumed a priori in all our previous research studies
of Stepanov almost periodic type functions. This assumption is not satisfactory if we consider some specific
geometrical regions in R”, like A = {(u,v) € R" : |u —v| < L} for some L > 0, when we cannot simply
find a compact set Q with a positive Lebesgue measure such that A + Q C A; cf. also [11, Example 2.9].
It seems very plausible that we can investigate the multi-dimensional Stepanov almost periodic functions
and the multi-dimensional almost periodic functions in general measure even if the condition A + Q € A is
neglected; we will explore this topic somewhere else.

Remark 2. In our approach, the function m’(+) is defined for all subsets in R". If m’(-) is defined only for
subsets belonging to a certain o-algebra on R, then the notion from Definition 4 can be understood only
for the functions which are measurable in a certain sense. For instance, in the case of the usual Lebesgue
measure m(-), we must additionally assume that for each x € X the function F(-;x) is Lebesgue measurable
as well as that the function v : A — [0, o) is Lebesgue measurable. In our later investigations of m-almost
periodic functions, we will tacitly assume these conditions.

The subsequent result follows directly from the corresponding definitions:

Proposition 1. Suppose that @ # A’ CR", 0 # ACR", F: AX X — Y, pis a binary relation on Y and
A+ N CAIfF(-;-) is Bohr (B, N, p,v)-almost periodic (B, \’, p, v)-uniformly recurrent), then F(-;-)
is Bohr (B, \’, p, Q,m’, v)-almost periodic ((B,\’, p, Q, m’, v)-uniformly recurrent).

Suppose that the requirements sufficient for the validity of estimates (3)-(4) hold, A+ A’ C A, 7+ A=A
forallt e A/, F: AXxX — Y, R(F) C D(p) and p(x) has the cardinality one for every x € R(F).
Arguing as in the proof of [11, Proposition 2.2], we may deduce that A + (A" — A”) C A as well as that
the Bohr (B, A’, p, Q, m’, v)-almost periodicity (B, A’, p, Q, m’, v)-uniform recurrence) implies the Bohr
(B,A" — N, 1d,Q, m’, v)-almost periodicity (B, A" — A’, Id,Q, m’, v)-uniform recurrence) of F(-;-); the
statement of [11, Corollary 2.3] can be generalized in this manner as well. Furthermore, if the requirements
sufficient for the validity of estimates (3)-(5) hold, then the denouements from [11, Example 2.8] can be
formulated in our new framework; this can also be done with the statements established in [11, Theorem
2.11, (i)-(iv); Proposition 2.12] and [15, Proposition 2.7].

The next result can also be reworded for the corresponding classes of uniformly reccurent functions
in measure; the proof is rather simple (for basic details concerning L”-spaces and integration theory, we
may also refer to [24, Chapter 13, Appendix A]; here, LZ',v(t +Q:Y)={u:t+Q > Y;||lu()|lyv(:) €
qu,(t + Q : Y)} is equipped with the norm ||u||L,z;, (ey) = ||||u(-)||yv(-)||,_51,(ngy) for all p > 0 and
teA):
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Proposition 2. Suppose that @ # A’ CR", 0 # ACR", F: AX X — Y, pis a binary relation on Y and
A+AN CA.

(i) If F € SS(;’/’\?,’Z"P)(A XX :Y), where P = Cp,(A : C) and P, = L;,,V(t+§2 ' Y) for some measure

m'(:-yonR" and p > 0 (t € A), then F(-;-) is Bohr (B, N, p,Q, m’,v)-almost periodic.

(ii) If p = T € L(Y), sup,cpep IF(X)|ly < oo for all B € B and the function F(-;-) is Bohr
(B,N, p,Q,m’,v)-almost periodic for some bounded function v(-) and measure m’(-) on R" sat-
isfying supgcpm’(t + Q) < +oo, then F € Sg”f,’?;"m (AXX :Y) with P =Cp(A : C) and
P; = Lfn,’v(t+ Q:Y) forallteA.

Proposition 2(i) can be applied to the functions considered in [22, Example 3, Example 4], with v(-) # 1;
moreover, Proposition 2(ii) extends [33, Theorem 2.7]. Furthermore, in [22, Corollary 2], we have extended
the classical Bochner theorem. This result can be further extended in the following way (we define the
notion of m-almost periodicity of F(-) as in the one-dimensional setting; cf. also [28, Remark 3.4], where
the author has also imposed the boundedness of function F(-) to derive its almost periodicity):

Proposition 3. Suppose that F : R" — Y is m-almost periodic and uniformly continuous. Then F(-) is
almost periodic.

Proof. Keeping in mind Proposition 2(ii) and [22, Corollary 2], it suffices to show that F(+) is bounded. To
this end, fix a number € > 0. Then we can find three finite real numbers ¢ > 0,/” > 0and 0 < 6 < €/2 such
that, for every wy € R", there exists T € B(wy,[”) such that m({s € t+ [0,1]" : |[F(s +7) — F(s)|ly <
6}) =1 —co"forallt € R", m((t+ [0,1]") N B(s,8)) > c6", provided t € R" and s € t + [0, 1]", and that
the assumption |x — y| < & for some x, y € R" implies ||F(x) — F(y)|ly < €/2.If t € R" is arbitrary and
s € t+ [0, 1]", then it can be simply shown that there exists x € B(s, d) such that ||F(x + 7) — F(x)|| < 4.
Since F(-) is continuous, we have that there exists a finite real number M > 0 such that ||F(t)||y < M for
allt € B(0,2l"). Pickup r € R" such that x + 7 € B(0,2l') and m({s e t + [0, 1]" : ||[F(s+ 7) — F(s)|ly <
6}) > 1—co" for all t € R”. Then we have ||F(x + 7) — F(x)|ly < ¢ and ||F(x) — F(s)|]| < €/2 so that
[|[F(s)|| <M + 6 + €/2. This ends the proof. m|

Now we will illustrate Proposition 3:

Example 1. The function f : R — R given by

(o]

fx) = Z % sinz(i) dt, xeR,

k
k=1 2

is (Besicovitch) unbounded, uniformly continuous and uniformly recurrent (see [13, Theorem 1.1] and [18,
Theorem 2.4.2]). Due to Proposition 3, f(-) cannot be m-almost periodic; on the other hand, Proposition 1
yields that f(-) is m-uniformly recurrent, with the meaning clear.

The following extension of a well-known result of S. Stoifiski (see, e.g., [28, Therem 2.7]) is applicable
if A = [0,c0)" or A = R"; we will present all relevant details for completeness (cf. also the proofs of [6,
Proposition 2.16] and [20, Proposition 2.1.8(1)]):

Proposition 4. Suppose that 0 #+ A C R", A+ A C A p=T € LY), F: AXxX — Y is Bohr
(B, A, T, Q, m")-almost periodic, sup,c g tennk |F (t;x)|ly < +o0 for each compact K C R" and the suppo-
sition A C B C R" implies m’(A) < m’(B). If

(V1 >0) (3wg € A) (3k > 0) (Yt € A)(3wy € A)(Ywg € B(wg, 1) NA) t—wg € B(wo, kI') N A;

then for each B € B and each sequence of positive real numbers (1) tending to zero, we have

lim  sup m’({r €s+Q: /lkllF(r;x)IlyZl}) =0.

k—+00ge A xeB
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Proof. Fix B € B and € > 0. Then there is a number !’ > 0 such that for each wy € A there exists
7 € B(wy,!’) N A such that

supm’({s eEt+Q:||F(s+1;x) = TF(s;%)|ly > e}) <e, teA. (7)
X€B

Suppose that wy € A and k > 0 are chosen such that (7) holds. The prescribed assumption implies that the
set {F(s;x) : s € B(wo,kl’) N A, x € B} is bounded in Y. Let t € A be fixed. Then there exists wy € A
such that, for every wy' € B(wy,l") N A, we have t € wy' + [B(wo, kI”) N A]. On the other hand, there exists
T= wg € B(w6, I’) N A such that (7) holds. Clearly, s = t — 7 € B(Wy, k') N A, which simply implies that

supm'({s €Et—T1+Q:||F(s+1;x) —TF(s;x)|ly > e}) <e, teA

xXeB

and

sup m’({s et+Q:||F(s;x) =TF(s—1;%)|ly = e}) <€, teA.
xeB

Since s — 7 € Q + [B(wg,kl’) N A] and T € L(Y), there exists a finite constant M, > 0 such that
|ITF(s —7;x)|ly < M forall x € Bands € t + Q. The desired result follows from this estimate, the given
assumption on m’(+) and the inclusions

{set+Q: lF(s;x)lly > 1} S {set+Q: ||[F(s;x)|ly > Mc + €}
Cl{set—1+Q:||F(s;x) —TF(s—1;x)|ly > €},
which hold for all x € B and all sufficiently large integers k > ko(€). O

The condition [5, (13)] and the assertion of [5, Theorem 8] can be straightforwardly extended to the
multi-dimensional setting. But, it seems much more complicated to provide some sufficient conditions
which would ensure that an m-almost periodic function F' : R" — Y is equi-Weyl-p-almost periodic for
some (all) exponents p > 1.

We continue with the following illustrative application of the d’Alembert formula:

Example 2. Let ¢ > 0 and |c| = 1; then a unique regular solution of the wave equation u;; = a’uy
in domain {(x,7) : x € R, t > 0}, equipped with the initial conditions u(x,0) = f(x) € C*(R) and
u; (x,0) = g(x) € C'(R), is given by

x+at

1 1
u(x,t) = —[f(x—at) +f(x+at)] + —/ g(s)ds, xeR,t>0.
2 2a Jx-ar
If we assume that the function x — (f(x),g!"(x)), x € R is (cId, [0, 1], m)-almost periodic, where
gy = fo. g(s) ds, then the solution u(x, t) can be extended to the whole real line in ¢ and this solution is
(cld, [0, 1], my)-almost periodic in (x,t) € RZ: in order not to make any confusion, m(-) denotes here the
Lebesgue measure in R and m,(-) denotes the Lebesgue measure in R%. To show this, fix € > 0. Then there
exists a finite real number [’ > 0 such that any subinterval I of R of length I’ contains a point 7 € I such that
supm({x € [r,r+1] : |f(x+7) —cf(x)|<€}) = 1-¢€, t€R (8)
teR
and (8) is valid with the function f(-) replaced by the function g!!l(-) therein. Furthermore, one has
&, ', 1, m €R):

|u(x' +1,t + 1) —cu(x’, 1)

< %|f((x’ —at') + (11 —amn)) —cf(x' —at’)

+ %‘f((x' +at') + (11 +an)) —cf([xX' +at’ + (11 + ar)] - (71 + am)) 9)

1
+ 2—’g[1] (" =at’) + (11 —amp)) — cgM(x" = ar")
a

1
+ 2—|g[1] (" +at") + (11 +arp)) - cgM (" +at")
a
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Setnow X :=x" —at’andY :=x" + at’. Thenx = (X +Y)/2, y = (=X +Y)/2a, the linear transformation
T : R? — R?, given by T(X,Y) = ((X +Y)/2,(=X + Y)/2a) for all (X,Y) € R?, is an isomorphism,
and det([T]) = 1/2a. Suppose now that (x’,#’) € [s1,s1 + 1] X [s2,52 + 1] for some s;, s € R.
Then it can be simply shown that the transformation 7~'(-) maps the rectangle [s1, s; + 1] X [s2, 57 + 1]
onto the closed quadrilateral P with the vertices A(s; — asy, s; + asz), B(sy — asy — a,s) + asy + a),
C(sy+1—asy,si +1+asy)and D(s; + 1 —asy —a,s; + 1 + asy + a); clearly, my(P) = 2a. Define
Xe = {x € [s1 —aspy —a,s; —asy + 1] : max(|f(x + 1) — cf(x)], |gt (x + 7) = cgl(x)|) < €} and
Ye :={x € [s1 +asy sy +asr +a+ 1] : max(|f(x + 1) — cf(x)],1g"(x + 7) = cgl(x)]) < €}. Then
m(Xe) > a+l-[a+1le,m(Ye) > a+1-[a+1]eand my({(X,Y) € P: X € X, Y € Ye}) > 2a—([a+1]€)>.
Therefore,

> %(Za —([a + 1]6)2).

Keeping this estimate in mind and (9), the final conclusion follows similarly as in [18, Example 2, pp.
XXXIV-XXXV]. Let us finally note that the possible applications can also be given to the Kirchhoff formula
and the Poisson formula; see [18].

mz({(x,t) € sy, s1+1] X [s2,:+1]: X€eX., Y€ YE})

Before proceeding further, let us only mention that [18, Example 6.1.13, Example 6.1.16] can be
reworded in our new setting; these examples show the importance of considerations of general regions A
and A’ in our analysis. Now we will state and prove the following extension of [33, Theorem 6] (cf. also
[20, Theorem 2.1.12(v)], the notion of metric space X introduced in [33], and [5, Definition 7]):

Theorem 1. Suppose that M > 0,0 # A’ CR", 0 # ACR", p=T € L(Y) and A+ A’ C A. Suppose,
further, that for each k € N we have that F;, : AX X — Y is a Bohr (B,\’, p,Q,m’, v)-almost periodic
((B,N, p,Q,m’, v)-uniformly recurrent) function and for each € > 0 and B € B one has:

lim sug“Fk(gx) - F(‘UC)“PG = 0.

k—+00 y e

Then F(-;-) is Bohr (B, N, p, Q,m’, v)-almost periodic (B, N, p, Q, m’, v)-uniformly recurrent), provided
that the suppositions A, B, C C R" and A C B U C imply m’(A) < m’(B) + m’(C), and the supposition
veA+Q+1forsomet e N implies v(v—1) < Mv(v).

Proof. The proof is basically a simple consequence of the following estimates (k € N, x € X, 7 € A’):
||F(~ +T;x) — TF(-;x)HPe < ||F(- +71x) - Fe(- + ‘r;)c)”PE/2 + HFX( +T;x) — TF(-;)C)HPE/2
< ||F( +13x) - Fo(- + ‘1';)6)”1,6/2 + HFS(- +7;x) — TFI(-;)C)HPG/4
+||TFi(5x) - TF(-;x)||P€/4
<[|FCix) = B0, +IFC+mix) = TF G0
+||Fs(5x) = F(53)]

Pejayr)”

Keeping this in mind, we can apply estimates (3)-(5). O

We proceed further with the observation that it would not be so easy to formulate a satisfactory analogue
of Theorem 1 for the class of (strongly) (R, 5,Q, L, m’, v)-multi-almost periodic functions; see also the
proof of [17, Proposition 2.6] and the estimates given in (6).

In connection with the statement of [28, Theorem 2.9], we will present the following illustrative example,
but here we do not use the boundedness of the analytical extension on the strips around the real axes:

Example 3. Assume that G : R" — R is an almost periodic function, G(t) # O for all t € R" and there
exist real numbers a and b such that @ < 0 < b and the function G(+) can be analytically extended to the
region {(zy,...,zn) € C" : Rz; € (a,b) for 1 < i < n}. Then the evidence contained in the proof of [23,
Theorem 5.3.1] (cf. also [18, Example 6.2.9]) shows that limgs_o+ m({s € t + [0,1]" : |G(s)| < 6}) = 0,
uniformly in t € R”, so that

(Ve > 0)(3p > 0) (V5 € (0,60)) (Yt e R")m({s € t+ [0,1]" : |G(s)| = 6}) > 1 — €.
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Suppose now that € > 0 is given, 6 € (0,min(1/e,d0/2)) and 7 € R" is a (6/2)-almost period of the
function G(+). If s € t + [0, 1]" for some t € R" and |G (s)| > §, then we cannot have |F(s+7) — F(s)| > €
because this would imply

6/2>|G(s+71)—-G(s)|=2€-|G(s)| - |G(s+T1)|=€-6-(5/2),
which is a contradiction. Hence,
m({res+[0,1]": |F(r+7)-F(r)|<e})>1-¢, seR"

and
m({ret+[0,1]": |F(r+7)-F(r)| > €}) <€, seR™
This implies that F(+) is m-almost periodic. In particular, the function
3 1 1
2+ costy + cos(V2t) 24 cost, + cos(V2t,) '

F(t1, ... ty) t=(t1,....tn) €R"

is m-almost periodic.

Finally, we would like to recall that we have already asked in [20, Example 6.4.10(i)] whether the
function f(-) is Besicovitch-p-bounded for some finite exponent p > 1. We strongly believe that this is not
the case as well as that this is a simple example of a continuous, m-almost periodic function f : R — R
such that M ( f) does not exist; cf. also [27].

Furthermore, if § > 0, then we set A(§) := {h € R" : |h| < Sandt+ h € Aforallt € A}. We say that
afunction F : A X X — Y is (B, Q, m’)-continuous if, for every € > 0 and B € B, there exists 6 > 0 such
that, for every h € A(5), we have

sup m’({r es+Q: |F(r+hx) - F(r;n)lly > e}) <e.

seA;xeB

Immediately from the definition, it follows that any function F' : A X X — Y, which is uniformly continuous
on the sets of the form AxB, where B € B, is (B3, Q, m’)-continuous. Moreover, if the function F : AXX — Y
is continuous on the sets of the form A X B, where B € B, the region A has certain geometrical properties (cf.
[6, Proposition 2.21] for more details; we can always take A = R here) and F(-;-) is Bohr (B, A, Id, Q, m’)-
almost periodic, then F(-;-) is (13, Q, m")-continuous. To the best knowledge of the authors, it is not clear
how one can prove that the statements of [29, Twierdzenie 1.8, Lemat 1.8, Lemat 1.9, Uwaga 1.9; pp. 23-24]
hold if the function under consideration is not continuous (it is also worth noting that the argumentation
of H. Bohr, which has particularly been used in the proof of [29, Lemat 1.9], is inapplicable in the multi-
dimensional setting).

4. Applications

In this section, we will provide several important applications of the introduced notion to the abstract Volterra
integro-differential inclusions and present some new important contributions to the theory of Stepanov almost
periodic functions. We will divide the material of this section into two separate subsections.

4.1. Convolution invariance of measure almost periodicity

The convolution invariance of Bohr (B, A’, p, Q, m’, v)-almost periodicity and (B, A’, p, Q, m’, v)-uniform
recurrence is an extremely delicate theme. We start this subsection by recalling that the convolution of an
m-almost periodic function f : R” — ¥ with a function 4 € L'(R") does not have to exists; furthermore,
if the value (h = f)(t) = f_ozo h(t —s)f(s)ds exists for all t € R", then the convolution (%4 * f)(-) is not
m-almost periodic in general (cf. [5, Example 3, Example 4] for the one-dimensional setting).

Now we will state the following result (for the sake of convenience, we consider here the situation in
which v(-) = 1; t > 0 means than any component of t € R” is positive):

10
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Theorem 2.
(i) Let (R(t))¢=0 S L(X) be a strongly continuous operator family such that

f(o co)n |R(t)||dt < co. If f : R" — X is bounded and Bohr (N, p, [0, 1], m)-almost periodic
(A, p, [0, 11", m)-uniformly recurrent), where p = T € L(X), then the function F : R" — X, given

by
F(t) :=[:‘[:~-~[:R(t—s)f(s)ds, teR", (10)

is bounded, continuous and Bohr (N, p, [0, 1]1™)-almost periodic ((N’, p, [0, 1]1")-uniformly recur-
rent), provided that R(t)T = TR(t), t > 0.
(i) Let a(-) be Lebesgue measurable and let /(0 co)n la(t)|dt < oo. If f : R" — X is bounded and Bohr

(N, p, [0, 1], m)-almost periodic ((N', p, [0, 11", m)-uniformly recurrent), where p = T € L(X),
then the function F : R" — X, given by

F(t) ::/_:/_:--'/_:a(t—s)f(s)ds, t e R", (11)

is bounded, uniformly continuous and Bohr (N, p, [0, 1]1"*)-almost periodic ((N’, p, [0, 11™")-uniformly
recurrent).

Proof. We will show part (i) only for the class of one-dimensional, bounded, Bohr (A’, T, [0, 1], m)-almost
periodic functions; cf. [6, Theorem 2.53, Theorem 2.54] for the multi-dimensional setting. It is clear that
the function F(-) is well-defined and bounded; the continuity is a simple consequence of the dominated
convergence theorem, the boundedness of the function f(-) and the strong continuity of (R(?));>¢. Lete > 0
be fixed. Then there exists k € N such that f;m IR(r)|dr < €/(2(1 + |IT|DIflo)- This implies

‘/k+°° IR -Nf(s+T1=r)=Tf(s—r)||dr <€/2, seR. (12)

Let0 < € < €/(4k(1 + fooo [|[R(r)|| dr)) and let 0 < €” < §/2, where § > 0 satisfies that the assumption

m(A) < 6 for some Lebesgue measurable set A C (0, co) implies fA [|R(r)|| dr < €/4k. Then we know that
there exists I’ > 0 such that for each wy € A’ there exists 7 € B(wg,!”) N A’ such that, for every t € R
and s € [t,t + 1], we have ||[f(- +7) = Tf(-)llp,, < €. Suppose that s € R is arbitrary. We will show
that ||[F(s + 7) — TF(s)|ly < €. Assume the contrary, i.e., | F(s + 7) — TF(s)|ly = €. Then an elementary
argumentation involving (12) and the commutivity assumption R(¢)T = TR(t), t > 0 shows that

k=1 .+l k
Z/ IR - f(s+7=r)=Tf(s=r)lldr = /o IR -1If(s+7=r)=Tf(s—r)lldr>e€/2.
j=0*J

IfjeNyp,O<j<k-landre[j,j+1],thens—re[s—j—1,5—j]sothat

m({re L, j+1]:llf(s+7=r)=Tf(s=r)] 26'}) <€

and

J+l j+l
/ ||R(V)||'||f(S+T—V)—Tf(S—r)||dr<€'(1+||T||)||f||oo6/4k+6'/ IR(r) |l dr.

J J

The last estimate and the choice of €’ > 0 implies

k
/0 IR -Nf(s+7-r)=Tf(s—r)lldr <€/2,

which contradicts (4.1). Part (ii) basically follows from the evidence given in the proof of [1, Proposition
1.3.2¢0)]. O

11
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Similarly, we can prove the next result (by /d we denote the identity operator on X):
Theorem 3.

(/) Let (R(t))t=0 € L(X,Y) be a strongly continuous operator family such that
/(o,oo)n |R(t)||dt < co. If f : R* — X is bounded and Bohr (N, p, [0, 11", m)-almost periodic
(N, p, [0, 1], m)-uniformly recurrent), where p = cld € L(X), then the function F : R" — Y,
given by (10), is bounded, continuous and Bohr (N, py, [0, 1]™)-almost periodic ((A’, py, [0, 1]™)-
uniformly recurrent), where py = cld € L(Y).

(ii) Let a(-) be Lebesgue measurable and let /(o,oo)n la(t)|dt < co. If f : R" — Y is bounded and
Bohr (A, p, [0, 1]", m)-almost periodic ((N', p, [0, 11", m)-uniformly recurrent), where p = cld €
L(Y), then the function F : R" — Y, given by (11), is bounded, uniformly continuous and Bohr
(N, p, [0, 1]1™)-almost periodic ((N', p, [0, 1]")-uniformly recurrent).

Now we will provide some notes about the last two results:

Remark 3. If the function f(-) is uniformly continuous in part (i) of Theorem 2 or Theorem 3, then the
resulting function F(-) will also be uniformly continuous, which directly follows from [1, Proposition 1.3.5
¢)]. But, in the operator-valued setting, it is not clear how to prove that the boundedness of f(-) implies the
uniform continuity of F(-).

Remark 4.

(1) Suppose that the requirements of Theorem 2(i) or Theorem 3(i) hold. If f(-) has a relatively compact
range, then F(-) has a relatively compact range as well.

(i) Suppose that the requirements of Theorem 2(ii) or Theorem 3(ii) hold. If f(-) has a relatively compact
range, then F(-) has a relatively compact range as well.
In order to see that (i) holds, observe that F(t) := /(0 coyn R(s)f(t—s)ds, t € R" If € > 0 is given, then

there exists a finite set {x; : 1 <i < k} C X such that R(f) € U;<;<x L(x;, €), where L(x;, €) denotes the
open ball in X with the center x; and the radius €. Then we have

rRF< L( [, Remse [ iR ds),

1<i<k

which simply implies the required. We can similarly show (ii).

Remark 5. 1t is not clear whether we can replace the boundedness of function f(-) in the formulation of
Theorem 2 or Theorem 3 by some weaker conditions, for example, by its Stepanov p-boundedness for
some p > 0. In connection with this issue, we would like to stress that such attempts for the usual infinite
convolution product have already been analyzed by G. Bruno and A. Pankov in 2000 (see [3, Lemma 2]).
Unfortunately, the proof of this result is not correct because the authors have not shown the (absolute)
convergence of the integral /R @(t)u(x —t) dt in a proper way (x € R); here, we use the same terminology
from [3].

Remark 6. As the referee of the former version of this paper has noticed, the assumption R(t)T = TR(t),
t > 0 is crucial and the proof of Theorem 2 does not work if this condition is neglected. For example,
suppose that n = 1, X := L'(R), T € L(X) is given by [Tg](t) := g(~1),t € R, g € L' (R) and f(-) is the
2-periodic extension of the function fy : [0,2) — R, given by fy(¢) := 1 for0 <t < 1 and fy(z) := 0O for
1 <t < 2, to the whole real line. Then we have f(¢ + 1) = T f(¢) for all # € R and an arduous computation
yields that ||F/(t + 1) = TF(t)|| 1 (r) = 2/(1 +¢) forall z € [0, 1].

In order to provide certain applications of Theorem 2(i), we will first revisit paper [26] by R. K. Miller,
R. L. Wheeler, and our previous analysis from [18, Example 3.3.32]:

12
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Example 4. Let Y = H be an infinite-dimensional Hilbert space with inner product {-,-). In [26], R.
K. Miller and R. L. Wheeler analyzed the well-posedness of the following abstract Cauchy problem of
non-scalar type:

x'(r) = Ax(t) + /t b(t—s)(A+ald)x(s)ds + f(t), x(0)=xp, (13)
0

where b(t) is a scalar-valued kernel, » € C!([0,0)), a € C, f : [0,00) — H is continuous and A is a
densely defined, self-adjoint closed linear operator in H. We know that the validity of asuppositions [26,
(A1)-(A5)] with @ = By = B1 = 0 and the validity of assumption [26, (A6)] with Bo-(L) # 0 (cf. [26, p.
273] for the notion) imply by [26, Theorem 8] that there exists a unique residual resolvent (R(?)),»¢ for (13)
such that ||R(-)|| € L9([0, o)) for 1 < g < oo; then, [26, Theorem 2] yields that the unique solution of (13)
for all xg € D(A) and f € C'(]0, ) : X) is given by

x(t) = R(t)xo + ‘/Ot R(t-s)f(s)ds, t=0.

In the sequel, let us emphasize that the assumption ||R(-)|| € L([0, o)) for 1 < g < oo on the resolvent
solution family (R (7)), does not directly imply that

DR Lok ksn) < +oo for some g € (1, +00], (14)
k=0

which would be also very difficult to prove using the methods proposed in [26]. If we assume that the forcing
term f € C'([0, c0) : X) satisfies that there exists a function

fieC'R:H)N

Cp(R: H) ﬂ SPAP(R : H)
px1

such that f(¢) = f(¢) for all r > 0, then a simple argumentation involving the decomposition

t 0
x(t):R(t)xo+/ R(t—s)f(s)ds—/ R(t—s)f(s)ds, t=>0,

—00

Theorem 2(i) and Proposition 2 show that the solution x(-) belongs to the space

ﬁ LP([0,00) : H) + Co([0, ) : H) + AP(R : H).
p=1

We continue by noticing that the integrability of resolvent operator families for the abstract Volterra
integral equations was considered by J. Priiss in [31, Part III, Section 10]. For further applications of Theorem
2(i), it is important to say that we have not been able to locate any relevant result examining the question
whether a norm integrable resolvent family (R(t));»¢ fulfills the estimate (14); see, e.g., [31, Theorem
10.1, Corollary 10.1, pp. 262-263] for some sufficient conditions ensuring that f0+°° |R(s)||ds < +oo.
Therefore, the asymptotical almost periodicity of the corresponding abstract Volterra integral equations,
with the forcing terms of the same type, follows from the consideration given in Example 4 and Theorem
2(i); [16, Proposition 2.6.11] is generally not applicable here.

Now we will provide the following simple application of Theorem 2(ii):

Example 5. We can simply construct a great number of kernels a € L'((0, c0)™) which are not locally
g-integrable at zero for any exponent ¢ € (1, oo]. If the function f(-) is bounded and Stepanov-p-almost
periodic for some p € [1, ), then we cannot apply [18, Theorem 6.2.36] to see that the resulting function
F(-) is almost periodic. But, the almost periodicity of F(-) can be proved using Theorem 2(ii).

13
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4.2. Semilinear Volterra integral equations

First of all, let us define S*(R" : X) := Cp(R" : X) (51 SPAP(R" : X); equipped with the sup-norm,
S®(R™ : X) is a Banach space. By S®(R" X X : Y) we denote the set of all continuous functions
F :R" x X — Y such that supgegn e [|[F(t;x)|ly < +oo for each compact set K € R" and the Bochner
transform F(-;-) : R* x X — LP([0,1]" : Y) is Bohr B-almost periodic for every finite exponent p > 1,
where 3 contains all compact subsets of X.

Consider now the following integral equation:

u(t) :f(t)+/_tl [t2~~~[tna(t—s)F(s;u(s))ds, teR" (15)

where X =Y is a finite-dimensional complex Banach space, a € L'((0,0)") and f € S°(R" : X). The
mapping ¥ : S*(R" : X) — S*(R" : X), given by

(Pu)(t) := f(t) + ‘[h [Q . -[tn a(t—s)F(s;u(s))ds, teR", ueSR":X),

is well-defined due to [7, Theorem 4.4] and Theorem 2(ii). Moreover, ¥(-) is a contraction provided that
there exists a finite real constant L > O such that || F(t;x) — F(t; y)|| < L||lx—y]|| forallt € R",x, y € X and
L (0.00) la(s)| ds < 1 so that the integral equation (15) has a unique solution which belongs to the space
S (R™ : X). Let us finally notice that the solution u(-) will be almost periodic if the function f(-) is almost
periodic.

Let us emphasize now that Theorem 2 can be reformulated for the usual convolution product
(t,x) — / h(t—s)F(s;x)ds, teR", x € X,
Rn

where & € L' (R") and F(-;-) is bounded, Bohr (B, A/, p, [0, 1]", m)-almost periodic (B, A’, p, [0, 1]", m)-
uniformly recurrent), where p = T € L(Y). The resulting function has the same properties as F'(+; -) and this
can be applied in the analysis of the existence and uniqueness of bounded, Bohr (A’ p, [0, 1]", m)-almost
periodic ((A’, p, [0, 1]", m)-uniformly recurrent) solutions of the abstract semilinear integral equation

u(t) = f(t) + 'én h(t—s)F(s;u(s))ds, teR",

where f(-) is bounded, Bohr (A’, p, [0, 1]", m)-almost periodic ((A’, p, [0, 11", m)-uniformly recurrent).
Unfortunately, the applications to the heat equation in R" are really confined because the Gaussian kernel
rapidly decays at infinity and the constructed solutions are always almost periodic ([18]).

5. Conclusions and final remarks

In this paper, we have analyzed various classes of multi-dimensional p-almost periodic type functions in
general measure. We have extended many statements known in the one-dimensional setting and provided
some noteworthy applications of our results. We can similarly analyze the notion of (w, p)-periodicity and
(wj, pj)jen,-periodicity in general measure; cf. [11, Section 3] for more details about the subject.

Finally, we would like to stress the following: Suppose that @ # A C R", P, C Y, the space of all
functions from A into Y, the zero function belongs to P, and P = (P, d¢) is a premetric space (€ > 0); if
f € Pe, thenweset || f]|lp, := de(f,0). It is worth noting that the properties of a pseudo-semimetric given
by (2) can give us the idea to generalize the notion from [17, Definition 2.1, Definition 2.2, Definition 3.1]
following the method proposed for introducing the notion in Definition 4. In the general case, the quantities
Il Ilp, and [| - || p, are not comparable if € < 7, as in the case of our former analysis of m-almost periodicity,
so we can also introduce the following notion: F'(-;-) is said to be Bohr (B, A’, p, P)¢, ,-almost periodic if
for every B € B and €, n > 0 there exists I’ > 0 such that for each wy € A’ there exists 7 € B(wg, ") N A’

14
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such that, for every t € A and x € B, there exists y¢,, € p(F(t;x)) such that F(- +7;x) — y..x € P, for all
x € Band

<e.

n

sup
xeB

|F(~ +TX) — Yox

It is very difficult to say anything relevant about the introduced notion if the premetric spaces under
our consideration are not pseudometric spaces. Because of that, we can freely say that the validity of the
triangle inequality is almost inevitable in any serious research on the metrical almost periodicity and its
generalizations. However, some statements like [17, Proposition 2.3, Proposition 3.14], assertions (i) and
(iii) clarified on pp. 234-235 of [17] and assertions (i)-(ii) clarified on p. 246 of [17] can be formulated with
general premetric spaces; on the other hand, it seems that the assertions of [17, Proposition 2.6, Theorem 2.7,
Proposition 3.7] cannot be properly reformulated if the triangle inequality does not hold in our framework.

The generalized almost automorphic type functions have recently been considered in the research study
[21]. We close the paper by proposing the following open problem (cf. also [18, Theorem 2.1.26], [7,
Theorem 2.15] and [11, Theorem 2.28]):

ProBLEM. Suppose that (uy, - - -, u,) is a basis of R”,
AN =A= {a1u1 +---+auu, :a; >0forall i eNn}

and F : A — Y is an unbounded Bohr (L, m)-almost periodic function, where Q = [—1, 1]" N A. Is there a
(unique) Bohr (L, m)-almost periodic function F : R” — Y such that F(t) = F(t) forall t € A?
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