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Fractal behavior of King’s optimal eighth-order iterative
method and its numerical application
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Abstract. In this paper, the stability of an optimal eighth-order single-parameter King’s
method is analyzed via fractal behavior. Under the Möbius conjugate map on the Riemann
sphere, we study the complex dynamic behavior of this iterative method. Firstly, supported
by studying the strange fixed points, we draw the corresponding stability planes. Through
defining a unified plane, we also obtain the global stability plane of the strange fixed points.
Secondly, by generating the dynamical planes of the iterative method corresponding to the
given parameters in the complex plane, we can get a stable parameter family. Finally,
by selecting the parameter c in the stable parameter family, we apply the corresponding
iterative methods to carry out numerical experiments, which illustrate the effectiveness and
stability of these iterative methods.
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1. Introduction

Fractals and the study of their dynamics is one of the emerging and interesting area
for mathematicians. A fractal can be created by the iteration of a rational function
on the complex plane. The Julia set [10] and the Mandelbrot set [14] generated by
iterative methods for the complex function f(z) = z2 + c are examples of fractals.
The Mandelbrot set is in the parameter space and the Julia set is in the dynamical
space. The iteration of a rational function divided the complex plane into two parts,
i.e., the Fatou set [8] and the Julia set. The basin of attraction of any fixed point
belongs to the Fatou set; in addition, the boundaries of their basins of attraction
belong to the Julia set. The parameter spaces and dynamical planes can show the
complexity of the iterative method, which provides a new and important analytical
tool to explore family members with especially stable behavior and suitable for
solving nonlinear problems. More and more researchers are currently committed
to studying the stability of the iterative method. Researchers such as Cordero et
al. [7, 6, 5], Wang et al. [22, 23], Chicharro et al. [3, 2], and others [17, 20] have
described the stability of some famous classes of methods, including Jarratt, King,
Chebyshev-Halley, with the help of a parameter space and some dynamical planes.
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It is challenging to discover dynamical analysis of high-order (greater than 4) root
seeker families in the literature. The dynamic behavior of a three-point optimal
eighth-order single-parameter family will be analyzed in this paper. A variant of
the optimal eighth-order method under the Kung-Traub conjecture [12] using the
divided difference is proposed by King [11], and it is given by

yn = xn −
f(xn)

f ′(xn)
,

zn = φ4(xn, yn),

xn+1 = xn −
f(xn)

mf(xn)2 − nf(xn) + f ′(xn)
,

(1)

where the first two steps are the fourth-order iterative scheme, and

m =
f ′(xn)[f(zn)−f(yn)]+f [xn, zn][f(yn)−f(xn)]+f [xn, yn][f(xn)−f(zn)]

[f(yn)− f(xn)][f(yn)− f(zn)][f(xn)− f(zn)]
, (2)

n =
−m[f(yn)− f(xn)]2 − f ′(xn) + f [xn, yn]

f(yn)− f(xn)
, (3)

where f [·, ·] is a forward divided difference of order one.
Petković proposed a widely used optimal two-point fourth-order iterative method

in [16]. Its iterative scheme is as follows:
yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn − p(tn)
f(yn)

f ′(xn)
, tn =

f(yn)

f(xn)
.

(4)

Choosing p(t) =
t2 + (c− 2)t− 1

ct− 1
(c ∈ C) in (4), we get the iterative scheme:


yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

f ′(xn)
{1 +

f(yn)[f(yn)− 2f(xn)]

f(xn)[cf(yn)− f(xn)]
}.

(5)

Using (5) as the first two steps of method (1), we attain the following single-
parametric family of eighth-order methods (OM):

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)
{1 +

f(yn)[f(yn)− 2f(xn)]

f(xn)[cf(yn)− f(xn)]
},

xn+1 = xn −
f(xn)

mf(xn)2 − nf(xn) + f ′(xn)
,

(6)

where m and n are defined earlier in expressions (2) and (3).
Our main interest in dynamical analysis of the proposed family of eighth-order

methods (6) is to observe the effect of control parameter c on the dynamical planes
describing the evolution of the correlated state space over time. This analysis enables
us to avoid elements of bad behavior and adopt the most stable ones.
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Now, we recall several primary dynamical concepts [1]. Provided a rational

function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ is
defined as:

{z0, R(z0), R2(z0), · · · , Rn(z0), · · · }.
Starting from the asymptotic behavior of their orbits, we classify the starting points
to analyze the phase plane of the map R. zf ∈ Ĉ is called a fixed point if R(zf ) = zf .
Moreover, zf is called an attractor if |R′(zf )| < 1, a superattractor if |R′(zf )| = 0,
a repulsor if |R′(zf )| > 1, and parabolic if |R′(zf )| = 1. A critical point z∗ is
a point where the derivative of the rational function vanishes, R′(z∗) = 0. So, a
superattracting fixed point is also a critical point. A periodic point z of period
p > 1 is a point such that Rp(z) = z and Rk 6= z, for k < p. A pre-periodic point is
a point z that is not periodic but there exists a k > 0 such that Rk(z) is periodic.

On the other hand, the basin of attraction of an attractor α ∈ Ĉ is defined as
the set of starting points whose orbits tend to α:

A(α) = {z0 ∈ Ĉ : Rn(z0)→ α, n→∞}.

The Fatou set of the rational function R, F (R) is the set of points z ∈ Ĉ whose
orbits tend to an attractor. Among them, attractors include fixed points, periodic
orbits or infinity. Its complementary set in Ĉ is the Julia set, J(R), that is, the basin
of attraction of any fixed point belongs to the Fatou set; in addition, the boundaries
of their basins of attraction belong to the Julia set [15].

The remaining part of this paper is organized in five sections. Section 2 briefly
describes the preliminary study of the dynamics on Ĉ. In Section 3, an application of
the Möbius conjugacy map is investigated and also the strange fixed points of Rf (z)
and its stability are analyzed. In Section 4, we draw the dynamical planes of the
family (6) elements matched up with free critical points. In Section 5, we perform
numerical experiments on the proposed method and other methods. Finally, we
summarize the whole paper.

2. Primary conclusions on the Riemann sphere

Definition 1. Let f(z) be a holomorphic function with no singularity except acnodes
defined on the open interval U ⊂ C. Such a function f(z) is called a meromorphic
function.

Theorem 1. Let f(z) be a complex function. If f(z) is an infinitely differentiable

function on the Riemann sphere Ĉ and f ′(z) = 0, then f(z) is a constant.

Proof. Let f(z) = u(x, y)+iv(x, y), (x, y) ∈ Ĉ. Considering that f(z) is an infinitely

differentiable function on Ĉ, the following conclusions hold:
(1) u(x, y), v(x, y) are differentiable on Ĉ and du = uxdx+uydy, dv = vxdx+vydy.

(2) u(x, y), v(x, y) satisfy the Cauchy-Riemann condition on Ĉ: ux=vy, uy=−vx.
(3) f ′(z) = ux + ivx = vy − iuy.
According to f ′(z) = 0, we have ux = vy = 0, uy = vx = 0; then du = 0, dv = 0.
Thus u = c1, v = c2 are established, where c1, c2 are constants.
So, f(z) = u+ iv = c1 + ic2, that is, f(z) is a constant.
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Theorem 2. f(z) is a meromorphic function on the Riemann sphere Ĉ if and only

if f(z) is a rational function on the Riemann sphere Ĉ.

Proof. (⇐) Apparently established.

(⇒) Let f(z) be a meromorphic function on the Riemann sphere Ĉ and let

z1, z2, · · · , zk,∞ be acnodes of f(z) on the Riemann sphere Ĉ. By using the Laurent
expansion of z1, z2, · · · , zk,∞, we have:

The singular parts of the Laurent expansion of z1, z2, · · · , zk,∞ are

φj(z) =
c
(j)
−1

z − zj
+ · · ·+

c
(j)
−mj

(z − zj)mj
, (j = 1, 2, · · ·, k),

and ϕ(z) = c0 + c1z + · · ·+ cmz
m.

The differentiable parts of the Laurent expansion of z1, z2, · · · , zk,∞ are ϕj(z)(j =
1, 2, · · · , k) and φ(z).

Let F (z) = f(z)− ϕ(z)−
k∑
j=1

φj(z), and F (z) is a meromorphic function on the

Riemann sphere Ĉ. F (z) is infinitely differentiable on the Riemann sphere Ĉ without
z1, z2, · · · , zk,∞.

Since

lim
x→xi

F (z) = ϕi(zi)− ϕ(zi)−
k∑
j=1
j 6=i

φj(zi)(i = 1, 2, · · · , k),

lim
z→∞

F (z) = 0. (7)

Therefore, z1, z2, · · · , zk,∞ are removable singularities of F (z). F (z) is infinitely

differentiable on the Riemann sphere Ĉ after a supplementary definition.

Using Theorem 1 and (7), we obtain F (z) ≡ 0 . So, f(z) = ϕ(z)−
k∑
j=1

φj(z) can

be a rational function; then this proof is completed.

Lemma 1 (The scaling theorem). Let f(z) be an analytic function on the Riemann

sphere Ĉ, and let Γ(z) = az + b, a 6= 0, be an affine map. If h(z) = f ◦ Γ(z),
then the fixed points operator Rf is analytically conjugated to Rh by Γ, that is,
Γ ◦Rh ◦ Γ−1 = Rf (z).

Proof. Theorem 1 in [21] has been proved.

It can be seen from the above lemma that we can conjugate the dynamic behavior
of one operator with the related behavior of another operator by affine application.

Definition 2. Let (X, f) and (Y, g) be two dynamic systems. It is reported that f
is conjugate to g via h if there exists a homeomorphism mapping h : Y → X such
that h ◦ f = g ◦ h. Like a mapping, h is called a conjugacy.
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Theorem 3. Let f and g be defined by Definition 2 of class C1 let and there exist
a conjugacy h between X and Y . Besides, let τ be a fixed point of g. Then, the
following hold:
(a) The fixed point property remains invariant under a topological conjugacy h, that
is,

τ = g(τ),

if and only if
h(τ) = f(h(τ)).

(b) The Poincaré characteristic multiplier of τ by g, denoted by m(g, τ), is invariant
under a diffeomorphic conjugacy h, that is,

m(h ◦ g ◦ h−1, h(τ)) = g′(τ) = m(g, τ).

Remark 1. The above theorem states that a conjugacy h indeed preserves the dy-
namical behavior between the two dynamical systems X and Y , that is, two dynamical
systems under a conjugacy h; the fixed point and its multiplier remain constant. For
instance, let f and g be conjugate to each other via h; if τ is a fixed point of g, then
g(τ) is a fixed point of f , and vice versa.

Furthermore, we detect f = h ◦ g ◦ h−1 and

fn = (h ◦ g ◦ h−1) ◦ (h ◦ g ◦ h−1) ◦ · · · ◦ (h ◦ g ◦ h−1) = h ◦ gn ◦ h−1.

If f and g are extra invertible, we can also discover f−1 = h ◦ g−1 ◦ h−1 and
f−n = h ◦ g−n ◦ h−1. Then the topological conjugacy h maps an orbit:

· · · , f−2(x), f−1(x), x, f(x), f2(x), · · ·

of f onto an orbit:
· · · , g−2(y), g−1(y), y, g(y), g2(y), · · ·

of g, where y = h(x). Thus, we discover the order of points is preserved.
Consequently, the orbits of the two maps behave similarly to homeomorphism h.

It is undoubtedly invaluable to explore the dynamical properties of conjugate maps.

3. Fixed points and stability

Based on topological invariance, we convert Rf in (6) to Π by Möbius conjugacy

map M(z) =
z − a
z − b

(a 6= b), satisfying the following:

Π(z; a, b, s, c) =
Φ(z; a, b, s, c)

Ψ(z; a, b, s, c)
, (8)

when applied to polynomial f(z) = (z − a)(z − b), where Φ and Ψ are rational
polynomials whose coefficients generally depend on parameters a, b, s, c. One of our
purposes is to minimize both Φ and Ψ coefficients depending on parameters. Based
on the above conjugate, we discover that all the coefficients of both Φ and Ψ are
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only dependent on the parameter c and independent of others. Accordingly, with
the symbolic computation power of Mathematica, (8) can be written as

Π(z; c) =
z8 · γ(z; c)

ω(z; c)
, (9)

where γ(z; c) = 12 + 106z + 426z2 + 1028z3 + 1690z4 + 2029z5 + 1856z6 + 1315z7 +
714z8+285z9+78z10+13z11+z12+c2z(1+z)4(2+z)2(1+2z+z2+z3)−c(1+z)2(4+
40z+143z2 +268z3 +323z4 +274z5 +170z6 +72z7 +18z8 +2z9), ω(z; c) = 1+(13−
2c)z+(78−22c+c2)z2+(285−110c+9c2)z3+(714−332c+36c2)z4+(1315−686c+
87c2)z5+(1856−1041c+145c2)z6+(2029−1188c+175c2)z7+2(845−501c+75c2)z8+
(1028−594c+85c2)z9 +(426−227c+28c2)z10 +2(53−24c+2c2)z11−4(−3+c)z12.

Lemma 2. Relation Π(
1

z
; c) =

1

Π(z; c)
yields ∀ c ∈ C and ∀ z ∈ Ĉ.

Proof. The proof is done using Theorem 3(a) via conjugacy h(z) =
1

z
, ∀z ∈ Ĉ.

Considering that M(z) is a fixed point of Π for a fixed point z of Rf with

M−1(z) =
zb− a
z − 1

, z is a fixed point of Rf and M(z) is a fixed point of Π under the

Möbius conjugacy map M(z) =
z − a
z − b

.

We will explore the fixed points of Π(z; c) and their stability. The fixed points
of Π(z; c) are given by the roots of:

Π(z; c)− z =
z(z − 1)(1 + z + z2) · θ(z; c)

ω(z; c)
, (10)

where θ(z; c) = 1 + (13 − 2c)z + (78 − 22c + c2)z2 + (286 − 110c + 9c2)z3 + (727 −
334c+36c2)z4 +(1393−708c+88c2)z5 +(2142−1151c+154c2)z6 +(2744−1518c+
211c2)z7 + (2977− 1662c+ 234c2)z8 + (2744− 1518c+ 211c2)z9 + (2142− 1151c+
154c2)z10 +(1393−708c+88c2)z11 +(727−334c+36c2)z12 +(286−110c+9c2)z13 +
(78− 22c+ c2)z14 + (13− 2c)z15 + z16.

Let the Möbius conjugacy map M(z) =
z − a
z − b

be the conjugacy map, and the

following properties yield:

(i) M(a) = 0; (ii) M(b) =∞; (iii) M(∞) = 1.

Evidently, z = 0 or z = ∞ are two of their fixed points of Π = M ◦ Rf ◦M−1,
regardless of the value of c. In spite of this, since Π(0) = 0,Π(∞) = ∞, that is,
their orbits approach themselves, and such fixed points would have a slight affect on
the dynamics, so we do not do too much research on them. The fixed points except
{0,∞} are called strange fixed points, which differ from the roots of f(z). To achieve
additional strange fixed points, we have to respond to the equation Π(z; c)− z = 0
in (10) for z for a given value of c. Through computation, we achieve the following
lemma.
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Lemma 3. Relation θ(
1

z
) =

θ(z)

z16
is obtained, ∀ c ∈ Ĉ and ∀ z ∈ Ĉ.

Utilizing Theorem 3(a), the following corollary can be proved:

Corollary 1. Let Π be defined as in (9). If η ∈ Ĉ is any fixed point of Π, then so

is
1

η
.

We now investigate further strange fixed points and their stability in 3.2.

3.1. The fixed points and the strange fixed points

We first examine the existence of c-values for common factors (divisors) of θ(z; c)
and ω(z; c). In addition, both θ(z; c) and ω(z; c) will be checked whether they have
factors (z − 1) and (1 + z + z2). The following theorem best describes the related
properties of such existence.

Theorem 4.

(a) If c =
1

2
, then θ(z; c) and ω(z; c) have a common factor (2 + 3z + 2z2)2.

(b) If c1 =
41

12
, c2 =

233

60
, then ω(z; c) has a factor (z − 1).

(c) If c3 =
15

4
, c4 =

169

44
, then θ(z; c) has a factor (z − 1).

(d) If c5 =
1

6
(9− i

√
3), c6 =

1

6
(9 + i

√
3), then ω(z; c) has a factor (1 + z + z2).

(e) If c7 =
3

2
, c8 = 2, then θ(z; c) has a factor (1 + z + z2).

(f) If z 6= 0 is a c-dependent strange fixed point of Π(z; c) found from the roots

of θ(z; c) = 0 for c /∈ { 12 ,
41
12 ,

233
60 ,

15
4 ,

169
44 ,

3
2 , 2,

1
6 (9− i

√
3), 16 (9 + i

√
3)}, then so is 1

z .
The strange fixed points can be found from the 16 numerical roots of θ(z; c) = 0 for
a given c.

Proof. (a) Suppose that θ(z; c) = 0 and ω(z; c) = 0 for some values of z ∈ C. By
eliminating c from the two polynomials, we obtain the relation (2 + 3z + 2z2)3 = 0.
Hence, (2 + 3z + 2z2), (2 + 3z + 2z2)2, (2 + 3z + 2z2)3 are candidates for common
divisors of θ(z; c) and ω(z; c). First, dividing both θ(z) and ω(z) to get the same
remainder 1 − 2c, and when c = 1

2 , the remainder is 0. Certainly, θ(z) and ω(z)
reduce to 1

4 (2 + 3z + 2z2)2(1 + 9z + 36z2 + 84z3 + 136z4 + 179z5 + 202z6 + 179z7 +
136z8 + 84z9 + 36z10 + 9z11 + z12) and 1

4 (2 + 3z + 2z2)2(1 + 9z + 36z2 + 83z3 +
127z4 + 143z5 + 118z6 + 53z7 + 10z8), respectively.

Hence, we find that (2 + 3z+ 2z2)2 is indeed a common divisor of θ(z) and ω(z).
The remaining proof only needs to substitute the corresponding θ(z) and ω(z) into
(10) and answer its roots to be the strange fixed points.

(b) We find ω(1) = 9553 − 5256c + 720c2 = 0 for c1 = 41
12 ,c2 = 233

60 to have a
divisor (z − 1).

(c) We find θ(1) = 7(2535 − 1336c + 173c2) = 0 for c3 = 15
4 , c4 = 169

44 to have a
divisor (z − 1).
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(d) We find ω(−(−1)
1
3 ) = 1

2 i(i+
√

3)(7−9c+3c2) = 0 and ω((−1)
2
3 ) = − 1

2 i(−i+√
3)(7−9c+3c2) = 0 for c5 = 1

6 (9−i
√

3), c6 = 1
6 (9+i

√
3) to have a factor (1+z+z2).

(e) We find θ(−(−1)
1
3 ) = 1

2 i(i+
√

3)(6−7c+2c2) = 0 and θ((−1)
2
3 ) = − 1

2 i(−i+√
3)(6− 7c+ 2c2) = 0 for c7 = 3

2 , c8 = 2 to have a factor (1 + z + z2).
(f) Considering Corollary 1, we find simply that 1

z is also a fixed point of Π(z; c).
We numerically acquire the strange fixed points z satisfying θ(z; c) = 0 for given

values of c /∈ { 12 ,
41
12 ,

233
60 ,

15
4 ,

169
44 ,

3
2 , 2,

1
6 (9− i

√
3), 16 (9 + i

√
3)}. By Corollary 1, if we

know eight roots η1, η2, · · ·, η8 of θ(z; c) = 0, then we can factor θ(z; c) =
8∏
i=1

(z −

ηi)(z − 1
ηi

). A detailed analysis for the 16 roots of θ(z; c) will be shown later in
Lemma 5.

3.2. Stability of the fixed points and the strange fixed points

In order to determine the stability of the fixed points, the derivative of Π needs to
be calculated from (9):

Π′(z; c) =
z7 · κ(z; c)

ω2(z; c)
, (11)

where κ(z; c) = 96+2046z+20900z2+136126z3+635276z4+2265333z5+6431636z6+
14962571z7+29127592z8+48190555z9+68527336z10+84396809z11+90421212z12+
84396809z13+68527336z14+48190555z15+29127592z16+14962571z17+6431636z18+
2265333z19+635276z20+136126z21+20900z22+2046z23+96z24+c4z3(1+z)8(28+
216z+737z2+1548z3+2339z4+2684z5+2339z6+1548z7+737z8+216z9+28z10)−
c3z2(1+z)6(88+1108z+6284z2+21577z3+51234z4+91048z5+126754z6+141238z7+
126754z8 + 91048z9 + 51234z10 + 21577z11 + 6284z12 + 1108z13 + 88z14) + c2z(1 +
z)4(92+1696z+14019z2+70226z3+242301z4+619986z5+1235288z6+1980658z7+
2609564z8 + 2857420z9 + 2609564z10 + 1980658z11 + 1235288z12 + 619986z13 +
242301z14+70226z15+14019z16+1696z17+92z18)−c(1+z)2(32+900z+10582z2+
73529z3+348188z4+1215218z5+3286530z6+7132012z7+12734214z8+19043274z9+
24135662z10+26100534z11+24135662z12+19043274z13+12734214z14+7132012z15+
3286530z16 + 1215218z17 + 348188z18 + 73529z19 + 10582z20 + 900z21 + 32z22).

Obviously, fixed points 0 and ∞, related to the roots of polynomial f(z) =
(z − a)(z − b), are superattracting points and also the critical points of Π(z; c)
owing to the right-hand side of (11). From the position of Corollary 2 (to be shown
later), the multiplier Π′(z; c) = 0 at z = ∞ is found from the analyticity of the
neighborhood of∞ on the Riemann sphere. The rest of this subsection will describe
in more detail the desired stability of the fixed points. By direct calculation, we get
the following lemma.

Lemma 4. Relation κ(
1

z
) =

κ(z)

z24
is obtained, ∀ λ ∈ C and ∀ z ∈ Ĉ.

We first test the existence of c-values for common factors (divisors) of κ(z) and
ω(z). In addition, both κ(z) and ω(z) will be examined whether they have factors
of z7.
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The following theorem best describes the related properties of such existence as
well as explicit strange fixed points.

Theorem 5.

(a) If c =
1

2
, then

Π′(z; c) =
z7 · κ1(z)

(1 + 9z + 36z2 + 83z3 + 127z4 + 143z5 + 118z6 + 53z7 + 10z8)2
,

where κ1 = 80 + 1107z + 7156z2 + 28637z3 + 79852z4 + 166487z5 + 272732z6 +
362873z7 + 398632z8 + 362873z9 + 272732z10 + 166487z11 + 79852z12 + 28637z13 +
7156z14 + 1107z15 + 80z16.

(b) If c = 3, then

Π′(z; c)=
−z8 · κ2(z)

(1+7z+21z2+36z3+42z4+40z5+38z6+40z7+34z8+11z9−3z10−2z11)2
,

where κ2(z) = 18 + 142z+ 362z2− 242z3− 4041z4− 13124z5− 26720z6− 42016z7−
57292z8+72106z9−84311z10−89280z12−72106z13−57292z14−42016z15−26720z16−
13124z17 − 4041z18 − 242z19 + 362z20 + 142z21 + 18z22.

(c) If c 6= 1

2
, 3, then, with the help of Theorem 7 (explained later in this section),

the expected stability can be graphically realized by changing the parameter c.

Proof. (a) Suppose that κ(z) = 0 and ω(z) = 0 for some values of z. By eliminating
c from the two polynomials, we obtain the relation: (2 + 3z+ 2z2)(1 + 16z+ 118z2 +
541z3+1737z4+4108z5+7196z6+8835z7+5772z8−3302z9−14643z10−20772z11−
16749z12 − 5137z13 + 6150z14 + 10877z15 + 9002z16 + 4648z17 + 1444z18 + 190z19 −
24z20 − 8z21) = 0. Hence (2 + 3z + 2z2) is a candidate for common divisors of κ(z)
and ω(z). After checking constraints

κ(
1

4
(−3− i

√
7)) = ω(

1

4
(−3− i

√
7)) = 0, κ(

1

4
(−3 + i

√
7)) = ω(

1

4
(−3 + i

√
7)) = 0,

we find that c = 1
2 , yielding common divisors.

(b) For κ(z) to have a factor z, we obtain c = 3 by solving κ(0) = −32(−3+c) = 0
for c.

(c) Graphical stability of z can be easily realized by Theorem 7.

Corollary 2. Let η ∈ Ĉ be any fixed point of Π defined in (9). Then the following
relation holds:

Π′(η; c) = Π′(
1

η
; c),

for any c ∈ C.

The consequences of Theorem 5 are utilized to express the stability of the fixed
points in Theorem 4, no matter what value c is. Table 1 shows the fixed points
corresponding to the special parameter c in Theorem 4 and the stability of these
fixed points, while c in Table 1 denotes different parameters, η denotes the strange
fixed point, and g, f, e denote the repulsive, parabolic, and attractive fixed points,
respectively.
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c η No. of η

|Π′(η; c)| : m
1

2
1 −0.5 ± 0.866025i −0.662565 1.05715 −3.32978 ± 0.737957i 19

6.64828 : g 3.76923 : g 1.16483 : g 9.10288 : g 1505.36 : g
−2.67946 ± 1.89601i −1.43902 ± 2.41158i −0.490573 ± 0.356419i −0.0456346 ± 2.24362i 0.188601 ± 0.577421i
1299.54 : g 740.797 : g 0.793037 : e 320.503 : g 0.826408 : e
0.936008 ± 1.43909i
103.467 : g

41

12
1 −0.5 ± 0.866025i −1.57805 ± 0.527117i −0.570084 ± 0.190425i −0.0101692 ± 0.999948i 19

7.35119 : g 2.44547 : g 57.1192 : g 57.116 : g 3.8602 : g
0.86664 ± 0.498933i −1.73287 ± 0.544017i −0.525304 ± 0.164914i −0.343419 ± 0.939182i 0.809927 ± 0.58653i
5.39743 : g 35.4899 : g 35.49 : g 0.398073 : e 12.1007 : g

233

60
1 −0.5 ± 0.866025i 0.716729 1.39523 −1.57199 ± 0.485643i 19

65.6845 : g 2.55757 : g 2.35323 : g 2.35337 : g 60.7642 : g
−0.580713 ± 0.179403i 0.0383904 ± 0.999263i 0.821502 1.21728 −1.72297 ± 0.490367i
60.7634 : g 2.64291 : g 3.31121 : g 3.31126 : g 36.6368 : g
−0.536903 ± 0.152805i −0.317849 ± 0.948141i
36.6394 : g 0.507215 : e

15

4
1(triple) −0.5 ± 0.866025i 1.57356 ± 0.496872i −0.577884 ± 0.182475i 0.0264408 ± 0.99965i 17

1 : m 2.53037 : g 70.7198 : g 59.7887 : g 3.76707 : g
−1.7255 ± 0.505059i −0.533808 ± 0.156247i −0.324346 ± 0.945938i 0.958656 ± 0.284569i
36.3568 : g 36.3582 : g 0.480419 : e 4.00659 : g

169

44
1(triple) −0.5 ± 0.866025i −1.72376 ± 0.494992i −0.535935 ± 0.153899i −0.319854 ± 0.947467i 17

1 : m 2.54926 : g 36.5549 : g 36.5536 : g 0.499004 : e
0.759641 1.15969 −1.57248 ± 0.489167i −0.579829 ± 0.180374i 0.0347331 ± 0.999397i
1.15974 : g 1.15969 : g 60.4538 : g 60.4599 : g 3.74768 : g

1

6
(9 − i

√
3) 1 −0.5 ± 0.866025i −1.92143 + 0.818354i −1.79644 − 0.91219i −0.630021 − 0.864907i 19

6.90218 : g 4.1659 : g 31.5087 : g 27.494 : g 4.0327 : g
−0.550242 + 0.755383i −0.44255 + 0.224716i −0.440533 − 0.18627i −0.131936 + 0.93079i 0.149286 − 1.0532i
4.03275 : g 27.4944 : g 31.5098 : g 1.44337 : g 4.5422 : g
−1.72507 + 0.772758i −1.59466 − 0.847944i −0.559538 − 0.969453i 0.488867 + 0.259949i −0.482804 − 0.216276i
41.0434 : g 33.6117 : g 3.84089 : g 0.233621 : e 41.0417 : g
−0.446587 + 0.773754i 0.385411 + 0.886933i 0.41212 − 0.948397i
3.84085 : g 4.41108 : g 4.41107 : g

1

6
(9 + i

√
3) 1 −0.5 ± 0.866025i −1.72507 − 0.772758i −1.59466 + 0.847944i −0.559538 + 0.969453i 19

6.90218 : g 99046.8 : g 41.0434 : g 33.6117 : g 3.84089 : g
−0.488867 − 0.259949i −0.482804 + 0.216276i −0.446487 − 0.773754i 0.385411 − 0.886933i 0.41212 + 0.948397i
33.6102 : g 41.0417 : g 3.84417 : g 4.41108 : g 4.41107 : g
−1.92143 − 0.818354i −1.79644 + 0.91219i −0.630021 + 0.864907i −0.550242 − 0.755383i −0.44255 − 0.224716i
31.5087 : g 27.494 : g 4.0327 : g 4.03275 : g 27.4944 : g
−0.440533 + 0.187627i −0.131936 − 0.93079i 0.149286 + 1.0532i
31.5098 : g 1.44337 : g 4.5422 : g

3

2
1 −0.5 ± 0.866025i −1.66835 ± 0.813296i −0.484304 ± 0.236092i 0.402652 ± 0.915353i 17

6.91882 : g 0.999987 : e 37.8519 : g 37.8524 : g 4.44271 : g
−1.86617 ± 0.865842i −0.59002 ± 0.807389i −0.440939 ± 0.204582i 0.147123 ± 0.989118i
29.8889 : g 4.15236 : g 29.8884 : g 4.60883 : g

2 1 −0.5 ± 0.866025i −1.80299 ± 0.762859i −0.47042 ± 0.199038i 0.273409 ± 0.961898i 17
7.19833 : g 1.00001 : g 30.4498 : g 30.4498 : g 7.10865 : g
−1.62146 ± 0.712126i −0.517006 ± 0.227063i −0.331734 ± 0.943373i 0.470196 ± 0.882562i
42.4157 : g 42.4172 : g 3.92442 : g 4.9401 : g

|Π′(η; c)| : m denotes that η is attractive, parabolic and repulsive if m = e(|Π′| < 1), m =
f(|Π′| = 1), m = g(|Π′| > 1), respectively

Table 1: Stability of strange fixed points η for special c-values

Next, we will discuss the stability of the fixed point z = 1 when c /∈ { 12 ,
41
12 ,

233
60 ,

15
4 ,

169
44 ,

3
2 , 2,

1
6 (9− i

√
3), 16 (9 + i

√
3)}.

Theorem 6. Let c /∈ {1

2
,

41

12
,

233

60
,

15

4
,

169

44
,

3

2
, 2,

1

6
(9 − i

√
3),

1

6
(9 + i

√
3)}; then the

related properties of the strange fixed point z = 1 are as follows:

(a) If c =
1

276
(1041± 14

√
3), then z = 1 is a superattracting point;

(b) If
169

44
< |c| < 4821 + 14

√
105

1284
or

4821− 14
√

105

1284
< |c| < 15

4
, then z = 1 is
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an attractive point;

(c) If |c| =
4821 + 14

√
105

1284
or |c| =

4821− 14
√

105

1284
, then z = 1 is a parabolic

fixed point;

(d) Finally, if |c|< 169

44
or |c|> 4821+14

√
105

1284
or |c|> 15

4
or |c|< 4821−14

√
105

1284
,

then z = 1 is a repulsive point.

Proof. Substituting z = 1 into Π′(z; c), we achieve

|Π′(1; c)| = |62788− 33312c+ 4416c2

9553− 5256c+ 720c2
| = |4(15697− 8328c+ 1104c2)

(−41 + 12c)(−233 + 60c)
|.

It is easy to confirm that |Π′(1;
1

276
(1041± 14

√
3))| = 0.

Let c = x + iy be an arbitrary complex number, and solve |Π′(1; c)| ≤ 1. Then

we can get
169

44
< |c| ≤ 4821 + 14

√
105

1284
or

4821− 14
√

105

1284
≤ |c| < 15

4
.

Figure 1 shows the stability plane for the strange fixed point z = 1.
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Figure 1: Stability planes for z = 1

Further properties of θ(z) will be described in the following lemma to improve
the desired graphic stability.

Lemma 5. Let c /∈ {1

2
, 3} and let η1, η2, · · ·, η8 ∈ C\{0} be eight roots of θ(z).

Then, θ(z) can be factored out with eight second-degree polynomials in the form of

θ(z) =
8∏
i=1

(1 + diz + z2) =
8∏
i=1

(z − ηi)(z −
1

ηi
), where di = −(ηi +

1

ηi
) or ηi =

1

2
(−di −

√
−1 + d2i ) for 1 ≤ i ≤ 8 in terms of c.

Proof. Owing to Lemma 3 and Corollary 1, we find that if η 6= 0 is a strange fixed

point of Π(z; c) found from the roots of θ(z) = 0 for c /∈ {1

2
, 3}, then so is

1

η
.
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Consequently, the above factorization is valid. Then
8∏
i=1

(z − ηi)(z −
1

ηi
) is easily

acquired under the sixteen-degree polynomials θ(z). (1 + diz + z2) can be obtained

by expanding (z − 1

ηi
) and it is obvious that di = −(ηi +

1

ηi
) holds.

With the aim of continuing to explore the stability of other fixed points from the
root of θ(z), we need to find the root of θ(z) first by answering θ(z) = 0. Then, we
obtain θ(z) = θ1(z) · θ2(z), where θ1(z) = 1 + (6− c)z + (15− 4c)z2 + (20− 6c)z3 +
(21− 6c)z4 + (20− 6c)z5 + (15− 4c)z6 + (6− c)z7 + z8, θ2(z) = 1 + (7− c)z+ (21−
5c)z2 + (35− 10c)z3 + (41− 12c)z4 + (35− 10c)z5 + (21− 5c)z6 + (7− c)z7 + z8.

By comparing the expansion of
4∏
i=1

(1+diz+z2) with the coefficients of the same

order term of θ1(z) and θ2(z), we find that the following two groups of four equations
are related to d1, d2, · · · , d8,

d1 + d2 + d3 + d4 = 6− c,
4 + d1d2 + d1d3 + d2d3 + d1d4 + d2d4 + d3d4 = 15− 4c,
3(d1 + d2 + d3 + d4) + d1d2d3 + d1d2d4 + d1d3d4 + d2d3d4 = 20− 6c,
6 + 2(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4) + d1d2d3d4 = 21− 6c.

(12)

and 
d5 + d6 + d7 + d8 = 7− c,
4 + d5d6 + d5d7 + d6d7 + d5d8 + d6d8 + d7d8 = 21− 5c,
3(d5 + d6 + d7 + d8) + d5d6d7 + d5d6d8 + d5d7d8 + d6d7d8 = 35− 10c,
6 + 2(d5d6 + d5d7 + d5d8 + d6d7 + d6d8 + d7d8) + d5d6d7d8 = 41− 12c.

We eliminate variables d2, d3, d4 in (12) utilizing Mathematica to ultimately access
a decic equation in d1 below:

(2 + 3d2 − 4d21 + d31)c− 2d1 + 11d21 − 6d31 + d41 − 7 = 0

For convenience, we let ϑ(d1; c) denote (2+3d2−4d21+d31)c−2d1+11d21−6d31+d41−7.
Eliminating d1, d3, d4;d1, d2, d4and d1, d2, d3, respectively, we acquire a unique decic
equation in r ∈ {d1, d2, d3, d4} as follows: ϑ(r; c) = 0.

Next, we answer the roots of ϑ(r; c) and get:

d1(c) =
6− c

4
− 1

2
M(c)− 1

2
N(c),

d2(c) =
6− c

4
− 1

2
M(c) +

1

2
N(c),

d3(c) =
6− c

4
+

1

2
M(c)− 1

2
N(c),

d4(c) =
6− c

4
+

1

2
M(c) +

1

2
N(c),

where:

M(c) =

√
−11 +

1

3
(11− 4c) +

1

4
(−6 + c)2 + 4c+

ι(c)

3o(c)
+
o(c)

ρ(c)
,

N(c) =

√
−11 +

1

2
(−6 + c)2 + 4c+

1

3
(−11 + 4c)− ι(c)

3o(c)
− o(c)

ρ(c)
− %(c)

4M(c)
,
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ι(c) = 21/3(1− 4c+ 7c2), %(c) = 4(11− 4c)(−6 + c)− (−6 + c)3 − 8(−2 + 3c), o(c) =
(322 − 204c + 21c2 + 34c3 −

√
ν(c))1/3, ρ(c) = 3 × 21/3, ν(c) = 103680 − 131328c +

54864c2 + 14256c3 − 15363c4 + 3780c5 − 216c6.
Solving the expression for d5, d6, d7, d8 is the same method.

Then, substituting di(c) for ηi =
1

2
(−di −

√
−4 + d2i ), i = 1, 2, 3, 4, 5, 6, 7, 8. The

result is a c-dependent strange fixed point of Π.

Definition 3 (Unified image(line or plane)). Let Q = {(x, y) ∈ N × N : 1 < x <
Qx, 1 < y < Qy}, where Qx and Qy are the number of pixels of the image Y and
D = {z ∈ Z : 0 ≤ z ≤ 255}. Let YB , YG, YR : Q → D be the intensity of blue, green
and red of the pixels of an image Y , respectively.

The binary image T : Q→ {0, 1} is defined as

T =

{
0, if YR = 0, YG = 1, YB = 1

1, if YR = 1, YG = 0, YB = 1

Let XF = {xF,k, i = 1, 2, . . . , k} be the set of k strange fixed points, and let Fi be their
associated binary images, i = 1, 2, . . . , k. The unified stability images V : T → {0, 1}
are defined as V =

∏k
i=1 Fi.

In order to demonstrate the stability for other c-dependent strange fixed points
η contributed from the roots of θ(z) = 0 in (10), we would better use the graphical
method described in Algorithm 2.4 of [9]. For each root ηj of θ(η) = 0, the stability
planes are shown in Figure 2 for each root ηj of θ(η) = 0.
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Figure 2: Stability planes of the strange fixed points ηj , 1 ≤ j ≤ 8 from the roots of θ(η)

Figure 2 shows the stability planes of strange fixed points depending on param-
eter c.

In figures 2-3, we use a plane of 500× 500 to represent the stability plane of the
fixed point, and the maximum number of iterations is 25. According to Definition
3, Figure 2 can be uniformly represented by Figure 3. Among them, the cyan
region indicates that the fixed point is attractive. We are mainly interested in the
parameters in the pink region, because the iterative methods corresponding to the
parameter values in the pink region do not converge to extra fixed points. Comparing
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(a) Unified stability plane
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(b) Detail of (a)

Figure 3: Unified stability plane

Figure 3 (b) with Figure 2 in reference [13], it can be seen that the OM method is
more stable than the method in [13] in the same range.

4. Dynamical planes

In the previous sections, by analyzing theorems 4-6, we obtain some special param-
eter c-values. Combined with Figure 3, we find that most of these special values
are in the pink region. Therefore, we will use the dynamical planes to analyze the
stability of the iterative method corresponding to these special parameter values.

This section gives the dynamical plane of the new family OM (6) with a given
c-value. By using Matlab to run the program in [3], we obtain the dynamical planes
of (6). We use a 500× 500 points grid to generate dynamical planes, the maximum
number of iterations is 50. Each color represents an attraction basin: convergence
to 0 and ∞ is represented by red and yellow in sequence. If it converges to the fixed
point z = 1, it shows green. If it does not converge to any root, it shows black. And
we draw the track in blue. In addition, we use white ∗ to represent the attractive
points.

Firstly, we show the dynamical planes corresponding to the special c-values stud-
ied in theorems 4 and 5, that is, c ∈ { 12 ,

41
12 ,

233
60 ,

15
4 ,

169
44 ,

1
6 (9−i

√
3), 16 (9+i

√
3), 32 , 2, 3}

in Figure 4, respectively. Figures 4(a), 4(f) and 4(g) have only red and yellow re-
gions, that is, in 50 iterations, it only converges to 0 and ∞, indicating that the
c-value has good convergence; other special values have black areas, but it can be
seen from Figure 4(h) and Figure 4(i) that the black area of Figure 4(h) is smaller
than that of Figure 4(i), indicating that c = 3

2 is relatively stable.
In addition, when c = −2i, 7 + 7i, 2.92 + 6.92i, they correspond to the pink area

in Figure 3, and when c = 2.5i,−6i, 7.6 + 1.8i, they correspond to the cyan area. By
drawing the dynamical planes corresponding to these parameters, it can be seen that
even if the stable parameter value is selected in the stable region, the corresponding
dynamical planes also have black regions, that is, the region that does not converge
to the roots, see Figure 5.

Besides, c = 1
2 ,

9±i
√
3

6 correspond to the pink region in Figure 3, that is, the
iterative method does not converge to the extra fixed points. By observing figures
4(a), 4(f), 4(g) and figures 5(a), 5(b), 5(c), it can be concluded that the stability
of the iterative methods corresponding to the parameter values in the cyan region
must not be good, and the c-values in the pink region are more stable.
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(j) c = 3

Figure 4: Dynamical planes of special c values
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Figure 5: Dynamical planes of special c values

In the above discussion, we can see that these methods corresponding to c =
1
2 ,

9±i
√
3

6 are superior to the other members of the new family OM(6).

5. Numerical experiments

In this section, based on the results obtained in the previous sections, we conduct
several numerical experiments.
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5.1. First experiment: Solving nonlinear equations

Table 2 gives four nonlinear equations and their zeros and the initial values of subse-
quent iterations. Tables 3-6 show the numerical performance of the iterative methods
related to the c-values involved in theorems 4 and 5, which are used to compare the
effects of different parameter selections on the convergence accuracy.

Tables 3-6 show the comparison results of the effective digits of each test function
after 4 iterations. It can be seen from tables 3-6 that the accuracy is higher when
c = 3. Regardless of c = 1

6 (9− i
√

3) or c = 1
6 (9 + i

√
3)), their operation results are

the same.

i fi(x) x0 α

1 10xe−x2

− 1 1.7 1.6796306104284499

2 cos(
π

2
x) + x2 − π 2 2.0347248962791266

3 11x11 − 1 0.8 0.80413309750366432
4 cos(x)− xex + x2 0.5 0.6391540963

Table 2: The function fi(x) initial guesses x0 and zeros α

c |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3|
1/2 2.0369× 10−2 1.4167× 10−13 6.4532× 10−103 1.1962× 10−817

41/12 2.0369× 10−2 2.4701× 10−14 1.0196× 10−109 8.5893× 10−873

233/60 2.0369× 10−2 4.9603× 10−14 5.4598× 10−107 1.1762× 10−850

15/4 2.0369× 10−2 4.2534× 10−14 1.365× 10−107 1.5353× 10−855

169/44 2.0369× 10−2 4.7358× 10−14 3.5955× 10−107 3.9695× 10−852

(1/6)(9− i
√

3) 2.0369× 10−2 8.4034× 10−14 5.986× 10−105 3.968× 10−834

(1/6)(9 + i
√

3) 2.0369× 10−2 8.4034× 10−14 5.986× 10−105 3.968× 10−834

3/2 2.0369× 10−2 8.2444× 10−14 5.04× 10−105 9.8315× 10−835

2 2.0369× 10−2 5.371× 10−14 1.0758× 10−106 2.787× 10−848

3 2.0369× 10−2 2.0867× 10−15 2.2401× 10−119 3.952× 10−951

Table 3: Comparison for test function f1 and special c-values

c |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3|
1/2 3.4725× 10−2 2.8598× 10−13 4.9201× 10−102 3.7759× 10−812

41/12 3.4725× 10−2 4.2907× 10−14 2.0192× 10−109 4.8573× 10−872

233/60 3.4725× 10−2 9.2261× 10−14 1.9942× 10−106 9.4995× 10−848

15/4 3.4725× 10−2 7.8247× 10−14 4.5181× 10−107 5.5831× 10−853

169/44 3.4725× 10−2 8.781× 10−14 1.277× 10−106 2.555× 10−849

(1/6)(9− i
√

3) 3.4725× 10−2 1.721× 10−13 5.1895× 10−104 3.5466× 10−828

(1/6)(9 + i
√

3) 3.4725× 10−2 1.721× 10−13 5.1895× 10−104 3.5466× 10−828

3/2 3.4725× 10−2 1.6907× 10−13 4.4225× 10−104 9.6922× 10−829

2 3.4725× 10−2 1.1228× 10−13 1.1211× 10−104 1.1071× 10−841

3 3.4725× 10−2 1.8859× 10−15 1.0277× 10−121 7.9933× 10−972

Table 4: Comparison for test function f2 and special c-values
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c |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3|
1/2 4.1331× 10−3 6.799× 10−14 3.1765× 10−100 7.2104× 10−791

41/12 4.1331× 10−3 1.9676× 10−14 5.0902× 10−105 1.0214× 10−829

233/60 4.1331× 10−3 3.2545× 10−14 4.7093× 10−103 9.0517× 10−841

15/4 4.1331× 10−3 2.8898× 10−14 1.6148× 10−103 1.5348× 10−817

169/44 4.1331× 10−3 3.1387× 10−14 3.3982× 10−103 6.4147× 10−815

(1/6)(9− i
√

3) 4.1331× 10−3 3.7441× 10−14 1.5072× 10−102 1.0395× 10−809

(1/6)(9 + i
√

3) 4.1331× 10−3 3.7441× 10−14 1.5072× 10−102 1.0395× 10−809

3/2 4.1331× 10−3 3.6442× 10−14 1.1801× 10−102 1.4276× 10−810

2 4.1331× 10−3 2.1272× 10−14 9.2806× 10−105 1.2181× 10−827

3 4.1331× 10−3 7.9324× 10−15 1.487× 10−108 2.2678× 10−858

Table 5: Comparison for test function f3 and special c-values

c |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3|
1/2 1.3915× 10−1 2.0403× 10−8 4.0858× 10−63 1.0567× 10−500

41/12 1.3915× 10−1 4.3804× 10−9 6.5978× 10−69 1.7479× 10−547

233/60 1.3915× 10−1 7.1755× 10−9 5.4981× 10−67 6.533× 10−532

15/4 1.3915× 10−1 6.4004× 10−9 1.9653× 10−67 1.5534× 10−535

169/44 1.3915× 10−1 6.9308× 10−9 4.0226× 10−67 5.1789× 10−533

(1/6)(9− i
√

3) 1.3915× 10−1 1.037× 10−8 1.0031× 10−65 7.6881× 10−522

(1/6)(9 + i
√

3) 1.3915× 10−1 1.037× 10−8 1.0031× 10−65 7.6881× 10−522

3/2 1.3915× 10−1 1.0113× 10−8 7.9531× 10−66 1.164× 10−522

2 1.3915× 10−1 5.7728× 10−9 5.063× 10−68 1.7726× 10−540

3 1.3915× 10−1 1.6764× 10−9 1.3898× 10−72 3.1028× 10−577

Table 6: Comparison for test function f4 and special c-values

5.2. Second experiment: The comparison of solving matrix
sign function

The OM iterative method has advantages not only in terms of solving nonlinear
equations, but also in terms of solving matrix sign functions. Firstly, we consider a
nonlinear matrix function

X2 − I = 0, (13)

where I is an identity matrix. We can obtain the reciprocal form of the following
iterative by applying (13) to (6), where c = 3:

Xn+1 = 4(Xn − 15X3
n + 196X5

n − 652X7
n + 2686X9

n + 23694X11
n + 55284X13

n + 39812X15
n

+ 9417X17
n + 649X19

n )× [I − 10X2
n + 117X4

n + 392X6
n − 2574X8

n + 42116X10
n

+ 165570X12
n + 218248X14

n + 88013X16
n + 12150X18

n + 265X20
n ]−1

(14)

Besides, we will apply (14) to resolve the matrix sign for the famous Wilson matrix.
It has the following form:

A =

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

.
In the calculation process, we use Matlab to record the number of iterations and

computer running time to meet the stopping termination Rn =‖ X2
n−I ‖∞≤ 10−100.
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At the same time, we also carry out the same numerical experiments on the following
eighth-order iterative methods, and get the experimental results, see Table 7. Table
8 shows the experimental results of four methods applied to solve random matrices
of different orders. From tables 7 and 8, we can obtain that the OM method has
advantages in both iterative count and CPU time.

Method 1
The method by Sharma et al. M1, see [18], is

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
f(wn)

f ′(xn)

f(xn) + af(wn)

f(xn) + (a− 2)f(wn)
,

xn+1 = xn −
P +Q+R

Pf [zn, xn] +Qf ′(xn) +Rf [wn, xn]
f(xn),

where P = (xn − wn)f(xn)f(wn), Q = (wn − zn)f(wn)f(zn) and R = (zn −
xn)f(zn)f(xn). Here, we select a = 1.

Method 2
The method by Sharma and Sharma M2, see [19], is

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
f(xn)

f(xn)− 2f(wn)

f(wn)

f ′(xn)
,

xn+1 = zn − [1 +
f(zn)

f(xn)
+ α

f(zn)2

f(xn)2
]
f [xn, wn]f(zn)

f [wn, zn]f [xn, zn]
,

where α ∈ R, and we select α = 1, here.
Method 3
The method by Chun and Lee M3, see [4], is

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)

1

(1− f(yn)
f(xn)

)2
,

xn+1 = zn −
f(zn)

f ′(xn)

1

(1−H(tn)− J(sn)− P (un))2
,

where

H(tn) = −β − γ + tn +
t2n
2
− t3n

2
, J(sn) = β +

sn
2
, P (un) = γ +

un
2
,

and tn =
f(yn)

f(xn)
, sn =

f(zn)

f(xn)
, un =

f(zn)

f(yn)
, β, γ ∈ R. We select β = γ = 1.

OM M1 M2 M3

Number of iterations 4 5 4 5
Time 0.034760s 0.061319s 0.080200s 0.087021s

Table 7: Comparison results (1)
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OM M1 M2 M3

Matrix No. n1 Time n Time n Time n Time

R4×4 2 0.018940 2 0.025878 3 0.039122 5 0.103771
R5×5 3 0.015431 4 0.028522 6 0.012384 13 0.144543
R8×8 3 0.015703 4 0.031779 4 0.037287 45 0.191979
R10×10 4 0.065667 5 0.051149 6 0.080007 35 0.157630
R15×15 5 0.034656 6 0.041282 5 0.051692 148 0.360147
R20×20 4 0.061849 5 0.078071 7 0.130622 42 0.276220

1 n represents the number of iterations

Table 8: Comparison results (2)

6. Conclusions

In this paper, the stability of an optimal eighth-order single-parameter OM iterative
method for solving nonlinear equations is analyzed. Applying to the prototype
polynomial f(z) = (z − a)(z − b), iterative maps (9) under the Möbius conjugacy
map are obtained, and the strange fixed points and their stability are analyzed. At
the same time, we have investigated the complex dynamical behavior of OM at fixed
and critical points. Through the analysis of the stability planes in figures 2-3 and
dynamical planes in figures 4-5, we conclude that if the parameters are selected in the
cyan region, the stability of the corresponding iterative method must not be good.
However, parameters in the pink area are more stable. We verify the conclusion
by drawing their dynamical planes. In particular, when c = 1

2 ,
1
6 (9 ± i

√
3), their

corresponding iterative methods are the most stable. Numerical experiments show
that the iterative method studied in this paper is superior to other eighth-order
methods in some cases, whether in solving nonlinear equations or solving matrix
sign function, especially c = 3.
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