On the l_p -norm estimation in a quasilinear regression model

Dragan Jukić

Department of Mathematics, J.J. Strossmayer University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia

Abstract. This talk will be based on my recently submitted manuscript on the l_p -norm $(1 \le p < \infty)$ estimation of the parameters in a quasilinear regression model of the form

$$g(t; \boldsymbol{\alpha}) = \varphi(f_0(t) + \alpha_1 f_1(t) + \dots + \alpha_n f_n(t)),$$

where $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n$ is an unknown vector parameter, f_0, f_1, \ldots, f_n are arbitrary fixed functions, and the function $\varphi : I \to \mathbb{R}$, with $I \subseteq \mathbb{R}$ being an interval (open, closed, half-open, bounded or unbounded), is continuous and strictly monotonic.

Many important model functions which often appear in applied research are quasilinear or can be parameterized as a quasilinear model. For example: When $\varphi(u) = \exp(u)$, we have exponential regression; when $\varphi(u) = u^a$, where $a \neq 0$ is given, we have power regression; when $\varphi(u) = 1/u$, we have hyperbolic regression.

The focus of this talk will be on the existence of the best l_p -norm estimator in a quasilinear regression model of the above form. I will review what is known about this problem and then present a theorem which guarantees the existence of the best l_p -norm estimator. From that theorem, which both extends and generalizes the previously known existence result, the existence of the best l_p -norm estimator for the whole class of nonlinear model functions follows immediately.