Multiple circle detection by means of center-based clustering (Detekcija više kružnica pomoću grupiranja podataka na osnovi središta)

T. Marošević, joint work with R. Scitovski

Abstract

The multiple circle detection problem on the basis of given data point set in a plane is considered. It has been supposed that all data points come from k circles that should be detected or fitted. The problem is being solved by the application of center-based clustering of the data set, where clusters are determined by corresponding circle-centers. Thereby, an adaptation of the well known k-means algorithm has been constructed - k closest circles algorithm. Different distances from a point to the circle can be used (e.g. algebraic distance, orthogonal distance, least squares).

In addition, the incremental algorithm for searching of an approximate globally optimal k-partition is proposed. Since optimal partitions with $2,3, \ldots$ clusters are determined successively in the algorithm, a few well-known indexes for determining appropriate number of clusters in a partition are adopted for this case. Thereby the Hausdorff distance between two circles is adopted and used. The proposed algorithm is illustrated on several numerical examples.

