Singular two-parameter eigenvalue problems

Bor Plestenjak
Department of Mathematics, University of Ljubljana
Jadranska 19, 1000 Ljubljana, Slovenia
e-mail: bor.plestenjak@fmf.uni-lj.si

The two-parameter eigenvalue problem has the form

$$
\begin{align*}
& A_{1} x_{1}=\lambda B_{1} x_{1}+\mu C_{1} x_{1}, \\
& A_{2} x_{2}=\lambda B_{2} x_{2}+\mu C_{2} x_{2}, \tag{1}
\end{align*}
$$

where A_{i}, B_{i}, and C_{i} are given $n_{i} \times n_{i}$ complex matrices, $\lambda, \mu \in \mathbb{C}$, and $x_{i} \in \mathbb{C}^{n_{i}}$ for $i=1,2$. A pair (λ, μ) is an eigenvalue if it satisfies (1) for nonzero vectors x_{1}, x_{2}, and the corresponding eigenvector is $x_{1} \otimes x_{2}$.

On the tensor product space we can define $n_{1} n_{2} \times n_{1} n_{2}$ matrices

$$
\begin{aligned}
& \Delta_{0}=B_{1} \otimes C_{2}-C_{1} \otimes B_{2}, \\
& \Delta_{1}=A_{1} \otimes C_{2}-C_{1} \otimes A_{2}, \\
& \Delta_{2}=B_{1} \otimes A_{2}-A_{1} \otimes B_{2} .
\end{aligned}
$$

The two-parameter eigenvalue problem (1) is nonsingular if its operator determinant Δ_{0} is invertible. Atkinson showed [1] that a nonsingular two-parameter eigenvalue problem is equivalent to the joint generalized eigenvalue problems

$$
\begin{align*}
& \Delta_{1} z=\lambda \Delta_{0} z, \tag{2}\\
& \Delta_{2} z=\mu \Delta_{0} z,
\end{align*}
$$

where $z=x_{1} \otimes x_{2}$. Many theoretical results and numerical methods for nonsingular two-parameter eigenvalue problems are based on this relation.

However, if all linear combinations of Δ_{0}, Δ_{1}, and Δ_{2} are singular, then we say that (1) is singular. Just recently, some of the above relations were generalized to singular two-parameter eigenvalue problems in [3], where it is shown that the simple finite regular eigenvalues of (1) and (2) agree. We will present a numerical method from [2] that can solve a singular two-parameter eigenvalue problem by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue problems.

As possible applications that lead to singular two-parameter eigenvalue problems we will present a numerical method for the quadratic two-parameter eigenvalue problem and a numerical method for a system of two bivariate polynomials.

References

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York, 1972.
[2] A. Muhič and B. Plestenjak, On the singular two-parameter eigenvalue problem, Electron. J. Linear Algebra 18 (2009), pp. 420-437.
[3] A. Muhič and B. Plestenjak, On the quadratic two-parameter eigenvalue problem and its linearization, Linear Algebra Appl. 432 (2010), pp. 2529-2542.

