Functional limit theorem with the M_1 topology

Danijel Krizmanić University of Rijeka, Croatia dkrizmanic@math.uniri.hr

(joint work with Bojan ${\rm Basrak}^1$ and Johan ${\rm Segers}^2)$

We consider a strictly stationary sequence of random variables $(X_n)_{n\geq 1}$ with infinite second moments. Under the properties of weak dependence and regular variation with index $\alpha \in (0, 2)$, the partial sum stochastic process

$$V_n(t) = a_n^{-1}(S_{|nt|} - \lfloor nt \rfloor b_n), \quad t \in [0, 1],$$

converges in distribution to an α -stable Lévy process in the space D[0,1] endowed with Skorohod's M_1 topology, where $S_n = X_1 + \cdots + X_n$, $(a_n)_n$ is a sequence of positive real numbers such that $n \operatorname{P}(|X_1| > a_n) \to 1$ as $n \to \infty$, and $b_n = \operatorname{E}(X_1 \operatorname{1}_{\{|X_1| \le a_n\}})$. Here, D[0,1] is the space of real-valued right continuous functions on [0,1] with left limits. The limiting process is characterized in terms of its characteristic triple. This result is then applied to moving average processes.

¹Bojan Basrak, University of Zagreb, Croatia

²Johan Segers, Université catholique de Louvain, Belgium