An Algorithmic Approach to Cyclotomic Units by Marc Conrad, University of Bedfordshire http://perisic.com/marc-conrad

For $n \in \mathbf{N}$ and (a, n) = 1 let $\epsilon_n := e^{\frac{2\pi i a}{n}}$ be a primitive *n*th unit root. We define the group of cyclotomic numbers $D^{(n)}$ as the multiplicative group generated by elements of the form $1 - \epsilon_n^k$ with $k \not\equiv 0 \mod n$. The group of cyclotomic units is defined as $C^{(n)} := \mathbf{Z}[\epsilon_n]^* \cap D^{(n)}$. It is well known that the group of cyclotomic units is of finite index within the full unit group $\mathbf{Z}[\epsilon_n]^*$ of the cyclotomic extension $\mathbf{Q}(\epsilon_n)$. We extend the definitions above allowing $n = \infty$ with $D^{(\infty)} := \bigcup_{n \in \mathbf{N}} D^{(n)}$ and $C^{(\infty)} := \bigcup_{n \in \mathbf{N}} C^{(n)}$ respectively.

We investigate various aspects of multiplicative relations within $D^{(n)}$ and $C^{(n)}$ for $n \in \mathbb{N} \cup \{\infty\}$. This leads to a geometrical interpretation and visualization of these relations. Of particular interest are the so-called "Ennola" relations that occur when n is of the form 4pq or pqr where p, q and r are odd primes (with n = 60 and n = 105 being the smallest examples). We give explicit algorithms that construct these Ennola relations, determine a basis of both $D^{(n)}$ and $C^{(n)}$ and (recursively) calculate the basis representation of an arbitrary cyclotomic unit or number.