Multiparameter eigenvalue problems

Bor Plestenjak
Department of Mathematics
University of Ljubljana, Slovenia
e-mail: bor.plestenjak@fmf.uni-lj.si
URL: www-lp.fmf.uni-lj.si/plestenjak/bor.htm

We will consider the two-parameter eigenvalue problem

$$
\begin{align*}
& A_{1} x_{1}=\lambda B_{1} x_{1}+\mu C_{1} x_{1}, \tag{1}\\
& A_{2} x_{2}=\lambda B_{2} x_{2}+\mu C_{2} x_{2},
\end{align*}
$$

where A_{i}, B_{i}, and C_{i} are given $n_{i} \times n_{i}$ matrices over $\mathbb{C}, \lambda, \mu \in \mathbb{C}$, and $x_{i} \in \mathbb{C}^{n_{i}}$ for $i=1,2$. A pair (λ, μ) is an eigenvalue if it satisfies (1) for nonzero vectors x_{1}, x_{2}. The tensor product $x_{1} \otimes x_{2}$ is then the corresponding right eigenvector. Similarly, $y_{1} \otimes y_{2}$ is the corresponding left eigenvector if $0 \neq y_{i} \in \mathbb{C}^{n_{i}}$ and $y_{i}^{*}\left(A_{i}-\lambda B_{i}-\mu C_{i}\right)=0$ for $i=1,2$.

On the tensor product space $S:=\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}}$ of the dimension $N:=n_{1} n_{2}$ we can define

$$
\begin{aligned}
& \Delta_{0}=B_{1} \otimes C_{2}-C_{1} \otimes B_{2}, \\
& \Delta_{1}=A_{1} \otimes C_{2}-C_{1} \otimes A_{2}, \\
& \Delta_{2}=B_{1} \otimes A_{2}-A_{1} \otimes B_{2} .
\end{aligned}
$$

The two-parameter problem (1) is nonsingular if its operator determinant Δ_{0} is invertible. In this case $\Delta_{0}^{-1} \Delta_{1}$ and $\Delta_{0}^{-1} \Delta_{2}$ commute and problem (1) is equivalent to the associated problem

$$
\begin{align*}
& \Delta_{1} z=\lambda \Delta_{0} z, \\
& \Delta_{2} z=\mu \Delta_{0} z \tag{2}
\end{align*}
$$

for decomposable tensors $z \in S, z=x_{1} \otimes x_{2}$.
In the first part a basic theory of the multiparameter eigenvalue problems will be presented together with some examples where such problems appear. In the second part some numerical methods for the two-parameter eigenvalue problem will be discussed. One possible approach is to solve the associated couple of generalized eigenproblems (2), but this is only feasible for problems of low dimension because the size of the matrices of (2) is $N \times N$. For larger problems we suggest a Jacobi-Davidson type method: a one-sided variant for the right definite case and a two-sided variant for a general nonsingular two-parameter eigenvalue problem.

References

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York, 1972.
[2] M. E. Hochstenbach and B. Plestenjak, A Jacobi-Davidson type method for a right definite two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392410.
[3] M. E. Hochstenbach, T. Košir, and B. Plestenjak, A Jacobi-Davidson type method for the two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477497.

